
AUDIT: Troubleshooting Transiently-
Recurring Problems
in Production Systems
with Blame-Proportional Logging

Liang Luo, Suman Nath, Lenin Ravindranath Sivalingam, Madan Musuvathi and Luis Ceze
University of Washington, Microsoft Research

Cloud applications are complex

Despite tremendous effort of testing, SLO violations, exceptions, and crashes

Shared
environments

Many layers 3rd-party
components

DevOps usually turn to logging for help when problems occur

Logging is the most commonly used technique for troubleshooting,
but logging itself is very hard to done right!

Logging has an inherent trade off between utility and overhead:
Ef

fic
ie

nc
y

Utility

Log Little

Log All

(in production)

(pre-production)

Two extremes in production and testing:

Production: collects little data for higher
runtime performance; however log utility is
low as most logs generated are irrelevant
when root-causing problems.

Testing: collects everything for maximum
utility and ignores runtime overhead.

AUDIT: AUtomatic Drilldown
with Dynamic Instrumentation and Trigger

Ef
fic

ie
nc

y

Utility

Log Little

Log All

(in production)

(pre-production)

AUDIT
(in production) AUDIT Strategy:

Get the best of both world with Dynamic
Logging.

AUDIT Challenges

When to log?
Right after a problem occurs. Problems are detected using developer specified triggers.

Key insight: Many problems in cloud applications are transiently recurring -- they occur
rarely, but when they do, they recur for a short period of time.

Can start logging when they show up, and when they recur, detailed info can be collected.

Examples: network hardware issues, malformed user inputs, load balancer taking time to
tick in, neck and back pain

AUDIT Challenges

When to log?

Where to Log?
Highly blamed methods that are causally related to the misbehaving request.

Requires: AUDIT uses Continuous Causal Tracing to track methods that are causally related to
misbehaving request.

Requires: AUDIT uses novel Critical Blame metric to select highly-blamed methods to log, as
root cause usually involves a small set of methods.

AUDIT Challenges

When to log?

Where to Log?

Dynamically Turning Logging On/Off?
Use dynamic instrumentation to log only what is specified in triggers.

AUDIT in action

0

50

100

150

200

250

300

Always On Monitoring

Problem detected

Detail logging for a small time
window, at few places

Developer saw the logs
sometime in the future

time

Always On Monitoring
La

te
nc

y
(m

s)
1

2

3

4

AUDIT Key Mechanisms

When to log?

Where to Log?

Dynamically Turning Logging On/Off?

End product:
A “push button” tool: no knowledge of or changes to code, activate only by setting
environment variable.

Efficient: <1% overhead during normal operation.

Effective: found 8 unforeseen bugs in 5 production systems.

Outline

When to log?
AUDIT Triggers

Where to Log?
Causal tracing
Blame ranking

Evaluation
Case studies
Micro benchmark results

AUDIT triggers

Defining what it means for application to “go wrong”.
Triggers contains 4 components.

ON: when is the trigger evaluated?
IF: on what condition is the trigger activated?
LOG: what to do when the trigger is activated?
UNTIL: when is the logging deactivated?

1 DEFINE TRIGGER T

2 ON RequestEnd R

3 IF R.URL LIKE ’http:*GetGlobalFeed*’

4 AND R.AvgLatency(-1min, now) > 2 * R.AvgLatency(-2min, -1min)

5 LOG RequsetActivity A, Top(5) Methods M

6 WITH M.ToLog=args, retValues

7 AND MatchSamplingProb = 1

8 AND UnmatchSamplingProb = 0.3

9 UNTIL (10 Match,10 Unmatch) OR 5 Minutes

AUDIT triggers highlights

Trigger language is motivated by recent surveys on how developers log and what logging is
useful. (See paper for details)
- Logging for both bad and good requests help differential analysis
- Provides streaming aggregates of performance metrics to be used with triggers

Uses dynamic instrumentation to flexibly collect data required for trigger evaluation (more
on this later)

Outline

When to log?
AUDIT Triggers

Where to Log?
Causal tracing (Only methods related to misbehaving requests)
Blame ranking

Evaluation
Case studies
Overhead

Continuous Causal Tracing: generating request activity graph

AUDIT reconstructs request activity graph (RAG), all methods that are casually related to a
request. AUDIT assumes requests are independent of each other.

F1 F3 F4

F5

F6

F9F7

F8 F10

F12 F11

F12

F13

F16 F14 F15

F2

Continuous Causal Tracing: generating asynchronous exception chain

AUDIT reconstructs asynchronous exception chain (AEC). A call chain consists of all methods
from root to the exception site. A chain differs from stacktrace such that it can contain
already finished methods.

Exc id: 0xA45
St. trace: []

Exc id: 0xA45
St. trace: []

Exc id: 0xA45
St. trace: [F4, F3]

SyncAsync

Join on exception ID Use stack trace
Call chain: F1 F2 F3 F4

Async
F1 F3 F4F2

Continuous Causal Tracing: tracing RAG and AEC

AUDIT can use existing causal tracing techniques for reconstructing RAG and AEC:
Dynamic Instrumentation, Thread Local Storage, and Metadata Propagation.

High runtime overhead: 8% for just continuous causal tracing, which is required for trigger
evaluation (when trigger fires we need to know what methods lead to it).

Needs optimizations!

Continuous Causal Tracing: optimization for TAP applications

Task Asynchronous Pattern is an emerging pattern that allows writing asynchronous
code in a synchronous way, using the idea of continuation.

TAP is supported in many platforms natively or via libraries.

TAP is supported in all major cloud providers.

Continuous Causal Tracing: optimization for TAP applications

RAG: AUDIT utilizes async lifecycle events by existing TAP
frameworks to piece together a RAG without dynamic
Instrumentation.

AEC: AUDIT utilizes first chance exception, global exception
handler, inheritable thread-local storage to passively reconstruct
the exception call chain. AUDIT’s AEC construction incurs zero
overhead during normal execution.

Outline

When to log?
AUDIT Triggers

Where to Log?
Causal tracing (Only methods related to misbehaving requests)
Blame ranking (Select top-blamed methods as RAGs and AECs can be big)

Evaluation
Case studies
Overhead

Critical Blame: ranking methods for exception-related trigger

Methods that are closer to the exception are more likely related to the root cause.

Critical Blame: ranking methods for performance-related trigger

Critical blame combines critical path analysis and normalized processor time.
- Blame only tasks that are running (versus waiting)
- Co-running tasks share the blame for the time period
- Focus on task on the critical path
- Include selective non-critical path as they may interfere with critical path methods

Task1

Task1.1

Task1.2

Task1.1.1

Task1.1.3

A

B

C

D

E F

G

H

Task Blame

Task1 A+H/2

Task1.1 (B+D+G)/2

Task1.1.1 C/2

Task1.1.2 E/3+(F+G+H)/2

Task1.1.3 (E+F)/2

Task1.2 (B+C+D)/2+E/3

Task1.1.2

Task1

Task1.1

Task1.2

Task1.1.1

Task1.1.3

A

B

C

D

E F

G

H

Task1.1.2

Critical Blame: selecting top N=2 methods

Task Blame

Task1 A+H/2

Task1.1 (B+D+G)/2

Task1.1.1 C/2

Task1.1.2 E/3+(F+G+H)/2

Task1.1.3 (E+F)/2

Task1.2 (B+C+D)/2+E/3

Task Blame

Task1.1 (B+D+G)/2

Task1 A+H/2

Task1.1.2 E/3+(F+G+H)/2

Task1.2 (B+C+D)/2+E/3

Task1.1.3 (E+F)/2

Task1.1.1 C/2

Outline

When to log?
AUDIT Triggers

Where to Log?
Causal tracing (Only methods related to misbehaving requests)
Blame ranking (Select top-blamed methods)

Evaluation
Case studies
Overhead

AUDIT Effectiveness: root-causing problems

AUDIT can pinpoint performance issues, such as

We implemented AUDIT for .NET and applied it to 1 production system at Microsoft and 4 high-
profile, open source libraries in GitHub.

lack of negative caching bad content formatmissed parallel opportunityredundant method callscontention with optimistic concurrency

AUDIT Effectiveness: root-causing problems

AUDIT can pinpoint exception issues, such as

We implemented AUDIT for .NET and applied it to 1 production system at Microsoft and 4 high-
profile, open source libraries in GitHub.

concurrent editsfile name length

AUDIT Effectiveness: critical blame ranking

A1
B1

A2

All-
Join

C1

A3

Scenario 1

C2B2

B3 C3

Delay1 Delay2 Delay3

Any-
Join

A1

Any-
Join

A2 A3

Any-
Join

Scenario 4

Any-
Join

Delay

A

B C

Scenario 2

All-
JoinA

B
C

DE
F

H

Task JoinTask Fork Task Exec Task WaitTime

Scenario 3
(A: async method, A1: first instance of A, Delay: timeout method)

4 typical code patterns we found in various cloud app projects, including issuing multiple
tasks that shares the same path, concurrent parallel tasks, timeout-ed task, and retry tasks.

AUDIT is more sensitive than Normalized Processor Time, Top Critical Methods, and
Iterative Logical Zeroing in locating bottlenecks.

AUDIT Overhead: negligible for real applications

0% 0.60% 2.78% 2.50% 1.82% 7.91%

0
50

100
150
200
250

NO AUDIT

Alw
ay

s O
n (A

O) E
TW

AO in
str

umen
tat

ion

Trig
ger

Logging (5
)

Logging (a
ll)

Th
ro

ug
hp

ut
 (r

eq
/s

) 0% 0.59% 1.13% 2.50% 0.45% 7.05%

0
5

10
15
20
25
30
35
40

NO AUDIT

Alw
ay

s O
n (A

O) E
TW

AO in
str

umen
tat

ion

Trig
ger

Logging (5
)

Logging (a
ll)

La
te

nc
y

(m
s)

Ra
w

 O
ve

rh
ea

d
Re

al
 A

pp
lic

at
io

n
(M

as
siv

e)

Ov
er

he
ad

AUDIT

- Troubleshooting transiently-recurring errors
- Blame-proportional logging
- Provide declarative trigger language
- Negligible overhead
- Found 8 new unforeseen bugs

