Varys

Protecting SGX Enclaves From Practical Side-Channel Attacks

Oleksii Oleksenko, Bohdan Trach
Robert Krahn, Andre Martin, Christof Fetzer Mark Silberstein
o7
T recion

Israel Institute
DRESDEN of Technology

Key issue of the cloud:

We cannot trust It

We cannot trust the cloud

e Thousands of employees I
A MURDER CASE TESTS ALEXA'S
DEVOTION TO YOUR PRIVACY

Patch alert! Easy-to-exploit flaw in
Linux kernel rated 'high risk’

Urgent security triage needed

Cloud Data Leak Exposes Information on 123 Million Americans

By: Se | December 20, 2017

We cannot trust the cloud

e Thousands of employees

e Legal obligations AMURDER CASE TESTS ALEXA'S
DEVOTION TO YOUR PRIVACY

Patch alert! Easy-to-exploit flaw in
Linux kernel rated 'high risk’

Urgent security triage needed

Cloud Data Leak Exposes Information on 123 Million Americans

By: Se | December 20, 2017

We cannot trust the cloud

e Thousands of employees

+ Legalobligations AMURDER CASE TESTS ALEXA'S
e |nfrastructure vulnerabilities DEVOTION TO YOUR PRIVACY

Patch alert! Easy-to-exploit flaw in
Linux kernel rated 'high risk’

Urgent security triage needed

Cloud Data Leak Exposes Information on 123 Million Americans

By: Se 1 | Kerner | December 20, 2017

Privileged attack vectors

I'm Eve. | control the
OS and Hypervisor

(O

~

Hosted
process

Privileged attack vectors: Network

' Sending:
SECRET

4 Network | Hosted
traffic process

Privileged attack vectors: Network
| see:
SECRET
' Sending:
SECRET
O 4 \Network : Hosted
traffic process

Privileged attack vectors: Network

| see:
$%sdf%

' Sending:
SECRET

« Network | Hosted
traffic process

Privileged attack vectors: Memory

| write SECRET '
Memory
to memory
i e Process's data:
Network Hosted
traffic process

..... SECRET....

Privileged attack vectors: Memory

| read:
SECRET
| write SECRET '

Memory

to memory
'v . Process's data:
Network Hosted \

Privileged attack vectors: Memory

| read:
$%sdf%H

| write SECRET '
Memory
to memory

« Network | Hosted
traffic process

Privileged attack vectors: System Calls

| request:
mmap()

Memory

~

Hosted SGX Enclave

process

Network
traffic

A

System
calls

1‘

Privileged attack vectors: System Calls

| request:
mmap() Memory
a A
Network Hosted SGX Enclave
traffic process

A

System | return:
calls exploit
l‘

Privileged attack vectors: System Calls

| request:
mmap() Memory

Hosted
process

Network

traffic SGX Enclave

Error!

Privileged attack vectors: Shared Resources

Page
Caches Tables
» «
. Memory
| write to address:
0x123
| I |
Netvvgrk Hosted SGX Enclave
traffic process
System
calls

oS

Privileged attack vectors: Shared Resources

| see an access to:
0x123

Page
Tables

;N
=3l

«

. Memory
| write to address:
0x123

| I |

Netvvgrk Hosted SGX Enclave
traffic process

System
calls

oS

Privileged attack vectors: Shared Resources

. AN |
This talk — |
e || g |

Eh _______________ XK _______ 7[________________i Memory

Netvvark Hosted SGX Enclave
traffic process

System
calls

oS

Existing solutions

Dr.SGX [3]

Cloak [1]

JE D

Déja Low effort

(no code changes required)

Low overhead vulal

el T-SGX [5]

[1] Gruss, D., Lettner, 3., Schuster, F., Ohrimenko, O., Haller, ., & Costa, M. Strong and Efficient Cache Side-Channel Protection using Hardware Transactional Memory. In Usenix Security 2017.

[2] Zhang, Y., Reiter, M. K, Zhang, Y., & Reiter, M. K. Duppel: Retrofitting Comnmodity Operating Systems to Mitigate Cache Side Channels in the Cloud. In CCS 2013.

[3] Brasser, F., Capkun, S., Dmitrienko, A,, Frassetto, T., Kostiainen, K., Muller, U., & Sadeghi, A.-R. DR.SGX: Hardening SGX Enclaves against Cache Attacks with Data Location Randomization. In arXiv 2017.

[4] Chen, S, Reiter, M. K,, Zhang, X, & Zhang, Y. Detecting Privileged Side-Channel Attacks in Shielded Execution with Déja Vu. In ASIA CCS '17.

[5] Shih, M, Lee, S., & Kim, T. T-SGX: Eradicating controlled-channel attacks against enclave programs. In NDSS 2017.
e

Existing solutions

Dr.SGX [3]

Cloak [1]

Déja Vu [4] | ow effort

(no code changes required)

| ow overhead

PUppeti] T-SGX [5]

Varys

e 15% average slowdown
e NoO code changes

Approach

Rely but verify

Approach

Rely but verify

/

Reqguest isolation from
the untrusted OS

Approach

Rely but verify

N

Reqguest isolation from Check within
the untrusted OS the enclave

Complete description

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

Rest of the talk explains
this sentence

Varys implements a low-cost protection for

Intel SCX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

Side-channel attacks

~

Hosted
process

Side-channel attacks

if (secret == 0)
read(addr1)

else
read(addr2)

~

Hosted
process

Side-channel attacks

if (secret == 0)
read(addr1)

else
read(addr2)

Shared resource

Hosted
process

addrl

addr2

Side-channel attacks

if (secret == 0)
read(addr1)

else
read(addr2)

Shared resource

Hosted
process

addrl

addr2

'

Cleanup

Side-channel attacks

if (secret == 0)
read(addr1)

else
read(addr2)

Shared resource

Running...
A N

~

Hosted
process

addrl

addr2

Side-channel attacks

if (secret == 0)
read(addr1)

else
read(addr2)

Shared resource

Running...
A N

~

Hosted
process

addrl

addr2

Side-channel attacks

if (secret == 0)
read(addr1)

else
read(addr2)

Shared resource

Running...
A N

~

Hosted
process

L~

addrl

addr2

Side-channel attacks

if (secret == 0)
read(addr1)

else
read(addr2)

Shared resource

Hosted
process

addrl

addr2

Side-channel attacks

if (secret == 0)

read(addr1)
else
read(addr2)
Shared resource addr1 was
accessed!
A A /
= ddrl <
Hosted acar '
process

addr2

Side-channel attacks

if (secret == 0)
read(addr1)

else
read(addr2)

Shared resource

Hosted
process

addrl

addr2 <—

addr2 was not
accessed!

_'/

Side-channel attacks

Hosted
process

if (secret == 0)
read(addr1) «

This line was

else
read(addr2)

Shared resource

addrl

addr2

executed

7

Side-channel attacks

The secretis 0

if (secret ==)<\

read(addr1) ' V
else

read(addr2)

Shared resource

=~ addrl
Hosted

process

addr2

Vulnerable shared resources

CPU caches
Page tables
FPU

Memory bus

Laura Abbott
@openlabbott

slaps modern cpu You won't believe how
many side channels this thing can hold

Vulnerable shared resources

e CPU caches (L1, L2)

e Page tables }Varys

slaps modern cpu* You won't believe how
ny side channels this thing can hold

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

Attack requirements

e High interrupt rate
e Predefined cache state
e Shared core

Attack requirements

o Predefinedcachestate - |solated environment

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
oy creating an isolated environment and
verifying it at runtime.

Design

e High preemption rate 4 Restrict and terminate
e Predefined cache state 4 Cache eviction
e Shared core 4 Trusted reservation

Design

e High preemptionrate 4 Restrict and terminate
e Predefined cachestate @ Cache eviction
e Shared core #d Trusted reservation

Restricting preemption rate

o Attack exit rate: ~ 5000 exits/s.

Restricting preemption rate

o Attack exit rate: ~ 5000 exits/s.
e Normal exit rate: ~ 30 exits/s.

N
o
IS
0]

w
o N

<.
(og
0

512 -

128 -

AEX rate (AEX/second)

Restricting preemption rate

o Attack exit rate: ~ 5000 exits/s.
e Normal exit rate: ~ 30 exits/s.

AEX rate (AEX/second)

(00)
1

N

o

S

(0]
]

512 -

128 -

w
N
I

- . S S S S S B B B B S B S S B B S S e B B e

Asynchronous Enclave Exit (AEX)

Memory

CPU state Ao

RIP = Ox123 Hosted
RAX = OxI111

RBX = 0x222 process

Asynchronous Enclave Exit (AEX)

oS
Interrupt Memory
CPU state (| y
RIP = Ox123 Hosted
RAX = Ox111

RBX = 0x222 process

Asynchronous Enclave Exit (AEX)

oS
Interrupt Memory
CPU state Ao v
RIP = 0x123 Hosted
RAX = Ox111
RBX = Ox222 process

-~

Asynchronous Enclave Exit (AEX)

ON
Interrupt Memory
CPU state A v
RIP = 0x100 - Hosted
RAX = 0x000
RBX = 0x000 process

-~

Detecting interrupts

CPU state

oS

RIP = Ox123

RAX = Ox111

RBX = 0x222

Hosted
process

Memory

Detecting interrupts

CPU state

oS

RIP = Ox123

RAX = Ox111

RBX = 0x222

Hosted
process

Memory

Detecting interrupts

CPU state

Read SSA

RIP = Ox123

RAX = Ox111

RBX = 0x222

oS

~

Memory

Hosted
process

Detecting interrupts

CPU state

oS

Still 0x000
Continue..

RIP = Ox123

RAX = OxI111

RBX = 0x222

Memory

Hosted
process

Detecting interrupts

CPU state

RIP = Ox123

RAX = OxI111

RBX = 0x222

oS

Interrupt

LI | A 4

Memory

Hosted
process

Detecting interrupts

OS
Read SSA
CPU state [
RIP = Ox123 Hosted
RAX = Ox111
RBX = 0x222 process

Memory

Detecting interrupts

Memory

oS
Not 0x000
There was an
interrupt!
CPU state \ "o
RIP = 0x123 Hosted
RAX = OXTT]
RBX = Ox222 process

Design

e High preemptionrate @ Restrict and terminate
e Predefined cache state 4 Cache eviction
e Shared core #d Trusted reservation

Hiding cache traces

~

Cache

Hosted
process

addrl

addr2

Hiding cache traces

~

Cache

Hosted
process

addrl

addr2

Cleanup

Hiding cache traces

~

There was an
interrupt!

Cache

=

Hosted
process

addrl

addr2

Hiding cache traces

~

Hosted
process

Y,

Cache

addrl

addr2

Hiding cache traces

~

Hosted
process

Y,

Cache

addrl

addr2

Hiding cache traces

~

Hosted
process

Y

Cache

addrl

addr2

Hiding cache traces

~

Cache
Access addr1
ddrl
/ /va r
Hosted /
process

addr2

Hiding cache traces

~

Cache

Hosted
process

addrl —

addr2 4

7?

Design

e High preemptionrate @ Restrict and terminate
e Predefined cache state @ Cache eviction

e Shared core 4 Trusted reservation

Preventing core sharing

e Occupy both hyperthreads

Core 1

Process | Attacker

Preventing core sharing

e Occupy both hyperthreads

o Use process affinity

Core 1

Process | Process

How do we ensure reservation?

Core 1 Core 2

Process | Process

How do we ensure reservation?

Core 1 Core 2

Process Attacker Process

Handshake

e Use shared access timing

Core 1

Process !

Process

L1/L2

LLC

Fast

Slow

Handshake

e Use shared access timing

Write to Core 1 Core 2
0x123 S ~
[: !
Process | Process
L1/L2 - N\
LLC -

Fast

Slow

Handshake

e Use shared access timing

L1/L2
LLC

Core 1 Core 2
Read from
| to 0x123
Process | Process
|

Fast

Slow

Handshake

e Use shared access timing

Core 1 Core 2
. '-' It was fast!
Process Process
L1/L2 —
LLC [

Fast

Slow

Handshake

e Use shared access timing

Core 1 Core 2

Process Attacker Process

L1/L2 Fast

LLC Slow

Handshake

e Use shared access timing

Core 1 Core 2 Read from
o . A to0x123
Process Attacker Process
L1/L2 = P Fast
LLC —‘/ Slow

Handshake

e Use shared access timing

Core 1

Core 2

Process

Attacker

_

It was slow!
Something is

A wrong...

Process

)

L1/L2

~

Fast

LLC

»

Slow

Design

e High preemption rate 4 Restrict and terminate
e Predefined cache state 4 Cache eviction
e Shared core 4 Trusted reservation

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

Implementation

Source
code

Compiler
(SCONE)

Hardened
binary

Varys implements a low=-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

Evaluation: performance

1.6)
. Lower Is
£ " better
‘g 2 1.4
s
8 c 1.3 1
£z
57111
=z
1.0 1
2> X\ \ S (\\ Q G\(\ o ’&\ Q Q)b((2 '\6 @Q -2 \\}
\ c}‘\&o o @\e%(\ o« W@ ‘0‘50\\0\ 030(‘6 & 90\0‘5\ A\ oW N7 P

Evaluation: performance

Lower is
better

B AEX detection [0 + Handshake [+ Cache eviction

Normalized runtime
(w.r.t. native)
o 4 Nvow A~ oo

B ot 2O Q 02 \\
SRR CANC S S Rt

Evaluation: performance

Lower is
better

B AEX detection [0 + Handshake [+ Cache eviction

JJ[J|||| | 1|

N N B <
Q o (0((\“\ ((\e‘a(\% ooo(\ \(\mo.» ‘O\&G o‘\o\e% a(\(\e’& 68609 *r?/‘b \06\6 \\\)\(\ \;\95 «\e’é(\
) ¢

Normalized runtime
(w.r.t. native)
o 4 Nvow A~ oo

Evaluation: performance

° 16 B AEX detection O + Handshake M + Cache eviction Lower is
E_"7 better
§§ 1.4 1 |
< :
8 c 1.3 1 ,
=T 42 :
£2 |
(ZLD 1.1 - :
1.0 _ﬂ ﬂ m m m N :
N S S A X Q 3
< . «\«g\o“ «\‘N ((\ez&\ 00\><\ \(«e@ b\@o ‘\o\e 06(\(\@'& 636& 0> \)s\‘a QO O© ((\e’é“

Evaluation: performance

Lower is
better

B AEX detection [0 + Handshake [+ Cache eviction

Normalized runtime
(w.r.t. native)
@

> N N S \!
QG ‘2:\0 ((\‘(\\) a(\ \Noo\)(\

%\“39 a° ((\efo“

Evaluation: performance

1. - —
o 2 B AEX detection [+ Handshake M + Cache eviction ! Lower is
E_ 7 better
€214+ |
8 c 1.3 1 ,
ST 121 :
£2 |
57 1.1 |
= :
10 7 1
I ey S\ o o e® ot \e® A) X R 20 5 o
N RN NP S - M LG P o & o N W NI

Handshake and eviction only at enclave exits
e 20-30 times per second

Evaluation: multithreading

Evaluation: multithreading

Lower is
better

B 2threads [0 4threads M 8 threads 1.69

(w.r.t. native)
N W A~ O
L L L L

Normalized runtime

—_
o
Il

Evaluation: multithreading

B 2threads [0 4threads M 8 threads 1.69

Lower is
better

(w.r.t. native)
Now R o
L L L L

Normalized runtime

—_
o
Il

g

39°

\ .
o (\ea e<\°Q W

& I
7/

EPC paging = higher exit rate

N
\)5\6 %®39 «\e'b»(\

Evaluation: multithreading

B 2threads [0 4threads M 8 threads 1.69

Lower is
better

(w.r.t. native)
Now R o
L L L L

—_
—_
1

Normalized runtime

—_
o
Il

g

o ot \e® e WO ook et 9o 20 R 20
°© «© \(&(\d& x o? ‘050\(\0 o f\ed / X 50\\)5 A ot N «©

False positives

EPC paging = higher exit rate

Varys implements a low-cost protection for
Intel SGX enclaves against side-channel attacks
by creating an isolated environment and
verifying it at runtime.

Evaluation: security

e Privileged cache SCA
o Target: Ll cache

e NoO eviction

Cache Set

60 =

40 -

20

Access
Latency
1.00

0.75
0.50
0.25

0.00

Time (s)

.I
|
I--
u
|]
l..
[|
\Iu I ”wu I HHHI\ (IR AT ‘"””"Iil.ll.lﬂlll
500 750 1000 1250

Evaluation: security

e Privileged cache SCA

o Target: L2 cache

e NoO eviction

Evaluation: security

e Privileged cache SCA

o Target: L2 cache

e NoO eviction

Evaluation: security

Access

Latency

e Privileged cache SCA
o Target: L2 cache 1 "

e \arys protection

Cache Set

Evaluation: security

Access
Latency

e Privileged cache SCA
o Target: L2 cache

e \arys protection

Cache Set

= ¢l 1]
gl

Summary

e Varys: side-channel protection for SGX enclaves

e "Rely but verify" approach
o Ask OS for

m Lower interrupt rate
m Paired thread allocation

o Verify the request
e FEvict caches on enclave exits

Summary

e Varys: side-channel protection for SGX enclaves

e "Rely but verify" approach
o Ask OS for

m Lower interrupt rate
m Paired thread allocation

o Verify the request
e FEvict caches on enclave exits

Thanks!

oleksii.oleksenko@tu-dresden.de

@oleksii_o

