Tallwind: Fast and Atomic
RDMA-based Replication

Yacine Taleb, Ryan Stutsman, Gabriel Antoniu, Toni Cortes

y 4
informatics 4” mathematics
A
Su ting
C
a

UNIVERSITY
OF UTAH



INn-Memory Key-Value Stores

General purpose in-memory key-value stores are
widely used nowadays

)
s

e

@ cassandra
o
redis

AEROSPIKE



INn-Memory Key-Value Stores

)
s

Sl
D cassandra
General purpose in-memory key-value stores are g T

widely used nowadays

redis
Recent systems can process millions of requests/ <

second/machine: E.g. RAMCloud, FaRM, MICA, ...

AEROSPIKE



INn-Memory Key-Value Stores

0,

o

General purpose in-memory key-value stores are GPD cassandra

widely used nowadays
.: redis

AEROSPIKE

Recent systems can process millions of requests/
second/machine: E.g. RAMCloud, FaRM, MICA, ...

Key enablers: eliminating network overheads (e.g.,
kernel bypass) and leveraging multicore
architectures



INn-Memory Key-Value Stores

CPU is becoming a bottleneck in modern kv-stores
->Random memory access, key-value GET/PUT processing



INn-Memory Key-Value Stores

CPU is becoming a bottleneck in modern kv-stores
->Random memory access, key-value GET/PUT processing

Persistent in-memory kv-stores have to replicate data to survive failures



INn-Memory Key-Value Stores

CPU is becoming a bottleneck in modern kv-stores
->Random memory access, key-value GET/PUT processing

Persistent in-memory kv-stores have to replicate data to survive failures

Primary



INn-Memory Key-Value Stores

CPU is becoming a bottleneck in modern kv-stores
->Random memory access, key-value GET/PUT processing

Persistent in-memory kv-stores have to replicate data to survive failures

Primary

->Replication contends with normal request processing



In-Memory Key-Value Stores

Primary copies




In-Memory Key-Value Stores

Backup copies Primary copies

10



In-Memory Key-Value Stores

Replicate X
—

Backup copies Primary copies

11



In-Memory Key-Value Stores

Replicate X
—

Backup copies Primary copies

12



In-Memory Key-Value Stores

Replicate X
—

Replicate X
—

Replicate X
—

Backup copies Primary copies

13



Replication in In-Memory Key-Value Stores

Replication impedes modern kv-stores

14



Replication in In-Memory Key-Value Stores

Replication impedes modern kv-stores and collocated applications

hadatap
redls

(i D

Block Storage

redls EG’” aphX

(i D

Graph Processing

A
1000
: :

Stream Processing

15



Replication in In-Memory Key-Value Stores

How to mitigate replication overhead?

16



Replication in In-Memory Key-Value Stores

How to mitigate replication overhead?

. Techniques like Remote Direct Memory Access (RDMA) seem

promising

17



Replication in In-Memory Key-Value Stores

Replicate X”

Replicate X
—

Replicate X
—

Backup copies Primary copies

18



Replicate X
—

—_—

—_—

Replicate X

Replicate X”

DMA-

Backup copies

Based

Replication

Primary copies

19



Replicate X
—

@

—_—

Replicate X

Replicate X”

DMA-

Backup copies

Based

Replication

Primary copies

20



-XIsting Protocols

Many systems use one-sided RDMA for replication

FaRM NSDI'i4, DARE HPDC’15, HydraDB SC’16

Backup
Integrity check

\g CPU §

1 MSG2
\ 1000
Recelver polls

Still involves backup’s CPU,
defeats RDMA purpose!

Message fully received

21



Tailwind’s design
Evaluation

Conclusion

Outline

22



RDMA-based Replication

- Why not just perform RDMA and leave target idle?

23



DMA-based

Replication

- Why not just perform RDMA and leave target idle?

PUT (A)

Backup

i Il BN I BN BB BB BB BN BN =

24



RDMA-based

Replication

- Why not just perform RDMA and leave target idle?

PUT (A)

Primary "%

Backup

i Il BN I BN BB BB BB BN BN =

25



RDMA-based

.0
' Primary %K"

Replication

- Why not just perform RDMA and leave target idle?

Backup 1000

(A)

Recover —
i Il B = Il B B BB BB =

20



RDMA-based

WHAT/AM I'SUPPOSED

- ; 5 !
I.'
i ‘ < \
. ) ) y
i
G
.
A

r

Recover ((y I
The backup cannot “guess” the length
of data, it needs some metadata

Replication

- Why not just perform RDMA and leave target idle?

::

Backup

DRAM

27



RDMA-based Replication
Metadata

- A backup needs to insure the integrity of log-backup data + length of data

A=1kB
CRC=0x1




RDMA-based Replication
Metadata

+ The last checksum can cover all “previous” log entries

/ T~ B@0x2
ﬁ B=2kB
CRC=0x2




RDMA-based Replication
Metadata

+ The last checksum can cover all “previous” log entries

;:b — N
CRC=0x3




RDMA-based

Replication

Second Try

. The primary writes metadata on a remote bufter

PUT (A)

Replicate(A)

Backup

i Il BN I BN BB BB BB = = =

L]

31



RDMA-based

Replication

Second Try

. The primary writes metadata on a remote bufter

PUT (A)

Backup

i Il BN I BN BB BB BB = = =

Current RDMA implementations can only
target a single, contiguous memory region

32



RDMA-based Replication
Second Try

. The primary writes metadata on a remote bufter

Backup

PUT (A)

i Il BN I BN BB BB BB = = =

2x Messages, RPCs would be more efficient @

33



RDMA-based

Replication

Second Try

. The primary writes metadata on a remote bufter

PUT (B)

Replicate (B)

Backup

i Il BN I BN BB BB BB = = =

L]

34



RDMA-based

Replication

Second Try

Primary "%

Update Metadata

. The primary writes metadata on a remote bufter

Backup

35



RDMA-based

Replication

Second Try

.0
' Primary %K"

+ The primary fails in the midst of updating metadatal!

Backup 1000
= CPU
Recover

36



RDMA-based Replication
Second Try

Backup data unusable!

Backup 1000
< CPU S
Recover




RDMA-based
Third

Replication
Try

+ The primary replicates A and corresponding metadata with a single RDMA

PUT (A)

Replicate (A)

Backup

i Il BN I BN BB BB BB BN BN =

LB

38



RDMA-based
Third

Replication
Try

+ The primary replicates B and corresponding metadata, right after A

PUT (B)

Replicate (B)

Backup

i Il BN I BN BB BB BB BN BN =

L

39



RDMA-based Replication
Third Try

+ The primary fully replicates C, but partially the metadata

PUT (C)

Backup

Primary "%
i Il BN I BN BB BB BB BN BN =

Corrupt metadata invalidates all backup log

40



RDMA-based

Replication

Fourth Try

+ The primary replicates A and corresponding metadata

PUT (A)

Replicate (A)

Backup

i Il BN I BN BB BB BB BN BN =

LB

41



RDMA-based Replication
Fourth Try

+ The primary partially replicates B, then fails

Backup
PUT (A)

Primary "%

i Il BN I BN BB BB BB BN BN =

Replicate (A)

Il I = = .

DRAM



RDMA-based Replication
Third Try

+ The backup checks if objects were tully received

PUT (A)
 —

.0
' Primary %K"

43



RDMA-based Replication
Third Try

+ The backup checks if objects were tully received

PUT (A) | .
> Primary .
N
Only fully-received and correct objects
are recovered!

0000
3 cpu R

Backup

i Il I I BN BB/ lE = = = =

44



Tailwind

Keep the same client-tfacing interface (RPCs)
Strongly-consistent primary-backup systems
Appends only a 4-byte CRC32 checksum after each record

Relies on Reliable-Connected queue pairs: messages are delivered at
most once, in order, and without corruption

Stop failures

45



RDMA Buffers Allocation

. A primary chooses a backup, and requests an RDMA buffer

Pre-registered bufters

46



DMA

Buffers Allocation

A primary chooses a backup, and requests an RDMA bufter

Ack + Buffer

RPC: Replicate (A) + Get Bufter

Pre-registered buffers

47



All subsequent replication requests are performed with one-sided RDMA

WRITEs

Ack + Buffer

DMA

RDMA: Replicate (B)

Buffers Allocation

48



RDMA Buffers Allocation

When the primary fills a bufter, it will chose a backup and repeat all steps

RPC: Replicate (C) + Get Bufter
Primary

Buffers are asynchronously flushed

to secondary storage, then they can be reused

PTe-regisiered DUllers

Buffer filled 49



Tallwind: Fallures

Failures can happen at any moment

- | RDMA complicates primary replica failures

Secondary replica failures are naturally dealt with in storage systems

50



Failure scenarios: Fully Replicated Objects

Case 1: The object + its metadata are correctly transterred

Replicate (B)

Backup o
< CPU =
600

PUT (B)

vl B I B I N N N NN NN EE Ny

51



Failure scenarios: Fully Replicated Objects

Case 1: The object + its metadata are correctly transterred

0000
H cru B

Backup

Primary

‘.. vl B I B I N N N NN NN EE Ny




Failure scenarios: Fully Replicated Objects

Case 1: The object + its metadata are correctly transterred

Primary

53



Failure scenarios: Fully Replicated Objects

Case 1: The object + its metadata are correctly transterred

0000
H cru B

Backup

Primary

vwi il B B BN = = = = Il I Ol Ol Ny

The last object must always be a checksum
+ Checksums are not allowed to be zeroed

54



Failure scenarios: Partially Written Checksum

Case 2: Partially transterred checksum

1000
= CPU =

Backup

Primary

‘.. vl B I B I N N N NN NN EE Ny




Failure scenarios: Partially Written Checksum

Case 2: Partially transterred checksum

Primary

56



Failure scenarios: Partially Written Checksum

Case 2: Partially transterred checksum

1000
= CPU =

Backup

Primary

vwi il B B BN = = = = Il I Ol Ol Ny

Backups re-compute checksum during
recovery and compare it with the stored one

S7



Failure scenarios: Partially Written Object

Case 3: Partially transterred object

Backup

Primary

v
Metadata act as an end-of-transmission
marker

%

00000001

58



. Evaluation

. Conclusion

Outline

59



Implementation

Implemented on the RAMCloud in-memory kv-store
Low latency, large scale, strongly consistent
RPCs leverage tast networking and kernel bypass

Keeps all data in memory, durable storage for backups

60



M1

RAMCloud Threading Architecture

/Primary DRAM storage

PUT(B)

C]
Non-volatile Buffer
.

r‘imary DRAM storag

Replicate(B

Non-volatile Buffer

61



—valuation Configuration

Yahoo! Cloud Serving Benchmark (Workloads A (50%PUT), B(5%PUT),
WRITE-ONLY)

20 million - 100 bytes objects + 30 byte/key
Requests generated with a Zipfian distribution

RAMCloud replication vs Tailwind (3-way replication)

CPU Xeon E5-2450 2.1 GHz 8 cores, 16 hw threads
RAM 16 GB 1600 MHz DDR3

NIC Mellanox MX354A CX3 @ 56 Gbps

Switch 36 port Mellanox SX6036G

OS Ubuntu 15.04, Linux 3.19.0-16,

MLX4 3.4.0, libibverbs 1.2.1

62



—valuation Goals

How much CPU cycles can Tailwind save?
Does it improve performance?

[s there any overhead?

63



—valuation: CPU Savings

Values are aggregated over
a 4-node cluster
WRITE-ONLY workload

m— Tailwind

=== RAMCloud

S G

© g=

z S

= = 15 y
= &

= 1f s i
v, N 10
= =

= 0.5 n 5F
0 )

g >

8 )

E Ot E 0l
S, @,

0 200 400 600 800 0 200 400 600 800
Throughput (KOp/s) Throughput (KOp/s)

64



Median Latency (us)

—valuation: Latency Improvement

Q0
-
|

= Tailwind

.- - RAMCloud .

o
-

DO
-)
[
.
@)
-)
[

—_
-
[
DO
-
\

Durable writes take 16ps
under heavy load

99th Percentile Latency (us)
S
-

0 0

0 100 200 300 400 500 600 0 100 200 300 400 500 600
Throughput (Kops) Throughput (Kops)

65



Throughput (KOp/S) / Server

Tailwind
= = = RAMCloud
600 -
400 -
200 -
\ \ \ \ \ \ \ \ \ \ \ \ \ \
O 5 10 15 20 25 30 O 5 10 15 20 25 30
Clients (YCSB-B) (YCSB-A)
Even with 5% of PUTs,

Tailwind increase throughput by 30%

—valuation: Throughput

Throughput/server in
a 4-node cluster

200 -

100 -

\ \ \ \ \ \
0 5 10 15 20 25 30
(WRITE-ONLY)

606



—valuation: Recovery Overhead

2.0 Tailwind
N lrAMcioud
@ 20
5
= 1.5}
>
T
> 1}
O
)
D
~~ 0.5 - I

O 22 255‘
1M 10M

Recovery Size

Recoveries with up to 10 million objects

67



Related Work

One-sided RDMA systems: Pilat ATC’13, HERD SIGCOMM’14, FaRM
NSDI'i4, Dr'TM SOSP’15, Dr'TM + R Eurosys’ieé, ...

Mitigating replication overheads/Tuning consistency: RedBlue OSDTI'12,
Correctables OSDI'16

Tailwind reduces replication CPU footprint and improves performance
without sacrificing durability, availability, or consistency

68



Conclusion

Tailwind leverages one-sided RDMA to perform replication and leaves
backups completely idle

Provides backups with a protocol to protect against failure scenarios

Reduces replication induced CPU usage while improving performance
and latency

Tailwind preserves client-facing RPC

Thank you! Questions?

69



