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Increasing Developer Velocity



Trend 1: Rise of High-Level Languages

https://stackoverflow.blog/2017/09/06/incredible-growth-python/



Trend 2: Greater Reliance on Packages

https://www.modulecounts.com
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Trend 3: Microservice Decomposition
● Applications are decoupled into modular “services”
● Each service is lightweight, deployed independently



Serverless Computing
● “Functions as a Service”
● Pay-as-you-go, fine-grained billing
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Benefits:
● True auto scaling
● Massive parallelism
● Cost savings

Challenge:
● Deploy, isolate, and start in milliseconds
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Python interpreter:
● 30ms 

scipy:
● 2700ms download
● 8200ms install
● 88ms import

Docker container:
● 400ms
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Lean serverless-optimized containers (SOCK)
● Precise usage of Linux isolation mechanisms
● 18x faster container lifecycle over Docker

Provision from secure Zygote processes
● Fork from initialized runtime to prevent cold start
● 3x faster provisioning than SOCK alone

Execution caching across 3 tiers
● Securely reuse initialization work across customers
● 3-16x lower platform cost in image-processing case study

SOCK



https://github.com/open-lambda

OpenLambda
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Container File System

FROM ubuntu:16

sudo apt-get install

make install

= read/write

= read only

my-image



Container File System
= read/write

= read only

my-image

C1 “/” C2 “/” C3 “/”



Linux Containers
...they’re just cheaper VMs, right?

Not virtualizing hardware, but access

● File system
● Namespaces
● Cgroups



Namespaces
● Partition resource access in the kernel
● 7 individual namespaces

○ Mount
○ Network
○ User
○ UTS
○ IPC
○ PID
○ Cgroup
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Mount Namespace
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Linux Containers
...they’re just cheaper VMs, right?

Not virtualizing hardware, but access

● File system
● Namespaces
● Cgroups



Cgroups
● Control resource usage
● Limiting, prioritization, accounting, control

○ oom-killer for a container



● Fork init, unshare() into new namespaces
● Create cgroups
● Relocate init into cgroups
● Stitch together root file system
● switch_root() to container root
● Create veth
● Connect veth to virtual bridge

At runtime:



● Fork init, unshare() into new namespaces
● Create cgroups
● Relocate init into cgroups
● Stitch together root file system
● switch_root() to container root
● Create veth
● Connect veth to virtual bridge

                          ...all before running any user code

At runtime:
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● Containers aren’t a single cohesive abstraction

What are the performance costs
of container components?

What are the isolation requirements
of serverless workloads?



Mount Performance

Mount and unmount as quickly as possible
● Varying levels of parallelism
● Single AUFS layer vs. bind mount
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Mount Performance

Bind mounts are 3x faster than AUFS



SOCK: Serverless-optimized Containers
● Containers aren’t a single cohesive abstraction

What are the performance costs
of container components?

What are the isolation requirements
of serverless workloads?
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File System Requirements
Serverless application containers:

● Don’t need a fully writable OS view
● Do need scratch space and access to libraries

Flexible, expensive AUFS + mount namespace

Simple, cheap bind mounts + chroot
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Serverless-optimized Containers
Replace flexible, costly mechanisms with simple, cheap 
alternatives
● Leverage constraints of the serverless runtime

AUFS + mount NS -> bind mounts + chroot

network NS -> domain socket + outbound access

user NS -> unprivileged execution
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Experiment
Requests to “no-op” handlers as quickly as possible
● Varying numbers of requesting threads
● Docker vs. SOCK



SOCK Container Performance



SOCK Container Performance

18x faster container lifecycle with SOCK
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Zygotes
● Used in Android OS

○ Many apps depend on common system 
libraries

● Start a Zygote at init, importing libraries
○ New processes fork from the Zygote



Generalized Zygotes
Benefits:

● Eliminate interpreter & package initialization cost
● Pack more handlers into memory



Generalized Zygotes
Benefits:

● Eliminate interpreter & package initialization cost
● Pack more handlers into memory

Challenges:

● Cannot trust the libraries we import
● Want to create new Zygotes on the fly



More details in the paper...
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Experiment
Create and destroy handler runtimes as quickly as 
possible
● New container & interpreter
● Varying levels of parallelism



Zygote Provisioning Performance



Zygote Provisioning Performance

3x faster provisioning using general Zygotes
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SOCK Caching



Handler Cache
● Reuse initialized runtimes within a lambda
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Install Cache
● Reuse installed packages between lambdas

SOCK Caching
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What if package ‘A’ is malicious?
● “Subset only” rule

Import Cache Handler Cache

{A} {B}

{A,B}



Cache Interaction = django memory
= handler-specific memoryhandler cache

working set



    django Zygote

Cache Interaction = django memory
= handler-specific memoryhandler cache

working set



Cache Interaction

    django Zygote

= django memory
= handler-specific memoryhandler cache

working set



Cache Interaction

    django Zygote

= django memory
= handler-specific memoryhandler cache

working set



Cache Interaction

    django Zygote

= django memory
= handler-specific memoryhandler cache

working set

Handler cache misses are:
● Rarer



Cache Interaction

Handler cache misses are:
● Rarer
● Faster

    django Zygote

= django memory
= handler-specific memoryhandler cache

working set
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Microbenchmark
Not a stress test, want to examine differences in caching

Experimental Setup:
● 1 OpenLambda worker machine
● 2 random requests per second
● 100 distinct lambdas, all importing django
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PC running many diverse processes

VMs running monolithic applications

Containers running small pieces of applications

???
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How can we run small, distributed pieces of code faster, 
more easily, and more securely?

SOCK:
● Carefully measure and use existing abstractions 

developed for long-running applications

Future Systems:
● Need to fundamentally rethink design

Modern Virtualization



Questions?


