
Sixiang Ma, Yang Wang
The Ohio State University

Accurate Timeout Detection Despite
Arbitrary Processing Delays

Timeout is Widely Used in Failure Detection

Sender Receiver
Heartbeat

When timeout happens, it is hard to tell between:

• sender crash failure

• heartbeat delay

Sender Receiver

Sender Receiver
Heartbeat

Accuracy: when receiver reports
timeout, sender mush have failed.

[Chandra, Journal of ACM’ 96]

Timeout Detection Can be Inaccurate

Approach 1: Paxos-based consensus

• ensure correctness despite inaccurate timeout detection

• high cost and complexity

• examples: ZooKeeper, Chubby, Spanner, etc.

How to Ensure System Correctness

Approach 2: Set long timeout intervals

• system correctness relies on timeout accuracy

• estimate the maximum delay of the communication channel

• examples: HDFS, Ceph, Yarn, etc

• Our work aims to improve this approach

How to Ensure System Correctness

• Correctness: require long timeout to tolerate maximum delays

• Availability: prefer short timeout for fast failure detection

Availability

Correctness

The Dilemma: Availability v.s. Correctness

• Correctness: require long timeout to tolerate maximum delays

• Availability: prefer short timeout for fast failure detection

Availability

Correctness

The Dilemma: Availability v.s. Correctness

Can we shorten timeout intervals
without sacrificing correctness?

1. Long delays in OS and application

2. Their whitebox nature creates opportunities
for better solutions

Motivations

1. Long delays in OS and application

2. Their whitebox nature creates opportunities
for better solutions

Motivations

• Disk I/O: 10 seconds

• Packet processing: 2 seconds

• JVM garbage collection: 26 seconds

• Application specific delays: several minutes

- HDFS: directories deletion before heartbeat sending

- ZooKeeper: session close/expire flooding

Heartbeat Delay in Our Experiment

HDFS-611: Heartbeats times
from Datanodes increase
when there are plenty of
blocks to delete

HDFS-9910: Datanode
heartbeats get blocked
by disk in checkBlock()

ZOOKEEPER-1049:
Session expire/close
flooding renders heartbeats
to delay significantly

CEPH-19335: MDS heartbeat
timeout during rejoin, when
working with large amount of
caps/inodes

HBASE-13090: Progress heartbeats for
long running scanners

“It can be necessary to set very long
timeouts for clients that issue scans
over large regions”

HBASE-3273: Set the ZK default
timeout to 3 minutes

HDFS-9901: Move disk IO out of
the heartbeat thread

“In extreme cases, the heartbeat
thread hang more than 10
minutes so the namenode
marked the datanode as dead”

Heartbeat Delay Reported in Communities

“Stack suggested that we increase
the ZK timeout and proposed that
we set it to 3 minutes. This should
cover most of the big GC pauses.”

Compared to default timeout, delays in OS and App are significant

• HDFS: 30 seconds

• Ceph: 20 seconds

• ZooKeeper: 5 seconds

Delays in OS and Application Are Significant

1. Long delays in OS and application

2. Their whitebox nature creates opportunities for
better solutions

Motivations

OS NIC
Network

OS App

Sender Receiver

Estimated Maximum Delay for Whole Channel

• Blackbox: only provides information when receiving a packet

Existing Timeout Views Channel as a Blackbox

• Whitebox: can provide information such as packet pending/drop

OS NIC
Network

OS App

Sender Receiver

Estimated Maximum Delay for Whole Channel

Whitebox Nature of OS and Application

• Whitebox: can provide information such as packet pending/drop

• Can we utilize whitebox nature to design better solution?

OS NIC
Network

OS App

Sender Receiver

Estimated Maximum Delay

Whitebox Nature of OS and Application

Overview of SafeTimer

• Goal: if the receiver reports timeout, the sender must have failed

• Assumptions of SafeTimer

- Delays in whitebox can be arbitrarily long

- SafeTimer relies on existing protocol for blackbox

• Solutions

- Receiver: check pending/dropped heartbeats when timeout occurs

- Sender: blocks sender when heartbeat sending is slow

Overview of SafeTimer

• Goal: if the receiver reports timeout, the sender must have failed

• Assumptions of SafeTimer

- Delays in whitebox can be arbitrarily long

- SafeTimer relies on existing protocol for blackbox

• Solutions

- Receiver: check pending/dropped heartbeats when timeout occurs

- Sender: blocks sender when heartbeat sending is slow

Backlogs

User Thread

Socket Buffers
CPU0

CPU3

Kernel User
space

TCP/IPReadInterrupt

Ring BufferRX Queue

NIC

Hareware
Hard IRQ Soft IRQ

Background: Concurrent Packet Processing

Backlogs

User Thread

Socket Buffers
CPU0

CPU3

Kernel User
space

TCP/IPReadInterrupt

Ring BufferRX Queue

NIC

Hareware
Hard IRQ Soft IRQ

Background: Concurrent Packet Processing

Backlogs

User Thread

Socket Buffers
CPU0

CPU3

Kernel User
space

TCP/IPReadInterrupt

Ring BufferRX Queue

NIC

Hareware
Hard IRQ Soft IRQ

Receive Side Scaling (RSS)

Background: Concurrent Packet Processing

Backlogs

User Thread

Socket Buffers
CPU0

CPU3

Kernel User
space

TCP/IPReadInterrupt

Ring BufferRX Queue

NIC

Hareware
Hard IRQ Soft IRQ

Receive Packet Steering (RPS)

Background: Concurrent Packet Processing

Backlogs

User Thread

Socket Buffers
CPU0

CPU3

Kernel User
space

TCP/IPReadInterrupt

Ring BufferRX Queue

NIC

Hareware
Hard IRQ Soft IRQ

Receive Packet Steering (RPS)

Background: Concurrent Packet Processing

Backlogs

User Thread

Socket Buffers
CPU0

CPU3

Kernel User
space

TCP/IPReadInterrupt

Ring BufferRX Queue

NIC

Hareware
Hard IRQ Soft IRQ

Challenge: How to Check Pending Heartbeats?

• Multiple concurrent pipelines

• Packet Reordering

Backlogs

User Thread

Socket Buffers
CPU0

CPU3

Kernel User
space

TCP/IPReadInterrupt

Ring BufferRX Queue

NIC

Hareware
Hard IRQ Soft IRQ

Pause all threads and check all buffers?

Challenge: How to Check Pending Heartbeats?

• Receiver sends barrier packets to itself when timeout

• Force heartbeats and barriers to be executed in FIFO order

When barriers are processed =>

Heartbeats arrived before timeout must have been processed

SafeTimer’s Solution: Barrier Mechanism

Backlogs

User Thread

Socket Buffers
CPU0

CPU3

Kernel User
space

TCP/IPReadInterrupt

Ring BufferRX Queue

NIC

Hareware
Hard IRQ Soft IRQ

Redirect heartbeats & barriers

STQueue

Avoid later-stage reordering

Preserve Per-Ring FIFO Order

Backlogs

User Thread

Socket Buffers
CPU0

CPU3

Kernel User
space

TCP/IPReadInterrupt

Ring BufferRX Queue

NIC

Hareware
Hard IRQ Soft IRQ

Send barriers to
each RX queue STQueue

Send Barriers to Flush Heartbeats

Backlogs

User Thread

Socket Buffers
CPU0

CPU3

Kernel User
space

TCP/IPReadInterrupt

Ring BufferRX Queue

NIC

Hareware
Hard IRQ Soft IRQ

Send barriers to
each RX queue STQueue

Send Barriers to Flush Heartbeats

Backlogs

User Thread

Socket Buffers
CPU0

CPU3

Kernel User
space

TCP/IPReadInterrupt

Ring BufferRX Queue

NIC

Hareware
Hard IRQ Soft IRQ

STQueue

2

1

1

2

When Barriers Processed, Heartbeat Processed

Per-ring FIFO order
preserved

Overview of SafeTimer

• Goal: if the receiver reports timeout, the sender must have failed

• Assumptions of SafeTimer

- Delays in whitebox can be arbitrarily long

- SafeTimer relies on existing protocol for blackbox

• Solutions

- Receiver: check pending/dropped heartbeats when timeout occurs

- Sender: blocks sender when heartbeat sending is slow

Problems in Existing Killing Mechanism

• Killing a slow sender is not a new idea, but

• Killing operation itself can be delayed

• Sender alive for arbitrarily long after receiver reports failure

=> Accuracy will be violated

- A slow sender may continue processing

- As long as other nodes do not observe the effects, the slow
sender is indistinguishable from a failed sender [Edmund,
OSDI’06]

Utilizing the Idea of Output Commit

• Maintain a timestamp tvalid before which sending is valid

• Extend tvalid when sender sends heartbeats successfully

- The definition of “success” depends on the blackbox protocol

• SafeTimer blocks sending if current time > tvalid

Block Sender When It Is Slow

• Receiver doesn’t report failure if heartbeats arrived before timeout

• Sender is blocked when sender is slow

OS NIC
Network

OS App

Sender Receiver

Estimated Maximum Delay

No Need to Include Maximal Delay For Whitebox

• Re-direct heartbeats and barriers to STQueue

• Send barriers to a specific RX Queue

• Force barriers to go through NIC

• Fetch real-time drop count

• Detect heartbeat sending completion

• Block slow sender

Implementation Overview

• Can SafeTimer achieve accuracy despite long delays in
whitebox?

• What is the overhead of SafeTimer?

Evaluation Overview

• Methodology:

- inject delay/drop at different layers

- compare with vanilla timeout implementation

• Result:

- SafeTimer can correctly prevent false timeout report

- vanilla implementation violates accuracy

Evaluation: Accuracy

Accuracy: Heartbeats Delayed/Dropped on Receiver

Sender is still alive!

Accuracy: Heartbeats Delayed/Dropped on Sender

Receiver has reported timeout!

• Ping-Pong micro benchmark

- small overhead (up to 2.7%) for small packets

- negligible overhead for large packets

• Benchmarks for HDFS and Ceph

- DFSIO and RADOS Bench

- negligible overhead

Evaluation: Performance Overhead

• Synchronous systems: HDFS, Ceph, etc.

• Asynchronous systems: Spanner, ZooKeeper, etc.

• Failure detection without timeout:

- Falcon and its following works [SOSP’11, NSDI’13,
EuroSys’15]

- Work if whole channel is a whitebox

- Use timeout as a backup

Related Work

• Real-time OS

- Support: real-time scheduling; prioritized interrupts and
threads, etc.

- Guidelines: implement functions in low layers; pin memory;
avoid disk I/Os, etc.

- Still cannot provide hard real-time guarantees

Related Work

• SafeTimer achieves accurate timeout detection despite
arbitrary processing delays

• Users can set shorter timeout intervals without
sacrificing accuracy

• The overhead of SafeTimer is small

Summary

Questions?

The End

