
Varys
Protecting SGX Enclaves From Practical Side-Channel Attacks

Oleksii Oleksenko, Bohdan Trach
Robert Krahn, Andre Martin, Christof Fetzer Mark Silberstein

Key issue of the cloud:

We cannot trust it

We cannot trust the cloud

● Thousands of employees
● Legal obligations
● Infrastructure vulnerabilities

We cannot trust the cloud

● Thousands of employees
● Legal obligations
● Infrastructure vulnerabilities

We cannot trust the cloud

● Thousands of employees
● Legal obligations
● Infrastructure vulnerabilities

Privileged attack vectors

Hosted
process

I'm Eve. I control the
OS and Hypervisor

Privileged attack vectors: Network

Hosted
process

Network
traffic

Sending:
SECRET

Privileged attack vectors: Network

Hosted
process

Network
traffic

Sending:
SECRET

I see:
SECRET

Privileged attack vectors: Network

Hosted
process

Network
traffic

TLS

I see:
$%sdf%#

Sending:
SECRET

Privileged attack vectors: Memory

Hosted
process

Memory

Process's data:

....

..... SECRET....

....

Network
traffic

I write SECRET
to memory

Privileged attack vectors: Memory

Hosted
process

Memory

Process's data:

....

..... SECRET....

....

Network
traffic

I read:
SECRET

I write SECRET
to memory

Privileged attack vectors: Memory

Hosted
process

Memory

Network
traffic

I read:
$%sdf%#

SGX Enclave

I write SECRET
to memory

Privileged attack vectors: System Calls

Hosted
process

OS

Memory

SGX EnclaveNetwork
traffic

System
calls

I request:
mmap()

Privileged attack vectors: System Calls

Hosted
process

OS

Memory

SGX EnclaveNetwork
traffic

System
calls

I request:
mmap()

I return:
exploit

Privileged attack vectors: System Calls

Hosted
process

OS

Memory

SGX EnclaveNetwork
traffic

System
calls

SCONE

I request:
mmap()

I return:
exploit

Error!

Privileged attack vectors: Shared Resources

Hosted
process

OS

Memory

SGX Enclave

Caches Page
Tables

Network
traffic

System
calls

SCONE

I write to address:
0x123

Privileged attack vectors: Shared Resources

Hosted
process

OS

Memory

SGX Enclave

Caches Page
Tables

Network
traffic

System
calls

SCONE

I write to address:
0x123

I see an access to:
0x123

Privileged attack vectors: Shared Resources

Hosted
process

OS

Memory

SGX Enclave

Caches Page
Tables

Network
traffic

System
calls

SCONE

This talk

Existing solutions

Low overhead Low effort
(no code changes required)

Cloak [1]

Düppel [2]

[1] Gruss, D., Lettner, J., Schuster, F., Ohrimenko, O., Haller, I., & Costa, M. Strong and Efficient Cache Side-Channel Protection using Hardware Transactional Memory. In Usenix Security 2017.
[2] Zhang, Y., Reiter, M. K., Zhang, Y., & Reiter, M. K. Düppel: Retrofitting Commodity Operating Systems to Mitigate Cache Side Channels in the Cloud. In CCS 2013.
[3] Brasser, F., Capkun, S., Dmitrienko, A., Frassetto, T., Kostiainen, K., Müller, U., & Sadeghi, A.-R. DR.SGX: Hardening SGX Enclaves against Cache Attacks with Data Location Randomization. In arXiv 2017.
[4] Chen, S., Reiter, M. K., Zhang, X., & Zhang, Y. Detecting Privileged Side-Channel Attacks in Shielded Execution with Déjà Vu. In ASIA CCS ’17.
[5] Shih, M., Lee, S., & Kim, T. T-SGX: Eradicating controlled-channel attacks against enclave programs. In NDSS 2017.

Dr.SGX [3]

Déjà Vu [4]

T-SGX [5]

Existing solutions

Low overhead Low effort
(no code changes required)

Varys
● 15% average slowdown
● No code changes

Düppel [2]

Dr.SGX [3]

Déjà Vu [4]

T-SGX [5]

Cloak [1]

Approach

Rely but verify

Approach

Rely but verify

Request isolation from
the untrusted OS

Approach

Rely but verify

Request isolation from
the untrusted OS

Check within
the enclave

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

Complete description

Rest of the talk explains
this sentence

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

Side-channel attacks

Hosted
process

Side-channel attacks

Hosted
process

if (secret == 0)
 read(addr1)
else
 read(addr2)

Side-channel attacks

Hosted
process

if (secret == 0)
 read(addr1)
else
 read(addr2)

Shared resource

addr1

addr2

Side-channel attacks

Hosted
process

if (secret == 0)
 read(addr1)
else
 read(addr2)

Shared resource

addr1

addr2

Cleanup

Side-channel attacks

Hosted
process

if (secret == 0)
 read(addr1)
else
 read(addr2)

Shared resource

addr1

addr2

Running...

Side-channel attacks

Hosted
process

if (secret == 0)
 read(addr1)
else
 read(addr2)

Shared resource

addr1

addr2

Running...

Side-channel attacks

Hosted
process

if (secret == 0)
 read(addr1)
else
 read(addr2)

Shared resource

addr1

addr2

Running...

Side-channel attacks

Hosted
process

if (secret == 0)
 read(addr1)
else
 read(addr2)

Shared resource

addr1

addr2

Side-channel attacks

Hosted
process

if (secret == 0)
 read(addr1)
else
 read(addr2)

Shared resource

addr1

addr2

addr1 was
accessed!

Side-channel attacks

Hosted
process

if (secret == 0)
 read(addr1)
else
 read(addr2)

Shared resource

addr1

addr2

addr2 was not
accessed!

Side-channel attacks

Hosted
process

if (secret == 0)
 read(addr1)
else
 read(addr2)

Shared resource

addr1

addr2

This line was
executed

Side-channel attacks

Hosted
process

if (secret == 0)
 read(addr1)
else
 read(addr2)

Shared resource

addr1

addr2

The secret is 0

Vulnerable shared resources

● CPU caches
● Page tables
● FPU
● Memory bus
● ...

Vulnerable shared resources

● CPU caches (L1, L2)
● Page tables
● FPU
● Memory bus
● ...

Varys

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

Attack requirements

● High interrupt rate
● Predefined cache state
● Shared core

Attack requirements

● High interrupt rate
● Predefined cache state
● Shared core

Isolated environment

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

Design

● High preemption rate Restrict and terminate
● Predefined cache state Cache eviction
● Shared core Trusted reservation

Design

● High preemption rate Restrict and terminate
● Predefined cache state Cache eviction
● Shared core Trusted reservation

Restricting preemption rate

● Attack exit rate: ~ 5000 exits/s.

Restricting preemption rate

● Attack exit rate: ~ 5000 exits/s.

● Normal exit rate: ~ 30 exits/s.

Restricting preemption rate

● Attack exit rate: ~ 5000 exits/s.

● Normal exit rate: ~ 30 exits/s.

Asynchronous Enclave Exit (AEX)

Hosted
process

Memory

SGX Enclave

SGX

RIP = 0x123
RAX = 0x111
RBX = 0x222

.

.

.

CPU state

Asynchronous Enclave Exit (AEX)

Hosted
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

Interrupt

RIP = 0x123
RAX = 0x111
RBX = 0x222

Asynchronous Enclave Exit (AEX)

Hosted
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

Interrupt

RIP = 0x123
RAX = 0x111
RBX = 0x222

Asynchronous Enclave Exit (AEX)

Hosted
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

Interrupt

RIP = 0x123
RAX = 0x111
RBX = 0x222

SSA

RIP = 0x100
RAX = 0x000
RBX = 0x000

Detecting interrupts

Hosted
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

SSA

RIP = 0x123
RAX = 0x111
RBX = 0x222

Detecting interrupts

Hosted
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

RIP = 0x000
SSA

RIP = 0x123
RAX = 0x111
RBX = 0x222

Detecting interrupts

Hosted
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

RIP = 0x000
SSA

RIP = 0x123
RAX = 0x111
RBX = 0x222

Read SSA

Detecting interrupts

Hosted
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

RIP = 0x000
SSA

RIP = 0x123
RAX = 0x111
RBX = 0x222

Still 0x000
Continue..

Detecting interrupts

Hosted
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

SSA

RIP = 0x123
RAX = 0x111
RBX = 0x222

Interrupt

RIP = 0x123
RAX = 0x111
RBX = 0x222

Detecting interrupts

Hosted
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

SSA

RIP = 0x123
RAX = 0x111
RBX = 0x222 RIP = 0x123

RAX = 0x111
RBX = 0x222

Read SSA

Detecting interrupts

Hosted
process

Memory

SGX Enclave

SGX.
.
.

CPU state

OS

SSA

RIP = 0x123
RAX = 0x111
RBX = 0x222 RIP = 0x123

RAX = 0x111
RBX = 0x222

Not 0x000
There was an
interrupt!

Design

● High preemption rate Restrict and terminate
● Predefined cache state Cache eviction
● Shared core Trusted reservation

Hiding cache traces

Hosted
process

Cache

addr1

addr2

addr1

addr2

Hosted
process

Cleanup

Hiding cache traces

Cache

addr1

addr2

Hosted
process

There was an
interrupt!

Hiding cache traces

Cache

addr1

addr2

Hosted
process

Hiding cache traces

Cache

addr1

addr2

Hosted
process

Hiding cache traces

Cache

addr1

addr2

Hosted
process

Hiding cache traces

Cache

addr1

addr2

Hosted
process

Hiding cache traces

Access addr1
Cache

addr1

addr2

Hosted
process

Hiding cache traces

???
Cache

Design

● High preemption rate Restrict and terminate
● Predefined cache state Cache eviction
● Shared core Trusted reservation

Preventing core sharing

● Occupy both hyperthreads

Core 1

Process Attacker

Preventing core sharing

● Occupy both hyperthreads
○ Use process affinity

Core 1

Process Process

How do we ensure reservation?

Core 1

Process Process

Core 2

How do we ensure reservation?

Core 1

Process

Core 2

Attacker Process

Handshake

● Use shared access timing

L1/L2

LLC

Core 1 Core 2

Fast

Slow

Process Process

Handshake

● Use shared access timing

L1/L2

LLC

Core 1 Core 2

Fast

Slow

Process Process

Write to
0x123

Handshake

● Use shared access timing

L1/L2

LLC

Core 1 Core 2

Fast

Slow

Process Process

Read from
to 0x123

Handshake

● Use shared access timing

L1/L2

LLC

Core 1 Core 2

Fast

Slow

Process Process
It was fast!

Handshake

● Use shared access timing

L1/L2

LLC

Core 1 Core 2

Fast

Slow

Process Attacker Process

Handshake

● Use shared access timing

L1/L2

LLC

Core 1 Core 2

Fast

Slow

Process Attacker Process

Read from
to 0x123

Handshake

● Use shared access timing

L1/L2

LLC

Core 1 Core 2

Fast

Slow

Process Attacker Process

It was slow!
Something is
wrong...

Design

● High preemption rate Restrict and terminate
● Predefined cache state Cache eviction
● Shared core Trusted reservation

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

Implementation

Source
code

LLVM pass
(Exit detection)

Compiler
(SCONE)

Hardened
binary

Runtime library
(Handshake &
cache eviction)

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

Evaluation: performance

Lower is
better

Evaluation: performance

Lower is
better

Evaluation: performance

Lower is
better

Evaluation: performance

Lower is
better

Evaluation: performance

Lower is
better

Evaluation: performance

Handshake and eviction only at enclave exits
● 20-30 times per second

Lower is
better

Evaluation: multithreading

Evaluation: multithreading

Lower is
better

Evaluation: multithreading

EPC paging ⇒ higher exit rate

Lower is
better

Evaluation: multithreading

EPC paging ⇒ higher exit rate

Lower is
better

False positives

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

Evaluation: security

● Privileged cache SCA
○ Target: L1 cache

● No eviction

Evaluation: security

● Privileged cache SCA
○ Target: L2 cache

● No eviction

Evaluation: security

● Privileged cache SCA
○ Target: L2 cache

● No eviction

Evaluation: security

● Privileged cache SCA
○ Target: L2 cache

● Varys protection

Evaluation: security

● Privileged cache SCA
○ Target: L2 cache

● Varys protection

Summary

● Varys: side-channel protection for SGX enclaves
● "Rely but verify" approach

○ Ask OS for
■ Lower interrupt rate
■ Paired thread allocation

○ Verify the request

● Evict caches on enclave exits

Summary

Thanks!
oleksii.oleksenko@tu-dresden.de

@oleksii_o

● Varys: side-channel protection for SGX enclaves
● "Rely but verify" approach

○ Ask OS for
■ Lower interrupt rate
■ Paired thread allocation

○ Verify the request

● Evict caches on enclave exits

