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Existing solutions

Low overhead Low effort 
(no code changes required)

Cloak [1]

Düppel [2]

[1] Gruss, D., Lettner, J., Schuster, F., Ohrimenko, O., Haller, I., & Costa, M. Strong and Efficient Cache Side-Channel Protection using Hardware Transactional Memory. In Usenix Security 2017. 
[2] Zhang, Y., Reiter, M. K., Zhang, Y., & Reiter, M. K. Düppel: Retrofitting Commodity Operating Systems to Mitigate Cache Side Channels in the Cloud. In CCS 2013. 
[3] Brasser, F., Capkun, S., Dmitrienko, A., Frassetto, T., Kostiainen, K., Müller, U., & Sadeghi, A.-R. DR.SGX: Hardening SGX Enclaves against Cache Attacks with Data Location Randomization. In arXiv 2017. 
[4] Chen, S., Reiter, M. K., Zhang, X., & Zhang, Y. Detecting Privileged Side-Channel Attacks in Shielded Execution with Déjà Vu. In ASIA CCS ’17. 
[5] Shih, M., Lee, S., & Kim, T. T-SGX: Eradicating controlled-channel attacks against enclave programs. In NDSS 2017. 
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Varys 
● 15% average slowdown 
● No code changes

Düppel [2]

Dr.SGX [3]

Déjà Vu [4]

T-SGX [5]
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Varys implements a low-cost protection for 
Intel SGX enclaves against side-channel attacks 
by creating an isolated environment and 
verifying it at runtime.
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