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• General purpose in-memory key-value stores are  
widely used nowadays 

• Recent systems can process millions of requests/
second/machine: E.g. RAMCloud, FaRM, MICA, … 

• Key enablers: eliminating network overheads (e.g., 
kernel bypass) and leveraging multicore 
architectures
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• CPU is becoming a bottleneck in modern kv-stores 
->Random memory access, key-value GET/PUT processing 

• Persistent in-memory kv-stores have to replicate data to survive failures 
 
 
 
 
 
 
->Replication contends with normal request processing
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• Replication impedes modern kv-stores
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• Replication impedes modern kv-stores and collocated applications

Replication in In-Memory Key-Value Stores

Stream ProcessingGraph ProcessingBlock Storage
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• How to mitigate replication overhead? 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• How to mitigate replication overhead? 

• Techniques like Remote Direct Memory Access (RDMA) seem 
promising

Replication in In-Memory Key-Value Stores
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• Many systems use one-sided RDMA for replication  
 
FaRM NSDI’14, DARE HPDC’15, HydraDB SC’16

Receiver polls 

Integrity check
Message fully received

Ring  
Buffer

MSG2
MSG1

MSG3

Backup

Primary 

RDMAStill involves backup’s CPU,
defeats RDMA purpose!
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• Why not just perform RDMA and leave target idle?

Recover (A)Primary 

Replicate (A) A

Backup

DRAM

The backup cannot “guess” the length 
of data, it needs some metadata
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• A backup needs to insure the integrity of log-backup data + length of data
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• The last checksum can cover all “previous” log entries
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• The primary writes metadata on a remote buffer
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• The primary writes metadata on a remote buffer
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Current RDMA implementations can only 
target a single, contiguous memory region
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• The primary writes metadata on a remote buffer
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2x Messages, RPCs would be more efficient 
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• The primary writes metadata on a remote buffer
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• The backup checks if objects were fully received

Only fully-received  and correct objects 
are recovered!



Tailwind
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• Keep the same client-facing interface (RPCs) 

• Strongly-consistent primary-backup systems 

• Appends only a 4-byte CRC32 checksum after each record  

• Relies on Reliable-Connected queue pairs: messages are delivered at 
most once, in order, and without corruption 

• Stop failures
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• A primary chooses a backup, and requests an RDMA buffer

Pre-registered buffers
NIC

RPC: Replicate (A) + Get Buffer 

Ack + Buffer A

Primary 

Backup



RDMA Buffers Allocation

48

NIC
Ack + Buffer A

Primary 

Backup
RDMA: Replicate (B) 

B

• All subsequent replication requests are performed with one-sided RDMA 
WRITEs



RDMA Buffers Allocation

49

Pre-registered buffers
NIC

RPC: Replicate (C) + Get Buffer 

Ack + Buffer A

Primary 

Backup

B

C

• When the primary fills a buffer, it will chose a backup and repeat all steps

Buffer filled

Buffers are asynchronously flushed 
to secondary storage, then they can be reused
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• Failures can happen at any moment 

• RDMA complicates primary replica failures  

• Secondary replica failures are naturally dealt with in storage systems
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Failure scenarios: Fully Replicated Objects

B 0 0 0 0 0

The last object must always be a checksum
+ Checksums are not allowed to be zeroed



55

Primary 

A

Backup

DRAM

• Case 2: Partially transferred checksum

Failure scenarios: Partially Written Checksum

B 0 0 0 0 0



56

Primary 

A

Backup

DRAM

• Case 2: Partially transferred checksum

Failure scenarios: Partially Written Checksum

B 0 0 0 0 0



57

Primary 

A

Backup

DRAM

• Case 2: Partially transferred checksum

Failure scenarios: Partially Written Checksum

B 0 0 0 0 0

Backups re-compute checksum during 
recovery and compare it with the stored one
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• Case 3: Partially transferred object

Failure scenarios: Partially Written Object

B 0 0 0 0 0 0 0

Metadata act as an end-of-transmission
marker
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• Context 
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Implementation

• Implemented on the RAMCloud in-memory kv-store  

• Low latency, large scale, strongly consistent 

• RPCs leverage fast networking and kernel bypass 

• Keeps all data in memory, durable storage for backups
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RAMCloud Threading Architecture
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Evaluation Configuration

• Yahoo! Cloud Serving Benchmark (Workloads A (50%PUT), B(5%PUT), 
WRITE-ONLY) 

• 20 million - 100 bytes objects + 30 byte/key 

• Requests generated with a Zipfian distribution 

• RAMCloud replication vs Tailwind (3-way replication)
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Evaluation Goals
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• How much CPU cycles can Tailwind save? 

• Does it improve performance? 

• Is there any overhead?
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64

0 200 400 600 800

0

0.5

1

1.5

Throughput (KOp/s)

C
P
U

co
re
s
u
ti
li
za
ti
on

(d
is
p
at
ch
)

0 200 400 600 800
0

5

10

15

Throughput (KOp/s)

C
P
U

co
re
s
u
ti
li
za
ti
on

(w
or
ke
r)

Tailwind
RAMCloud

4x 3x

Values are aggregated over
a 4-node cluster

WRITE-ONLY workload



Evaluation: Latency Improvement
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Evaluation: Throughput
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Evaluation: Recovery Overhead
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• One-sided RDMA systems: Pilaf ATC’13, HERD SIGCOMM’14, FaRM 
NSDI’14, DrTM SOSP’15, DrTM + R Eurosys’16, … 

• Mitigating replication overheads/Tuning consistency: RedBlue OSDI’12, 
Correctables OSDI’16 

• Tailwind reduces replication CPU footprint and improves performance 
without  sacrificing  durability,  availability,  or  consistency



Conclusion
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• Tailwind leverages one-sided RDMA to perform replication and leaves 
backups completely idle 

• Provides backups with a protocol to protect against failure scenarios 

• Reduces replication induced CPU usage while improving performance 
and latency 

• Tailwind preserves client-facing RPC

Thank you! Questions?


