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Recent systems can process millions of requests/
second/machine: E.g. RAMCloud, FaRM, MICA, ...

Key enablers: eliminating network overheads (e.g.,
kernel bypass) and leveraging multicore
architectures
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INn-Memory Key-Value Stores

CPU is becoming a bottleneck in modern kv-stores
->Random memory access, key-value GET/PUT processing

Persistent in-memory kv-stores have to replicate data to survive failures

Primary

->Replication contends with normal request processing
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Replication in In-Memory Key-Value Stores

Replication impedes modern kv-stores
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Replication in In-Memory Key-Value Stores

Replication impedes modern kv-stores and collocated applications
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Replication in In-Memory Key-Value Stores

How to mitigate replication overhead?
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Replication in In-Memory Key-Value Stores

How to mitigate replication overhead?

. Techniques like Remote Direct Memory Access (RDMA) seem

promising
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-XIsting Protocols

Many systems use one-sided RDMA for replication

FaRM NSDI'i4, DARE HPDC’15, HydraDB SC’16

Backup
Integrity check

\g CPU §

1 MSG2
\ 1000
Recelver polls

Still involves backup’s CPU,
defeats RDMA purpose!

Message fully received
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Tailwind’s design
Evaluation

Conclusion

Outline
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RDMA-based Replication

- Why not just perform RDMA and leave target idle?
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RDMA-based
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Replication

- Why not just perform RDMA and leave target idle?
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RDMA-based
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The backup cannot “guess” the length
of data, it needs some metadata
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- Why not just perform RDMA and leave target idle?

::

Backup

DRAM

27



RDMA-based Replication
Metadata

- A backup needs to insure the integrity of log-backup data + length of data

A=1kB
CRC=0x1
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RDMA-based Replication
Metadata

+ The last checksum can cover all “previous” log entries
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RDMA-based

Replication

Second Try

. The primary writes metadata on a remote bufter
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RDMA-based

Replication

Second Try

. The primary writes metadata on a remote bufter

PUT (A)

Backup

i Il BN I BN BB BB BB = = =

Current RDMA implementations can only
target a single, contiguous memory region
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RDMA-based Replication
Second Try

. The primary writes metadata on a remote bufter

Backup

PUT (A)

i Il BN I BN BB BB BB = = =

2x Messages, RPCs would be more efficient @
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RDMA-based

Replication

Second Try

. The primary writes metadata on a remote bufter
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RDMA-based

Replication

Second Try

Primary "%

Update Metadata

. The primary writes metadata on a remote bufter

Backup

35



RDMA-based

Replication

Second Try
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+ The primary fails in the midst of updating metadatal!

Backup 1000
= CPU
Recover
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RDMA-based Replication
Second Try

Backup data unusable!

Backup 1000
< CPU S
Recover




RDMA-based
Third

Replication
Try

+ The primary replicates A and corresponding metadata with a single RDMA

PUT (A)

Replicate (A)

Backup
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RDMA-based
Third

Replication
Try

+ The primary replicates B and corresponding metadata, right after A
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Backup
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RDMA-based Replication
Third Try

+ The primary fully replicates C, but partially the metadata

PUT (C)

Backup

Primary "%
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Corrupt metadata invalidates all backup log
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RDMA-based

Replication

Fourth Try

+ The primary replicates A and corresponding metadata
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RDMA-based Replication
Fourth Try

+ The primary partially replicates B, then fails

Backup
PUT (A)

Primary "%
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Replicate (A)
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RDMA-based Replication
Third Try

+ The backup checks if objects were tully received

PUT (A)
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RDMA-based Replication
Third Try

+ The backup checks if objects were tully received

PUT (A) | .
> Primary .
N
Only fully-received and correct objects
are recovered!

0000
3 cpu R

Backup

i Il I I BN BB/ lE = = = =
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Tailwind

Keep the same client-tfacing interface (RPCs)
Strongly-consistent primary-backup systems
Appends only a 4-byte CRC32 checksum after each record

Relies on Reliable-Connected queue pairs: messages are delivered at
most once, in order, and without corruption

Stop failures
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RDMA Buffers Allocation

. A primary chooses a backup, and requests an RDMA buffer

Pre-registered bufters
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DMA

Buffers Allocation

A primary chooses a backup, and requests an RDMA bufter

Ack + Buffer

RPC: Replicate (A) + Get Bufter

Pre-registered buffers
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All subsequent replication requests are performed with one-sided RDMA

WRITEs

Ack + Buffer

DMA

RDMA: Replicate (B)

Buffers Allocation
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RDMA Buffers Allocation

When the primary fills a bufter, it will chose a backup and repeat all steps

RPC: Replicate (C) + Get Bufter
Primary

Buffers are asynchronously flushed

to secondary storage, then they can be reused

PTe-regisiered DUllers

Buffer filled 49



Tallwind: Fallures

Failures can happen at any moment

- | RDMA complicates primary replica failures

Secondary replica failures are naturally dealt with in storage systems
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Failure scenarios: Fully Replicated Objects

Case 1: The object + its metadata are correctly transterred
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Failure scenarios: Fully Replicated Objects

Case 1: The object + its metadata are correctly transterred

Primary
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Failure scenarios: Fully Replicated Objects

Case 1: The object + its metadata are correctly transterred
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Backup

Primary
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The last object must always be a checksum
+ Checksums are not allowed to be zeroed
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Failure scenarios: Partially Written Checksum

Case 2: Partially transterred checksum
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Failure scenarios: Partially Written Checksum

Case 2: Partially transterred checksum

Primary
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Failure scenarios: Partially Written Checksum

Case 2: Partially transterred checksum
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Backup

Primary
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Backups re-compute checksum during
recovery and compare it with the stored one
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Failure scenarios: Partially Written Object

Case 3: Partially transterred object

Backup

Primary

v
Metadata act as an end-of-transmission
marker

%

00000001
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. Evaluation

. Conclusion

Outline
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Implementation

Implemented on the RAMCloud in-memory kv-store
Low latency, large scale, strongly consistent
RPCs leverage tast networking and kernel bypass

Keeps all data in memory, durable storage for backups
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M1

RAMCloud Threading Architecture

/Primary DRAM storage

PUT(B)

C]
Non-volatile Buffer
.

r‘imary DRAM storag

Replicate(B

Non-volatile Buffer
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—valuation Configuration

Yahoo! Cloud Serving Benchmark (Workloads A (50%PUT), B(5%PUT),
WRITE-ONLY)

20 million - 100 bytes objects + 30 byte/key
Requests generated with a Zipfian distribution

RAMCloud replication vs Tailwind (3-way replication)

CPU Xeon E5-2450 2.1 GHz 8 cores, 16 hw threads
RAM 16 GB 1600 MHz DDR3

NIC Mellanox MX354A CX3 @ 56 Gbps

Switch 36 port Mellanox SX6036G

OS Ubuntu 15.04, Linux 3.19.0-16,

MLX4 3.4.0, libibverbs 1.2.1
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—valuation Goals

How much CPU cycles can Tailwind save?
Does it improve performance?

[s there any overhead?
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—valuation: CPU Savings

Values are aggregated over
a 4-node cluster
WRITE-ONLY workload
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Median Latency (us)

—valuation: Latency Improvement
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Throughput (KOp/S) / Server
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Tailwind increase throughput by 30%

—valuation: Throughput
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a 4-node cluster
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—valuation: Recovery Overhead
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Recovery Size

Recoveries with up to 10 million objects
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Related Work

One-sided RDMA systems: Pilat ATC’13, HERD SIGCOMM’14, FaRM
NSDI'i4, Dr'TM SOSP’15, Dr'TM + R Eurosys’ieé, ...

Mitigating replication overheads/Tuning consistency: RedBlue OSDTI'12,
Correctables OSDI'16

Tailwind reduces replication CPU footprint and improves performance
without sacrificing durability, availability, or consistency
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Conclusion

Tailwind leverages one-sided RDMA to perform replication and leaves
backups completely idle

Provides backups with a protocol to protect against failure scenarios

Reduces replication induced CPU usage while improving performance
and latency

Tailwind preserves client-facing RPC

Thank you! Questions?
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