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Hardware Development Changes Database Architecture

A Few Cores

Small Memory

Large Disk

Disk Stalls Dominate the Performance

Elimination of Disk Stalls

More Concurrent Read/Write Operations

Concurrency Control 
Becomes the New Bottleneck

Disk-based Database Main Memory Database
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A Closer Look at Concurrency Control
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Working Threads

Concurrency Control Comes Into Play

Transaction
A sequence of read/write operations to be executed atomically Two Goals of Concurrency Control

• Interleaving concurrent operations 
to maximize the performance

• Guarantee consistency
Serializability

The result of interleaved execution of concurrent
transactions is equivalent to the result of executing
these transactions in one serial orderR W R W



One Concurrency Control Does Not Fit All

Database Records
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PartCC (Partition-based single-thread concurrency control)
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Block Other Threads

• Perform well under partitionable
workloads

• Cross-partition transactions hurt the
performance

TXN TXN TXN
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One Concurrency Control Does not Fit All

OCC (Optimistic Concurrency Control)
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2PL (Two Phase Locking)

Time Line
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Time Line
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Validate

Validate

v Perform better under low-conflict
workloads

v Conflicts can hurt the performance
because transactions need to be
restarted if validation fails

v Perform better under highly-conflicted
workloads

v Concurrency control overhead and
synchronization overhead

No Blocking During Normal Execution
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Not partitionable, Read Only
Not partitionable, High skew, Write heavy

Partitionable

One Concurrency Control Does not Fit All

experiment on our main-memory database 
prototype using YCSB workloads

v OCC from Silo [1]

v 2PL using VLL [2]

v PartCC from H-Store [3]

Each Protocol excels in 
different scenarios.

[1] TU, S., et al. Speedy transactions in multicore in-memory databases. SOSP’ 13 
[2] REN, K. et al. Lightweight locking for main memory database systems. PVLDB’12
[3] KALLMAN, R., et al. H-store: a high-performance, distributed main mem-ory transaction processing system. PVLDB’08
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A General Solution: Mixed Concurrency Control

Concurrency Control Protocols

Workload Two Benefits
• Each protocol can process the

part of workload it is optimized for

• Each protocol can avoid being
brittle to workload where it does
not perform well

!!" !!# !!$
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Two Challenges of Mixed Concurrency Control

Workload
• How to partition a workload and mix
multiple concurrency control protocols
efficiently

• How to reconfigure a protocol when
the workload changes
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Previous Approach of Mixed Concurrency Control: 
Partition Stored Procedures by Conflicts

Stored Procedure (SP)
A Parameterized Transaction Template

TXN
TXN TXN

Semantic Information

v Tables to be read/written 

v Orders of reading/writing tables

Generate transactions by providing parameters

Previous Approach [1]

v Group stored procedures by

conflicts extracted from their

semantic information

v Assign each group a protocol

to process conflicts within

that group

v Need additional concurrency

control protocols to process

conflicts across groups

SQL

[1] SU, C., et al. Bringing modular concurrency control to the next level. SIGMOD’ 17
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Previous Approach of Mixed Concurrency Control: 
Partition Stored Procedures by Conflicts

!!" !!# !!$

!!%

!!&

Rely on static semantic information, cannot adapt to varied workloads 

Overhead of m
ultip

le CC execution for a sin
gle operation

Process conflicts within group

Process conflicts across groups

Process conflicts across groups!!'

TXN
SQL SQL SQL
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A New Perspective: Partition Records by Access Characteristics
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Database Records
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Partitionable Lowly-conflicted Records Highly-conflicted Records
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Validation-based Approach Lock-based ApproachPartition-based single-thread approach
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CormCC: Coordination-free and 
Reconfigurable Mixed Concurrency Control
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Reconfigurable: partitioning records depend on real-time data access
characteristics, make online protocol reconfiguration possible
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Coordination-free: no additional concurrency control protocols

Our Approach
v Partition database records and assign
each partition a single protocol

v A single protocol is used to process all
operations for that partition of records

To achieve the two goals, we need to 
answer four questions:

v How does CormCC execute

v How to maintain serializability

v How to guarantee deadlock free

v How to enable online protocol switch
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CormCC Execution

Preprocess Validation CommitExecution

Break transaction life cycle into four phases
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Correctness of CormCC – Serializability 

v COCSR (Commit ordering conflict serializable)

v Sufficient condition of serializable
v Commit ordering respects conflicts

v If all protocols are COCSR, then CormCC is 
COCSR

v Proof can be found in the paper
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Serializability

Serializability

Serializability

CormCC
Serializability

COCSR

COCSR

COCSR

COCSR

%&'"

Time Line
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Read

One Record

Write

Commit

Commit

TXN+ Commits before TXN,
conflict
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CormCC – Deadlock Free

Wait-for Graph

Deadlock Detection

TXN TXN

TXN

Our Approach: Deadlock Prevention
v We require each protocol can only exclusively let

transactions wait in no more than one phase

v No deadlock within one phase

v Transactions in earlier phases can wait for
later phases, but not the other way around
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%&'"

%&'#

%&'$



16

CormCC – Online Protocol Reconfiguration
Online reconfiguration can cause inconsistency

Rec
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Old CC

TXN TXN

Each working thread
changes protocol when
the current TXN finishes

conflicts between the two
threads may not be detected

A straightforward solution: stop all

v Waiting all working threads to complete
their current transactions, and stop
them from receiving new transactions
v Decrease the performance of database
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Rec
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Old CC

TXN TXN

New CC
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CormCC – Online Protocol Reconfiguration
Our solution: using a mediated protocol that is compatible to both old and new protocols
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New CC Mediated 
Protocol

Step 1
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New CC

TXN TXN
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CormCC – Online Protocol Reconfiguration

How to Build a Mediated Protocol

v The mediated protocol executes the
logics of both old and new protocol

v Example: Mediated Protocol between
OCC and 2PL

Mediated Protocol between OCC and 2PL

Read

v Read timestamp (OCC)
v Apply read lock (2PL)

Write
v Write to a local buffer (OCC)
v Apply write lock (2PL)

Validate
v Execute Validate phase of OCC
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Prototype Design
v Supporting PartCC from H-Store [3], OCC from Silo [1], and 2PL from VLL [2]

v Partition the whole database and apply each partition a single protocol
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PartCC PartCC OCC OCC 2PL

[1] TU, S., et al. Speedy transactions in multicore in-memory databases. SOSP’ 13 
[2] REN, K. et al. Lightweight locking for main memory database systems. PVLDB’12
[3] KALLMAN, R., et al. H-store: a high-performance, distributed main mem-ory transaction processing system. PVLDB’08
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Prototype Design

v Selecting the ideal protocol for each partition
vFeature Engineering: design several features to capture the performance difference 

of candidate protocols
vClassifiers: building a two-layer classifier 

Classifier-1: PartCC or Not

Classifier-2: OCC or 2PLPartCC

OCC 2PL

Workload

Partition 
Conflicts

Record 
Contention

Read
Rate

Transaction 
Length
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Experiments

Experiment Settings

Workload

v A Machine with 32 cores, 256 GB main memory

v TPC-C: Order processing application with 5 stored procedures, 32 warehouses

v YCSB: One Table with 1 million records, each with 25 columns and 20 bytes for 

each column; One type of transaction mixed with read or read-and-modify 

operations

v Partition into 32 partitions (i.e. equal to the number of cores)



22

Experiments
Our experiments compare CormCC with

v Single candidate protocols 

v Hybrid - Hybrid OCC and 2PL execution based on MOCC [1] /Hsync [2] 

v Tebaldi - A stored procedure-oriented general framework of mixed concurrency control [3]

2PL

SSI

New Order

Payment Delivery

Order Status

Stock Level

Runtime 
Pipeline

Runtime 
Pipeline

Tebaldi Configuration for TPC-C (from Tebaldi paper)

[1] WANG, T., et al.  Mostly-optimistic concurrency control for highly contended dynamic workloads on a thousand cores. PVLDB’16

[2] SHANG, Z., et al. Graph analytics through fine-grained parallelism. SIGMOD’16

[3] SU, C., et al. Bringing modular concurrency control to the next level. SIGMOD’ 17
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Experiments – Compare with Tebaldi

Comparison under different partitionability (TPC-C)
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Comparison under different partitionability

2PL Tebaldi CormCC

v Start with well-partitionable workload
v Each partition receives 100% single-

partition transactions

v Increase the number of partitions receiving
100% cross-partition transactions
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Experiments – Compare with Tebaldi

Comparison under different conflict rates (TPC-C)

v We modify TPC-C to increase access skewness

v We use Zipfian distribution and increase its theta
parameter to introduce higher conflict rate
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Experiments – Varied workloads
v Vary parameters every 5 seconds:

Transactions mix, Percentages of cross-partition transactions, Access skewness (i.e. theta of Zipf)
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Experiments – A closer look at the same results of varied workload tests
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v We aggregate the throughput of every 5s and report CormCC throughput ratio to single protocols
vMax: Speedup over the worst single protocols

vMin: Speedup over the best single protocols

v Average: Speedup over average throughput of single protocols



27

Experiments – Mediated Protocol Switch
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Testing Mediated Switching
OCC 2PL StopALL Mediated

v Switch from OCC to 2PL using YCSB workloads

v Report the throughput during protocol switch

v Compared with StopALL

v Test a workload with short-only transactions and
workloads with one long transaction of different
duration
v 0.5s, 1s. 2s, 4s

v Test different switching points
v At the beginning of the long transaction

v At the middle of the long transaction

v At the end of the long transaction
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Conclusion

v CormCC, a general mixed concurrency control framework that does not introduce 
any coordination overhead and supports online reconfiguration

v Experiments show that CormCC can achieve significant throughput improvement 
over single static protocols and state-of-the-art mixed approaches.

Thanks! 
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Backup Slides
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CormCC Execution in Prototype

Preprocess Validation CommitExecution

PartCC

OCC

2PL

This protocol includes this phase

This protocol makes transaction wait in this phase
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Experiments – Varied workloads (YCSB)
v Vary parameters every 5 seconds:

Transactions mix, Percentages of cross-partition transactions, Access skewness (i.e. theta of Zipf)
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Experiments – Aggregated Results of Varied workloads (YCSB)
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