
SOCK: Rapid Task Provisioning
with Serverless-Optimized Containers

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter*,
Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau

* Microsoft Gray Systems Lab

Increasing Developer Velocity

Trend 1: Rise of High-Level Languages

https://stackoverflow.blog/2017/09/06/incredible-growth-python/

Trend 2: Greater Reliance on Packages

https://www.modulecounts.com

M
od

ul
e

C
ou

nt

Trend 3: Microservice Decomposition
● Applications are decoupled into modular “services”
● Each service is lightweight, deployed independently

Serverless Computing
● “Functions as a Service”
● Pay-as-you-go, fine-grained billing

Serverless Computing
Benefits:
● True auto scaling
● Massive parallelism
● Cost savings

Serverless Computing
Benefits:
● True auto scaling
● Massive parallelism
● Cost savings

Challenge:
● Deploy, isolate, and start in milliseconds

Hardware

Operating System

Server

A
1

deployment
bundles...A

2
A

N

Serverless Runtime

Hardware

Operating System

Server

A
1

deployment
bundles...A

2
A

NPython interpreter:
● 30ms

Docker container:
● 400ms

Serverless Runtime

Hardware

Operating System

Server

A
1

sc
ip

y
n

u
m

p
y

...A
2

re
q

u
es

ts

A
N

sc
ip

y

Serverless Runtime

deployment
bundles

Python interpreter:
● 30ms

Docker container:
● 400ms

Hardware

Operating System

Server

A
1

sc
ip

y
n

u
m

p
y

...A
2

re
q

u
es

ts

A
N

sc
ip

y

Serverless Runtime

deployment
bundles

Python interpreter:
● 30ms

scipy:
● 2700ms download
● 8200ms install
● 88ms import

Docker container:
● 400ms

Lean serverless-optimized containers (SOCK)
● Precise usage of Linux isolation mechanisms
● 18x faster container lifecycle over Docker

SOCK

Lean serverless-optimized containers (SOCK)
● Precise usage of Linux isolation mechanisms
● 18x faster container lifecycle over Docker

Provision from secure Zygote processes
● Fork from initialized runtime to prevent cold start
● 3x faster provisioning than SOCK alone

SOCK

Lean serverless-optimized containers (SOCK)
● Precise usage of Linux isolation mechanisms
● 18x faster container lifecycle over Docker

Provision from secure Zygote processes
● Fork from initialized runtime to prevent cold start
● 3x faster provisioning than SOCK alone

Execution caching across 3 tiers
● Securely reuse initialization work across customers
● 3-16x lower platform cost in image-processing case study

SOCK

https://github.com/open-lambda

OpenLambda

Outline
Motivation
Serverless-optimized Containers
● Design
● Evaluation

Generalized Zygotes
● Design
● Evaluation

Serverless Caching
● Design
● Evaluation

Conclusion

Linux Containers

Linux Containers
...they’re just cheaper VMs, right?

Linux Containers
...they’re just cheaper VMs, right?

Not virtualizing hardware, but access

● File system
● Namespaces
● Cgroups

Linux Containers
...they’re just cheaper VMs, right?

Not virtualizing hardware, but access

● File system
● Namespaces
● Cgroups

Container File System

FROM ubuntu:16

= read/write

= read only

Container File System

FROM ubuntu:16

sudo apt-get install

= read/write

= read only

Container File System

FROM ubuntu:16

sudo apt-get install

make install

= read/write

= read only

Container File System

FROM ubuntu:16

sudo apt-get install

make install

= read/write

= read only

my-image

Container File System
= read/write

= read only

my-image

C1 “/” C2 “/” C3 “/”

Linux Containers
...they’re just cheaper VMs, right?

Not virtualizing hardware, but access

● File system
● Namespaces
● Cgroups

Namespaces
● Partition resource access in the kernel
● 7 individual namespaces

○ Mount
○ Network
○ User
○ UTS
○ IPC
○ PID
○ Cgroup

Mount Namespace

/
 /var
 /tmp
 /my-image
 /my-var
 /my-tmp

P1

Mount Namespace

/
 /var
 /tmp
 /my-image
 /my-var
 /my-tmp

P1 P2
fork()

Mount Namespace

/
 /var
 /tmp
 /my-image
 /my-var
 /my-tmp

P1 P2

Mount Namespace

/
 /var
 /tmp
 /my-image
 /my-var
 /my-tmp

P1 P2

unshare()

Mount Namespace

/
 /var
 /tmp
 /my-image
 /my-var
 /my-tmp

P1 P2

unshare()
/
 /var
 /tmp
 /my-image
 /my-var
 /my-tmp

Mount Namespace

/
 /var
 /tmp
 /my-image
 /my-var
 /my-tmp

P1 P2

/
 /var
 /tmp
 /my-image
 /my-var
 /my-tmp

Mount Namespace

/
 /var
 /tmp
 /my-image
 /my-var
 /my-tmp

P1 P2

/
 /var
 /tmp
 /my-image
 /my-var
 /my-tmp

switch root
● unmount()
● mount()
● pivot_root()

Mount Namespace

/
 /var
 /tmp
 /my-image
 /my-var
 /my-tmp

P1 P2

/
 /my-var
 /my-tmp

switch root
● unmount()
● mount()
● pivot_root()

Mount Namespace

/
 /var
 /tmp
 /my-image
 /my-var
 /my-tmp

P1 P2

/
 /my-var
 /my-tmp

Container

Linux Containers
...they’re just cheaper VMs, right?

Not virtualizing hardware, but access

● File system
● Namespaces
● Cgroups

Cgroups
● Control resource usage
● Limiting, prioritization, accounting, control

○ oom-killer for a container

● Fork init, unshare() into new namespaces
● Create cgroups
● Relocate init into cgroups
● Stitch together root file system
● switch_root() to container root
● Create veth
● Connect veth to virtual bridge

At runtime:

● Fork init, unshare() into new namespaces
● Create cgroups
● Relocate init into cgroups
● Stitch together root file system
● switch_root() to container root
● Create veth
● Connect veth to virtual bridge

 ...all before running any user code

At runtime:

SOCK: Serverless-optimized Containers
● Containers aren’t a single cohesive abstraction

● Containers aren’t a single cohesive abstraction

What are the performance costs
of container components?

SOCK: Serverless-optimized Containers

● Containers aren’t a single cohesive abstraction

What are the performance costs
of container components?

What are the isolation requirements
of serverless workloads?

SOCK: Serverless-optimized Containers

SOCK: Serverless-optimized Containers
● Containers aren’t a single cohesive abstraction

What are the performance costs
of container components?

What are the isolation requirements
of serverless workloads?

Mount Performance

Mount and unmount as quickly as possible
● Varying levels of parallelism
● Single AUFS layer vs. bind mount

Mount Performance

Mount Performance

Bind mounts are 3x faster than AUFS

SOCK: Serverless-optimized Containers
● Containers aren’t a single cohesive abstraction

What are the performance costs
of container components?

What are the isolation requirements
of serverless workloads?

File System Requirements
Serverless application containers:

● Don’t need a fully writable OS view
● Do need scratch space and access to libraries

File System Requirements
Serverless application containers:

● Don’t need a fully writable OS view
● Do need scratch space and access to libraries

Flexible, expensive AUFS + mount namespace

Simple, cheap bind mounts + chroot

Serverless-optimized Containers
Replace flexible, costly mechanisms with simple, cheap
alternatives
● Leverage constraints of the serverless runtime

Serverless-optimized Containers
Replace flexible, costly mechanisms with simple, cheap
alternatives
● Leverage constraints of the serverless runtime

AUFS + mount NS -> bind mounts + chroot

network NS -> domain socket + outbound access

user NS -> unprivileged execution

Outline
Motivation
Serverless-optimized Containers
● Design
● Evaluation

Generalized Zygotes
● Design
● Evaluation

Serverless Caching
● Design
● Evaluation

Conclusion

Experiment
Requests to “no-op” handlers as quickly as possible
● Varying numbers of requesting threads
● Docker vs. SOCK

SOCK Container Performance

SOCK Container Performance

18x faster container lifecycle with SOCK

Outline
Motivation
Serverless-optimized Containers
● Design
● Evaluation

Generalized Zygotes
● Design
● Evaluation

Serverless Caching
● Design
● Evaluation

Conclusion

Zygotes
● Used in Android OS

○ Many apps depend on common system
libraries

● Start a Zygote at init, importing libraries
○ New processes fork from the Zygote

Generalized Zygotes
Benefits:

● Eliminate interpreter & package initialization cost
● Pack more handlers into memory

Generalized Zygotes
Benefits:

● Eliminate interpreter & package initialization cost
● Pack more handlers into memory

Challenges:

● Cannot trust the libraries we import
● Want to create new Zygotes on the fly

More details in the paper...

Outline
Motivation
Serverless-optimized Containers
● Design
● Evaluation

Generalized Zygotes
● Design
● Evaluation

Serverless Caching
● Design
● Evaluation

Conclusion

Experiment
Create and destroy handler runtimes as quickly as
possible
● New container & interpreter
● Varying levels of parallelism

Zygote Provisioning Performance

Zygote Provisioning Performance

3x faster provisioning using general Zygotes

Outline
Motivation
Serverless-optimized Containers
● Design
● Evaluation

Generalized Zygotes
● Design
● Evaluation

Serverless Caching
● Design
● Evaluation

Conclusion

SOCK Caching

Handler Cache
● Reuse initialized runtimes within a lambda

SOCK Caching

Import Cache
● Reuse initialized Zygotes between lambdas

Handler Cache
● Reuse initialized runtimes within a lambda

SOCK Caching

Import Cache
● Reuse initialized Zygotes between lambdas

Handler Cache
● Reuse initialized runtimes within a lambda

Install Cache
● Reuse installed packages between lambdas

SOCK Caching

Import Cache
● Reuse initialized Zygotes between lambdas

Handler Cache
● Reuse initialized runtimes within a lambda

Install Cache
● Reuse installed packages between lambdas

SOCK Caching

{ }

Import Cache Handler Cache

{ }

Import Cache Handler Cache
H1(A)

{ }

Import Cache Handler Cache

{A}

H1(A)

{ }
H1(A)

Import Cache Handler Cache

{A}

H1(A)

{ }
H1(A)

Import Cache Handler Cache

{A}

{ }
H1(A)

Import Cache Handler Cache

{A}

H1(A)

{ }
H1(A)

Import Cache Handler Cache

{A}

{ }
H2(A,B)

H1(A)

Import Cache Handler Cache

{A}

{ }
H2(A,B)

H1(A)

Import Cache Handler Cache

{A}

{A,B}

{ }
H2(A,B)

H1(A) H2(A,B)

Import Cache Handler Cache

{A}

{A,B}

{ }
H1(A) H2(A,B)

Import Cache Handler Cache

{A}

{A,B}

{ }
H3(B)

H1(A) H2(A,B)

Import Cache Handler Cache

{A}

{A,B}

{ }
H3(B)

H1(A) H2(A,B)

Import Cache Handler Cache

{A}

{A,B}

{ }
H3(B)

H1(A) H2(A,B)

What if package ‘A’ is malicious?

Import Cache Handler Cache

{A}

{A,B}

{ }
H3(B)

H1(A) H2(A,B)

What if package ‘A’ is malicious?
● “Subset only” rule

Import Cache Handler Cache

{A}

{A,B}

{ }
H3(B)

H1(A) H2(A,B)

What if package ‘A’ is malicious?
● “Subset only” rule

Import Cache Handler Cache

{A} {B}

{A,B}

Cache Interaction = django memory
= handler-specific memoryhandler cache

working set

 django Zygote

Cache Interaction = django memory
= handler-specific memoryhandler cache

working set

Cache Interaction

 django Zygote

= django memory
= handler-specific memoryhandler cache

working set

Cache Interaction

 django Zygote

= django memory
= handler-specific memoryhandler cache

working set

Cache Interaction

 django Zygote

= django memory
= handler-specific memoryhandler cache

working set

Handler cache misses are:
● Rarer

Cache Interaction

Handler cache misses are:
● Rarer
● Faster

 django Zygote

= django memory
= handler-specific memoryhandler cache

working set

Outline
Motivation
Serverless-optimized Containers
● Design
● Evaluation

Generalized Zygotes
● Design
● Evaluation

Serverless Caching
● Design
● Evaluation

Conclusion

Microbenchmark
Not a stress test, want to examine differences in caching

Experimental Setup:
● 1 OpenLambda worker machine
● 2 random requests per second
● 100 distinct lambdas, all importing django

Caching Performance

Caching Performance

Caching Performance

Caching Performance

Caching Performance

Outline
Motivation
Serverless-optimized Containers
● Design
● Evaluation

Generalized Zygotes
● Design
● Evaluation

Serverless Caching
● Design
● Evaluation

Conclusion

PC running many diverse processes

VMs running monolithic applications

Containers running small pieces of applications

Evolution of Applications

PC running many diverse processes

VMs running monolithic applications

Containers running small pieces of applications

???

Evolution of Applications

How can we run small, distributed pieces of code faster,
more easily, and more securely?

Modern Virtualization

How can we run small, distributed pieces of code faster,
more easily, and more securely?

SOCK:
● Carefully measure and use existing abstractions

Modern Virtualization

How can we run small, distributed pieces of code faster,
more easily, and more securely?

SOCK:
● Carefully measure and use existing abstractions

developed for long-running applications

Future Systems:
● Need to fundamentally rethink design

Modern Virtualization

Questions?

