
Toward Coordination-free and
Reconfigurable Mixed Concurrency Control

Dixin Tang Aaron J. Elmore

1

2

Hardware Development Changes Database Architecture

A Few Cores

Small Memory

Large Disk

Disk Stalls Dominate the Performance

Elimination of Disk Stalls

More Concurrent Read/Write Operations

Concurrency Control
Becomes the New Bottleneck

Disk-based Database Main Memory Database

3

A Closer Look at Concurrency Control

R W R

Database Records
Rec

Rec

Rec

Rec
Rec

Rec

Rec

Rec

TXN TXN TXNTXN

Working Threads

Concurrency Control Comes Into Play

Transaction
A sequence of read/write operations to be executed atomically Two Goals of Concurrency Control

• Interleaving concurrent operations
to maximize the performance

• Guarantee consistency
Serializability

The result of interleaved execution of concurrent
transactions is equivalent to the result of executing
these transactions in one serial orderR W R W

One Concurrency Control Does Not Fit All

Database Records
Rec

Rec
Rec

Rec
Rec

Rec

Rec
Rec

Rec

Rec

Rec

Rec

Rec

Rec

Rec

Rec

PartCC (Partition-based single-thread concurrency control)

TXN TXN TXN

Block Other Threads

• Perform well under partitionable
workloads

• Cross-partition transactions hurt the
performance

TXN TXN TXN

4

One Concurrency Control Does not Fit All

OCC (Optimistic Concurrency Control)

5

2PL (Two Phase Locking)

Time Line

R W R

R W

Time Line

R W R

R W

Validate

Validate

v Perform better under low-conflict
workloads

v Conflicts can hurt the performance
because transactions need to be
restarted if validation fails

v Perform better under highly-conflicted
workloads

v Concurrency control overhead and
synchronization overhead

No Blocking During Normal Execution

!"#$

!"#%

!"#$

!"#%

6

Not partitionable, Read Only
Not partitionable, High skew, Write heavy

Partitionable

One Concurrency Control Does not Fit All

experiment on our main-memory database
prototype using YCSB workloads

v OCC from Silo [1]

v 2PL using VLL [2]

v PartCC from H-Store [3]

Each Protocol excels in
different scenarios.

[1] TU, S., et al. Speedy transactions in multicore in-memory databases. SOSP’ 13
[2] REN, K. et al. Lightweight locking for main memory database systems. PVLDB’12
[3] KALLMAN, R., et al. H-store: a high-performance, distributed main mem-ory transaction processing system. PVLDB’08

Database

7

A General Solution: Mixed Concurrency Control

Concurrency Control Protocols

Workload Two Benefits
• Each protocol can process the

part of workload it is optimized for

• Each protocol can avoid being
brittle to workload where it does
not perform well

!!" !!# !!$

8

Two Challenges of Mixed Concurrency Control

Workload
• How to partition a workload and mix
multiple concurrency control protocols
efficiently

• How to reconfigure a protocol when
the workload changes

!!"
!!#

!!$

Workload
!!"

!!#

!!$

!!#

9

Previous Approach of Mixed Concurrency Control:
Partition Stored Procedures by Conflicts

Stored Procedure (SP)
A Parameterized Transaction Template

TXN
TXN TXN

Semantic Information

v Tables to be read/written

v Orders of reading/writing tables

Generate transactions by providing parameters

Previous Approach [1]

v Group stored procedures by

conflicts extracted from their

semantic information

v Assign each group a protocol

to process conflicts within

that group

v Need additional concurrency

control protocols to process

conflicts across groups

SQL

[1] SU, C., et al. Bringing modular concurrency control to the next level. SIGMOD’ 17

SQL

10

Previous Approach of Mixed Concurrency Control:
Partition Stored Procedures by Conflicts

!!" !!# !!$

!!%

!!&

Rely on static semantic information, cannot adapt to varied workloads

Overhead of m
ultip

le CC execution for a sin
gle operation

Process conflicts within group

Process conflicts across groups

Process conflicts across groups!!'

TXN
SQL SQL SQL

R

11

A New Perspective: Partition Records by Access Characteristics

Rec

Rec

Rec

Database Records
Rec

Rec

Rec

Rec

Rec Rec

Rec Rec

Rec

Rec

Rec

Partitionable Lowly-conflicted Records Highly-conflicted Records

Rec

Rec

Rec

Validation-based Approach Lock-based ApproachPartition-based single-thread approach

TXN

12

CormCC: Coordination-free and
Reconfigurable Mixed Concurrency Control

!!" !!# !!$

Reconfigurable: partitioning records depend on real-time data access
characteristics, make online protocol reconfiguration possible

Rec

Rec

Rec

Rec

Rec

Rec
Rec

Rec

Rec Rec

R R W

Coordination-free: no additional concurrency control protocols

Our Approach
v Partition database records and assign
each partition a single protocol

v A single protocol is used to process all
operations for that partition of records

To achieve the two goals, we need to
answer four questions:

v How does CormCC execute

v How to maintain serializability

v How to guarantee deadlock free

v How to enable online protocol switch

13

CormCC Execution

Preprocess Validation CommitExecution

Break transaction life cycle into four phases

!!"

!!#

!!$

TXN NO-OPTXN
R

TXN
W

TXN
W

TXN TXN

TXN

TXN

TXN

TXN

TXN

TXN

14

Correctness of CormCC – Serializability

v COCSR (Commit ordering conflict serializable)

v Sufficient condition of serializable
v Commit ordering respects conflicts

v If all protocols are COCSR, then CormCC is
COCSR

v Proof can be found in the paper

!!"

!!#

!!$

Serializability

Serializability

Serializability

CormCC
Serializability

COCSR

COCSR

COCSR

COCSR

%&'"

Time Line

%&'#

Read

One Record

Write

Commit

Commit

TXN+ Commits before TXN,
conflict

15

CormCC – Deadlock Free

Wait-for Graph

Deadlock Detection

TXN TXN

TXN

Our Approach: Deadlock Prevention
v We require each protocol can only exclusively let

transactions wait in no more than one phase

v No deadlock within one phase

v Transactions in earlier phases can wait for
later phases, but not the other way around

!!"

!!#

!!$

Preprocess Validation CommitExecution

%&'"

%&'#

%&'$

16

CormCC – Online Protocol Reconfiguration
Online reconfiguration can cause inconsistency

Rec

Rec

Rec

R W

Old CC

TXN TXN

Each working thread
changes protocol when
the current TXN finishes

conflicts between the two
threads may not be detected

A straightforward solution: stop all

v Waiting all working threads to complete
their current transactions, and stop
them from receiving new transactions
v Decrease the performance of database

Rec

Rec

Rec

R W

Old CC

TXN TXN

New CC

17

CormCC – Online Protocol Reconfiguration
Our solution: using a mediated protocol that is compatible to both old and new protocols

Rec

Rec

Rec

R W

Old CC

TXN TXN

Rec

Rec

Rec

R W

TXN TXN

Old CCMediated
Protocol

Rec

Rec

Rec

R W

TXN TXN

Mediated
Protocol

Rec

Rec

Rec

R W

TXN TXN

New CC Mediated
Protocol

Step 1

Rec

Rec

Rec

R W

New CC

TXN TXN

Step 2 Step 3 Step 4

18

CormCC – Online Protocol Reconfiguration

How to Build a Mediated Protocol

v The mediated protocol executes the
logics of both old and new protocol

v Example: Mediated Protocol between
OCC and 2PL

Mediated Protocol between OCC and 2PL

Read

v Read timestamp (OCC)
v Apply read lock (2PL)

Write
v Write to a local buffer (OCC)
v Apply write lock (2PL)

Validate
v Execute Validate phase of OCC

19

Prototype Design
v Supporting PartCC from H-Store [3], OCC from Silo [1], and 2PL from VLL [2]

v Partition the whole database and apply each partition a single protocol

Rec

Rec

Rec
Rec

Rec

Rec

Rec

Rec

Rec

Rec

Rec

Rec
Rec

Rec

Rec

PartCC PartCC OCC OCC 2PL

[1] TU, S., et al. Speedy transactions in multicore in-memory databases. SOSP’ 13
[2] REN, K. et al. Lightweight locking for main memory database systems. PVLDB’12
[3] KALLMAN, R., et al. H-store: a high-performance, distributed main mem-ory transaction processing system. PVLDB’08

20

Prototype Design

v Selecting the ideal protocol for each partition
vFeature Engineering: design several features to capture the performance difference

of candidate protocols
vClassifiers: building a two-layer classifier

Classifier-1: PartCC or Not

Classifier-2: OCC or 2PLPartCC

OCC 2PL

Workload

Partition
Conflicts

Record
Contention

Read
Rate

Transaction
Length

21

Experiments

Experiment Settings

Workload

v A Machine with 32 cores, 256 GB main memory

v TPC-C: Order processing application with 5 stored procedures, 32 warehouses

v YCSB: One Table with 1 million records, each with 25 columns and 20 bytes for

each column; One type of transaction mixed with read or read-and-modify

operations

v Partition into 32 partitions (i.e. equal to the number of cores)

22

Experiments
Our experiments compare CormCC with

v Single candidate protocols

v Hybrid - Hybrid OCC and 2PL execution based on MOCC [1] /Hsync [2]

v Tebaldi - A stored procedure-oriented general framework of mixed concurrency control [3]

2PL

SSI

New Order

Payment Delivery

Order Status

Stock Level

Runtime
Pipeline

Runtime
Pipeline

Tebaldi Configuration for TPC-C (from Tebaldi paper)

[1] WANG, T., et al. Mostly-optimistic concurrency control for highly contended dynamic workloads on a thousand cores. PVLDB’16

[2] SHANG, Z., et al. Graph analytics through fine-grained parallelism. SIGMOD’16

[3] SU, C., et al. Bringing modular concurrency control to the next level. SIGMOD’ 17

23

Experiments – Compare with Tebaldi

Comparison under different partitionability (TPC-C)

0

0.4

0.8

1.2

0 4 8 12 16 20 24 28 32

Th
ro

ug
hp

ut
 (M

ill
io

ns
/s

ec
)

Number of partitions that receive 100% cross-partition
transactions

Comparison under different partitionability

2PL Tebaldi CormCC

v Start with well-partitionable workload
v Each partition receives 100% single-

partition transactions

v Increase the number of partitions receiving
100% cross-partition transactions

24

Experiments – Compare with Tebaldi

Comparison under different conflict rates (TPC-C)

v We modify TPC-C to increase access skewness

v We use Zipfian distribution and increase its theta
parameter to introduce higher conflict rate

0

0.4

0.8

1.2

0 0.3 0.6 0.9 1.2 1.5

Th
ro

ug
hp

ut
 (M

ill
io

ns
/s

ec
)

Theta of Zipfian Access Distribution

Comparison under different conflict rates

 2PL Tebaldi CormCC

25

Experiments – Varied workloads
v Vary parameters every 5 seconds:

Transactions mix, Percentages of cross-partition transactions, Access skewness (i.e. theta of Zipf)

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95

Th
ro

ug
hp

ut
 (M

ill
io

ns
/s

ec
)

Time (s)

Tests over varied workloads (TPC-C)
PartCC OCC 2PL Hybrid CormCC

26

Experiments – A closer look at the same results of varied workload tests

0.5

1

1.5

2

2.5

3

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100Sp
ee

du
p

ov
er

 S
in

gl
e

Pr
ot

oc
ol

s

Time (s)

CormCC throughput ratio to single protocols
Max Min Average

v We aggregate the throughput of every 5s and report CormCC throughput ratio to single protocols
vMax: Speedup over the worst single protocols

vMin: Speedup over the best single protocols

v Average: Speedup over average throughput of single protocols

27

Experiments – Mediated Protocol Switch

0

0.2

0.4

0.6

Short-only Long(0.5s) Long(1 s) Long(2 s) Long(4 s)

Th
ro

ug
hp

ut
 (M

ill
io

ns
/s

ec
)

Testing Mediated Switching
OCC 2PL StopALL Mediated

v Switch from OCC to 2PL using YCSB workloads

v Report the throughput during protocol switch

v Compared with StopALL

v Test a workload with short-only transactions and
workloads with one long transaction of different
duration
v 0.5s, 1s. 2s, 4s

v Test different switching points
v At the beginning of the long transaction

v At the middle of the long transaction

v At the end of the long transaction

28

Conclusion

v CormCC, a general mixed concurrency control framework that does not introduce
any coordination overhead and supports online reconfiguration

v Experiments show that CormCC can achieve significant throughput improvement
over single static protocols and state-of-the-art mixed approaches.

Thanks!

29

Backup Slides

30

CormCC Execution in Prototype

Preprocess Validation CommitExecution

PartCC

OCC

2PL

This protocol includes this phase

This protocol makes transaction wait in this phase

31

Experiments – Varied workloads (YCSB)
v Vary parameters every 5 seconds:

Transactions mix, Percentages of cross-partition transactions, Access skewness (i.e. theta of Zipf)

0

0.5

1

1.5

2

2.5

3

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95Th
ro

ug
hp

ut
 (M

ill
io

ns
/s

ec
)

Time (s)

Tests over varied workloads (YCSB)
PartCC OCC 2PL Hybrid CormCC

32

Experiments – Aggregated Results of Varied workloads (YCSB)

0

0.5

1

1.5

2

2.5

3

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Th
ro

ug
hp

ut
 (M

illi
on

s/
se

c)

Time (s)

CormCC throughput ratio to single protocols
(YCSB)

Max Min Average

