
Tailwind: Fast and Atomic
RDMA-based Replication

Yacine Taleb, Ryan Stutsman, Gabriel Antoniu, Toni Cortes

In-Memory Key-Value Stores

2

• General purpose in-memory key-value stores are  
widely used nowadays 
 
 
 
 
 
 

In-Memory Key-Value Stores

3

• General purpose in-memory key-value stores are  
widely used nowadays

• Recent systems can process millions of requests/
second/machine: E.g. RAMCloud, FaRM, MICA, … 
 
 

In-Memory Key-Value Stores

4

• General purpose in-memory key-value stores are  
widely used nowadays

• Recent systems can process millions of requests/
second/machine: E.g. RAMCloud, FaRM, MICA, …

• Key enablers: eliminating network overheads (e.g.,
kernel bypass) and leveraging multicore
architectures

• CPU is becoming a bottleneck in modern kv-stores 
->Random memory access, key-value GET/PUT processing  
 
 
 
 
 
 
 
 
 
 

In-Memory Key-Value Stores

5

• CPU is becoming a bottleneck in modern kv-stores 
->Random memory access, key-value GET/PUT processing

• Persistent in-memory kv-stores have to replicate data to survive failures 
 
 
 
 
 
 

In-Memory Key-Value Stores

6

Primary

BackupBackup

• CPU is becoming a bottleneck in modern kv-stores 
->Random memory access, key-value GET/PUT processing

• Persistent in-memory kv-stores have to replicate data to survive failures 
 
 
 
 
 
 

In-Memory Key-Value Stores

7

Primary

Backup

Primary

Backup

• CPU is becoming a bottleneck in modern kv-stores 
->Random memory access, key-value GET/PUT processing

• Persistent in-memory kv-stores have to replicate data to survive failures 
 
 
 
 
 
 
->Replication contends with normal request processing

In-Memory Key-Value Stores

8

Primary

Backup

Primary

Backup

In-Memory Key-Value Stores

9

Primary copies

DRAM

Client
PUT(Y)

Y

In-Memory Key-Value Stores

10

Primary copiesBackup copies

DRAM

Client
PUT(Y)

Y

In-Memory Key-Value Stores

11

Primary copiesBackup copies

DRAM

Primary
Replicate X

Client
PUT(Y)

Y

In-Memory Key-Value Stores

12

ClientPrimary

X

Replicate X

Primary copiesBackup copies

DRAM

PUT(Y)

Y

In-Memory Key-Value Stores

13

Replicate X PUT Y

Replicate X’

Replicate X’’

GET Y

PUT Y’

Primary copiesBackup copies

DRAM

Primary

Primary

Primary
X X’ X’’ Y Y’

Client

Client

Client

14

• Replication impedes modern kv-stores

Replication in In-Memory Key-Value Stores

15

• Replication impedes modern kv-stores and collocated applications

Replication in In-Memory Key-Value Stores

Stream ProcessingGraph ProcessingBlock Storage

16

• How to mitigate replication overhead? 
 
 

Replication in In-Memory Key-Value Stores

17

• How to mitigate replication overhead?

• Techniques like Remote Direct Memory Access (RDMA) seem
promising

Replication in In-Memory Key-Value Stores

Replication in In-Memory Key-Value Stores

18

ClientPrimary

YX

Replicate X PUT Y

Primary
Replicate X’

Primary
Replicate X’’

Client
GET Y

Client
PUT Y’

Y’X’ X’’

Primary copiesBackup copies

DRAM

NIC

19

ClientPrimary

YX

Replicate X PUT Y

Primary
Replicate X’

Primary
Replicate X’’

Client
GET Y

Client
PUT Y’

Y’X’ X’’

Primary copiesBackup copies

DRAM

NIC

RDMA-Based Replication

DMA

20

Primary

YX

Replicate X

Primary
Replicate X’

Primary
Replicate X’’ Y’X’ X’’

Primary copiesBackup copies

DRAM

NIC

RDMA-Based Replication

DMA

Existing Protocols

21

• Many systems use one-sided RDMA for replication  
 
FaRM NSDI’14, DARE HPDC’15, HydraDB SC’16

Receiver polls

Integrity check
Message fully received

Ring
Buffer

MSG2
MSG1

MSG3

Backup

Primary

RDMAStill involves backup’s CPU,
defeats RDMA purpose!

Outline

• Context

• Existing RDMA-based replication protocols

• Tailwind’s design

• Evaluation

• Conclusion

22

RDMA-based Replication

23

• Why not just perform RDMA and leave target idle?

RDMA-based Replication

24

Primary

DRAM

PUT (A)

Replicate (A)

Backup

• Why not just perform RDMA and leave target idle?

A

RDMA-based Replication

25

Primary

DRAM

PUT (A)

Replicate (A)

Backup

• Why not just perform RDMA and leave target idle?

A

RDMA-based Replication

26

• Why not just perform RDMA and leave target idle?

Recover (A)Primary

Backup

DRAM

A

RDMA-based Replication

27

• Why not just perform RDMA and leave target idle?

Recover (A)Primary

Replicate (A) A

Backup

DRAM

The backup cannot “guess” the length
of data, it needs some metadata

RDMA-based Replication
Metadata

28

• A backup needs to insure the integrity of log-backup data + length of data

A

Backup

DRAM

A@0x1
A=1kB

CRC=0x1{

RDMA-based Replication
Metadata

29

• The last checksum can cover all “previous” log entries

A

Backup

DRAM

B

B@0x2
B=2kB

CRC=0x2{
{

RDMA-based Replication
Metadata

30

A

Backup

DRAM

B C

C@0x4
B=1kB

CRC=0x3

{
{
{• The last checksum can cover all “previous” log entries

RDMA-based Replication
Second Try

31

• The primary writes metadata on a remote buffer

Primary
PUT (A)

Replicate(A) A

Backup

DRAM

A@0x1
A=1kB

CRC=0x1

RDMA-based Replication
Second Try

32

• The primary writes metadata on a remote buffer

Primary
PUT (A)

Metadata A

Backup

DRAM

A@0x1
A=1kB

CRC=0x1

Current RDMA implementations can only
target a single, contiguous memory region

RDMA-based Replication
Second Try

33

• The primary writes metadata on a remote buffer

Primary
PUT (A)

A

Backup

DRAM

A@0x1
A=1kB

CRC=0x1

2x Messages, RPCs would be more efficient

RDMA-based Replication
Second Try

34

• The primary writes metadata on a remote buffer

Primary
PUT (B)

Replicate (B)
A

Backup

DRAM

A@0x1
A=1kB

CRC=0x1

B

RDMA-based Replication
Second Try

35

• The primary writes metadata on a remote buffer

Primary

Update Metadata A

Backup

DRAM

B@0x2
$##!!!
$##!!!

B

RDMA-based Replication
Second Try

36

Primary

A

Backup

DRAM

B

• The primary fails in the midst of updating metadata!

Recover

B@0x2
$##!!!
$##!!!

RDMA-based Replication
Second Try

37

Primary

A

Backup

DRAM

B

Recover

• Backup data unusable!

B@0x2
$##!!!
$##!!!

38

Primary
PUT (A)

Replicate (A) A

Backup

DRAM

• The primary replicates A and corresponding metadata with a single RDMA

RDMA-based Replication
Third Try

39

Primary
PUT (B)

Replicate (B) A

Backup

DRAM

• The primary replicates B and corresponding metadata, right after A

RDMA-based Replication
Third Try

B

40

Primary
PUT (C)

Replicate (C) A

Backup

DRAM

• The primary fully replicates C, but partially the metadata

RDMA-based Replication
Third Try

B C
Corrupt metadata invalidates all backup log

41

Primary
PUT (A)

Replicate (A) A

Backup

DRAM

• The primary replicates A and corresponding metadata

RDMA-based Replication
Fourth Try

42

Primary
PUT (A)

Replicate (A) A

Backup

DRAM

RDMA-based Replication
Fourth Try

B

• The primary partially replicates B, then fails

43

Primary
PUT (A)

A

Backup

DRAM

RDMA-based Replication
Third Try

B

• The backup checks if objects were fully received

44

Primary
PUT (A)

A

Backup

DRAM

RDMA-based Replication
Third Try

B

• The backup checks if objects were fully received

Only fully-received and correct objects
are recovered!

Tailwind

45

• Keep the same client-facing interface (RPCs)

• Strongly-consistent primary-backup systems

• Appends only a 4-byte CRC32 checksum after each record

• Relies on Reliable-Connected queue pairs: messages are delivered at
most once, in order, and without corruption

• Stop failures

RDMA Buffers Allocation

46

• A primary chooses a backup, and requests an RDMA buffer

Pre-registered buffers
NIC

Backup

RDMA Buffers Allocation

47

• A primary chooses a backup, and requests an RDMA buffer

Pre-registered buffers
NIC

RPC: Replicate (A) + Get Buffer

Ack + Buffer A

Primary

Backup

RDMA Buffers Allocation

48

NIC
Ack + Buffer A

Primary

Backup
RDMA: Replicate (B)

B

• All subsequent replication requests are performed with one-sided RDMA
WRITEs

RDMA Buffers Allocation

49

Pre-registered buffers
NIC

RPC: Replicate (C) + Get Buffer

Ack + Buffer A

Primary

Backup

B

C

• When the primary fills a buffer, it will chose a backup and repeat all steps

Buffer filled

Buffers are asynchronously flushed
to secondary storage, then they can be reused

Tailwind: Failures

50

• Failures can happen at any moment

• RDMA complicates primary replica failures

• Secondary replica failures are naturally dealt with in storage systems

51

Primary
PUT (B)

Replicate (B) A

Backup

DRAM

• Case 1: The object + its metadata are correctly transferred

Failure scenarios: Fully Replicated Objects

B 0 0 0 0 0

52

Primary

A

Backup

DRAM

• Case 1: The object + its metadata are correctly transferred

Failure scenarios: Fully Replicated Objects

B 0 0 0 0 0

53

Primary

A

Backup

DRAM

• Case 1: The object + its metadata are correctly transferred

Failure scenarios: Fully Replicated Objects

B 0 0 0 0 0

54

Primary

A

Backup

DRAM

• Case 1: The object + its metadata are correctly transferred

Failure scenarios: Fully Replicated Objects

B 0 0 0 0 0

The last object must always be a checksum
+ Checksums are not allowed to be zeroed

55

Primary

A

Backup

DRAM

• Case 2: Partially transferred checksum

Failure scenarios: Partially Written Checksum

B 0 0 0 0 0

56

Primary

A

Backup

DRAM

• Case 2: Partially transferred checksum

Failure scenarios: Partially Written Checksum

B 0 0 0 0 0

57

Primary

A

Backup

DRAM

• Case 2: Partially transferred checksum

Failure scenarios: Partially Written Checksum

B 0 0 0 0 0

Backups re-compute checksum during
recovery and compare it with the stored one

58

Primary

A

Backup

DRAM

• Case 3: Partially transferred object

Failure scenarios: Partially Written Object

B 0 0 0 0 0 0 0

Metadata act as an end-of-transmission
marker

Outline

• Context

• Existing RDMA-based replication protocols

• Tailwind’s design

• Evaluation

• Conclusion

59

Implementation

• Implemented on the RAMCloud in-memory kv-store

• Low latency, large scale, strongly consistent

• RPCs leverage fast networking and kernel bypass

• Keeps all data in memory, durable storage for backups

60

RAMCloud Threading Architecture

61

C

Client

NIC

Poll

NIC

NIC

Non-volatile Buffer

Primary DRAM storage

PUT(B)

NIC

PUT(B)

M1
M3

Client GET(C)

C
Replicate(B)

Primary DRAM storage

1

2
3

4

Replicate(B)
Replicate(B)

Worker
 Core

Dispatch
 Core

Dispatch
 Core

Worker
 Core

A B

AA
Non-volatile Buffer

Evaluation Configuration

• Yahoo! Cloud Serving Benchmark (Workloads A (50%PUT), B(5%PUT),
WRITE-ONLY)

• 20 million - 100 bytes objects + 30 byte/key

• Requests generated with a Zipfian distribution

• RAMCloud replication vs Tailwind (3-way replication)

62

Evaluation Goals

63

• How much CPU cycles can Tailwind save?

• Does it improve performance?

• Is there any overhead?

Evaluation: CPU Savings

64

0 200 400 600 800

0

0.5

1

1.5

Throughput (KOp/s)

C
P
U

co
re
s
u
ti
li
za
ti
on

(d
is
p
at
ch
)

0 200 400 600 800
0

5

10

15

Throughput (KOp/s)

C
P
U

co
re
s
u
ti
li
za
ti
on

(w
or
ke
r)

Tailwind
RAMCloud

4x 3x

Values are aggregated over
a 4-node cluster

WRITE-ONLY workload

Evaluation: Latency Improvement

65

0 100 200 300 400 500 600

0

20

40

60

80

Throughput (Kops)

9
9

th
P
e
r
c
e
n
t
i
l
e
L
a
t
e
n
c
y
(
µ
s
)

0 100 200 300 400 500 600

0

10

20

30

Throughput (Kops)

M
e
d
i
a
n
L
a
t
e
n
c
y
(
µ
s
)

Tailwind

RAMCloud

3x
2x

Durable writes take 16μs
under heavy load

Evaluation: Throughput

66

0 5 10 15 20 25 30

200

400

600

Clients (YCSB-B)T
h
ro
u
g
h
p
u
t
(K

O
p
/
S
)
/
S
er
v
er Tailwind

RAMCloud

0 5 10 15 20 25 30

100

200

300

(YCSB-A)

0 5 10 15 20 25 30
0

100

200

(WRITE-ONLY)

1.7x
1.3x

Even with 5% of PUTs,  
Tailwind increase throughput by 30%

Throughput/server in
a 4-node cluster

Evaluation: Recovery Overhead

67

1M 10M

0

0.5

1

1.5

2

2.5

Recovery Size

R
e
c
o
v
e
r
y
T
i
m
e
(
s
)

Tailwind

RAMCloud

Recoveries with up to 10 million objects

Related Work

68

• One-sided RDMA systems: Pilaf ATC’13, HERD SIGCOMM’14, FaRM
NSDI’14, DrTM SOSP’15, DrTM + R Eurosys’16, …

• Mitigating replication overheads/Tuning consistency: RedBlue OSDI’12,
Correctables OSDI’16

• Tailwind reduces replication CPU footprint and improves performance
without sacrificing durability, availability, or consistency

Conclusion

69

• Tailwind leverages one-sided RDMA to perform replication and leaves
backups completely idle

• Provides backups with a protocol to protect against failure scenarios

• Reduces replication induced CPU usage while improving performance
and latency

• Tailwind preserves client-facing RPC

Thank you! Questions?

