AUDIT: Troubleshooting Transiently-
Recurring Problems

in Production Systems

with Blame-Proportional Logging

Liang Luo, Suman Nath, Lenin Ravindranath Sivalingam, Madan Musuvathi and Luis Ceze
University of Washington, Microsoft Research

Cloud applications are complex

Many layers 3rd-party Shared
components environments

Despite tremendous effort of testing, SLO violations, exceptions, and crashes

DevOps usually turn to logging for help when problems occur

Aol.

. Enter City/ZIP

Mail

o Login/Join
= News

«= Entertainment

m Money

Why is logging the most dangerous
job in America?

OPENNY- ARDER

TIMOTHY MOORE

Companies Markets Tech Media

America's most dangerous jobs
foes wﬁhme Ef

Logger

(«once | vexr)

N
Log2 &
Holmes S J
Sherlog - Coz
PivotTracing
Adaptive

Proactive
FaYDifferential 5
Slack ardustd
Erlog -raceq
Casita v
Log®@

Logging is the most commonly used technique for troubleshooting,
but logging itself is very hard to done right!

Efficiency

Logging has an inherent trade off between utility and overhead:

Log Little
(in production)

Log All
(pre-production)

Utility

Two extremes in production and testing:

Production: collects little data for higher
runtime performance; however log utility is
low as most logs generated are irrelevant
when root-causing problems.

Testing: collects everything for maximum
utility and ignores runtime overhead.

AUDIT: AUtomatic Drilldown

with Dynamic Instrumentation and Trigger

® \ AUDIT
Log Little ® (in production) AUDIT Strategy:
(in production) Get the best of both world with Dynamic

Logging.

Efficiency

Log All
(pre-production)

Utility

AUDIT Challenges

When to log?
Right after a problem occurs. Problems are detected using developer specified triggers.

Key insight: Many problems in cloud applications are transiently recurring -- they occur
rarely, but when they do, they recur for a short period of time.

Can start logging when they show up, and when they recur, detailed info can be collected.

Examples: network hardware issues, malformed user inputs, load balancer taking time to
tick in, neck and back pain

AUDIT Challenges

Where to Log?
Highly blamed methods that are causally related to the misbehaving request.

Requires: AUDIT uses Continuous Causal Tracing to track methods that are causally related to
misbehaving request.

Requires: AUDIT uses novel Critical Blame metric to select highly-blamed methods to log, as
root cause usually involves a small set of methods.

AUDIT Challenges

Dynamically Turning Logging On/Off?
Use dynamic instrumentation to log only what is specified in triggers.

AUDIT in action

a Always On Monitoring

300 A
[|
250 a Problem detected
200 ‘Il O
z 150)
g "V *
T “ ° Developer saw the logs
100 sometime in the future
50 e Detail logging for a small time
\ LMV\,W\/W\/NVAN\,W“N window, at few places
0

time ——

AUDIT Key Mechanisms

End product:
A “push button” tool: no knowledge of or changes to code, activate only by setting
environment variable.

Efficient: <1% overhead during normal operation.

Effective: found 8 unforeseen bugs in 5 production systems.

When to log?
AUDIT Triggers

Where to Log?
Causal tracing
Blame ranking

Evaluation
Case studies
Micro benchmark results

AUDIT triggers

Defining what it means for application to “go wrong”.
Triggers contains 4 components.

ON: when is the trigger evaluated?

IF: on what condition is the trigger activated?
LOG: what to do when the trigger is activated?
UNTIL: when is the logging deactivated?

1 DEFINE TRIGGER T
2|0N RequestEnd RI
31IF R.URL LIKE ’http:*GetGlobalFeed*’
AND R.AvglLatency(-1min, now) > 2 * R.Avglatency(-2min, -1min)

LOG RequsetActivity A, Top(5) Methods M

WITH M.TolLog=args, retValues

AND MatchSamplingProb = 1

AND UnmatchSamplingProb = 0.3
UNTIL (10 Match,10 Unmatch) OR 5 Minutes

O 00NV b

AUDIT triggers highlights

Trigger language is motivated by recent surveys on how developers log and what logging is
useful. (See paper for details)

- Logging for both bad and good requests help differential analysis
- Provides streaming aggregates of performance metrics to be used with triggers

Uses dynamic instrumentation to flexibly collect data required for trigger evaluation (more
on this later)

Where to Log?
Causal tracing (Only methods related to misbehaving requests)

Continuous Causal Tracing: generating request activity graph

‘ o
HEEEENR EEEER

AUDIT reconstructs request activity graph (RAG), all methods that are casually related to a
request. AUDIT assumes requests are independent of each other.

Continuous Causal Tracing: generating asynchronous exception chain

Exc id: M Exc id: M Exc id: M
St. trace: [] St. trace: [] St. trace: [F4, F3]
®Async : Async Sync —
| |
Join on exception ID Use stack trace
Ca”Chaln F1 Illlllllll> F2 llllllll* F3 ﬁF4

AUDIT reconstructs asynchronous exception chain (AEC). A call chain consists of all methods
from root to the exception site. A chain differs from stacktrace such that it can contain

already finished methods.

Continuous Causal Tracing: tracing RAG and AEC

AUDIT can use existing causal tracing techniques for reconstructing RAG and AEC:
Dynamic Instrumentation, Thread Local Storage, and Metadata Propagation.

High runtime overhead: 8% for just continuous causal tracing, which is required for trigger
evaluation (when trigger fires we need to know what methods lead to it).

Needs optimizations!

Continuous Causal Tracing: optimization for TAP applications

Task Asynchronous Pattern is an emerging pattern that allows writing asynchronous
code in a synchronous way, using the idea of continuation.

= @ python WS cala

Java

TAP is supported in many platforms natively or via libraries.

AN

TAP is supported in all major cloud providers.

Continuous Causal Tracing: optimization for TAP applications

2N
0L0L020,0

RAG: AUDIT utilizes async lifecycle events by existing TAP
frameworks to piece together a RAG without dynamic
Instrumentation.

AEC: AUDIT utilizes first chance exception, global exception
handler, inheritable thread-local storage to passively reconstruct
the exception call chain. AUDIT’s AEC construction incurs zero
overhead during normal execution.

Where to Log?

Blame ranking (Select top-blamed methods as RAGs and AECs can be big)

Critical Blame: ranking methods for exception-related trigger

Methods that are closer to the exception are more likely related to the root cause.

Critical blame combines critical path analysis and normalized processor time.

Critical Blame: ranking methods for performance-related trigger

Task1

Task1.1

Task1l.1.1

Task1.1.2

Task1.1.3

Task1.2

Blame only tasks that are running (versus waiting)
Co-running tasks share the blame for the time period
Focus on task on the critical path

Taskl
Task1.1
Task1.1.1
Task1.1.2
Task1.1.3

Task1.2

A+H/2
(B+D+G)/2
C/2
E/3+(F+G+H)/2
(E+F)/2

(B+C+D)/2+E/3

Include selective non-critical path as they may interfere with critical path methods

Critical Blame: selecting top N=2 methods

Task1.1 (B+D+G)/2
Task1 A+H/2
Task1.1.2 E/3+(F+G+H)/2
Task1.2 (B+C+D)/2+E/3
Task1.1.3 (E+F)/2
Task1.1.1 C/2

Task1

Task1.1

Task1l.1.1
Task1.1.2

Task1.1.3

Task1.2

Evaluation
Case studies
Overhead

AUDIT Effectiveness: root-causing problems

We implemented AUDIT for .NET and applied it to 1 production system at Microsoft and 4 high-
profile, open source libraries in GitHub.

Application Issue Root cause based on AUDIT log Status from devs
—Soctal 1 Performance spike when reading global feeds | Deleted operation failed to delete the post | Fixed
from global feeds
Social 2 Poor performance reading user profiles with | Lack of caching zero count value Fixed
no following in “Popular users” feed
ransient |
yoc1al 4 ndexing failures jad aata formats yome of them fixed
rMassive Slow request (Issuef 270) Unoptimal use of Await Fixed and closed
| Nancy Slow request (Issue# 2623) Redundant Task method calls Fixed and closed

AUDIT can pinpoint performance issues, such as

contemiiebiniiiogdiiaibicdagityrency

AUDIT Effectiveness: root-causing problems

We implemented AUDIT for .NET and applied it to 1 production system at Microsoft and 4 high-
profile, open source libraries in GitHub.

Application Issue Root cause based on AUDIT log Status from devs

MrCMS Crash after image upload and subsequent | Auto-generated thumbnail file name too | Acknowledged, investi-
restart of the application (Issue# 43 lon atin

CMSFoundation Failure to save edited image (Issue# 321) Concurrent file edit and delete Acknowledged, open

AUDIT can pinpoint exception issues, such as

b aamenteegiitls

AUDIT Effectiveness: critical blame ranking

B g m—— m—— E—— S S S S S S e A u-' —— — e e e e e e e . —Alk | [— _A_rll-_ — — — — _A_nL
r|.AJ- Join M A Join Joirf _i Jomf i Joint I ‘pln
| g, 1 1 | = 5 : | Delay | b
: A2 I ' 1 ¢ [! Dela 1I : Delay2 ' : | Delay3
I L y ela ela
I | B2 I 1 Cc2 I v | D | I‘—J— I I |
| | |
v B3 C3 Y H I B | * C L Al | Y A2 | vAd
Scenario 1 Scenario 2 Scenario 3 Scenario 4
== Time i Task Fork f Task Join === Task Exec — — Task Wait (A: async method, A1: first instance of A, Delay: timeout method)

4 typical code patterns we found in various cloud app projects, including issuing multiple
tasks that shares the same path, concurrent parallel tasks, timeout-ed task, and retry tasks.

AUDIT is more sensitive than Normalized Processor Time, Top Critical Methods, and
Iterative Logical Zeroing in locating bottlenecks.

AUDIT Overhead: negligible for real applications

Without Exception | With Exception
S Always-On ETW 15.56 15 1122 s
JG:) Overhead +13.96is/task +19.2 es/task
5 Always-On INST 91.54s 152s
> Overhead +89.9s/method | +59us/method
O Trigger 29.664s 2831s
% Overhead +28.06¢s/task +190 ¢ s/task
o Logging 93.54s 148tis
Overhead +90.9s/method | +55ts/method
_.250 0% 0.60% 2.78% 2.50% 1.82% 5 g1 40 0% 0.59% 1.13% 2.50% 0.45% 7-05%
c T 200 D 30
o = Eos
O L @ 200 S 15
=5 2 3 T 10
Q 4 < g 50 a1
<% g q>) o0 0
© @) 006 «$ &}0(\ \ Qv \\\ 00\ \}o(\ .Q, \\\
O 0 o\ 0({@ &&‘Q’ Q,&Q &QQ o?‘ o\ 0&0 <& Q\o qﬂ‘g
o < O°® \&6‘ Ny VOQ < O°® ‘o& W VOQ
£ & K &

D

i

Troubleshooting transiently-recurring errors
Blame-proportional logging

Provide declarative trigger language
Negligible overhead

Found 8 new unforeseen bugs

