Fine-grained consistency for geo-replicated systems

Cheng Li, Nuno Preguica, Rodrigo Rodrigues

University of Science and Technology of China NOVA LINCS & FCT, Univ. NOVA de Lisboa INESC-ID & Instituto Superior Técnico, Universidade de Lisboa

Unprecedented growth in Internet services

 As of June 2017 , Facebook has 2 billion monthly active users.

> Facebook Subscribers in the World by Regions - June 2016

Source: Internet World Stats - www.internetworldstats.com/facebook.htm Basis: 1,679,433,530 Internet users on June 30, 2016 Copyright © 2016, Miniwatts Marketing Group

July 12, 2018

USENIX Aunal Technical Conference

Geo-users demand instant responses									
		CONTRACTION OF CONTRA	Const Same	A ^e eeeeeee	₽ ^m ¹ ¹ ¹ ¹ ¹	South States	Kin in the second	Google	
5	0ms	-	-	-	-	-		 Strong negative impact of delay on user activities [1] 	
2(00ms		=		-0.3%	-0.4%	500		
50	00ms	-	-0.6%	-1.2%	-1.0%	-0.9%	I 200		
10	00ms	-0.7%	-0.9%	-2.8%	- I .9%	-1.6%	190 0	 Google counts site speed as a ranking factor [2]. 	
20	00ms	- <mark> </mark> .8%	-2.1%	-4.3%	-4.4%	-3.8%	3100		

[1] E. Schurman and J. Brutlag, "Performance Related Changes and their User Impact". Talk at Velocity '09 [2] https://searchengineland.com/google-now-counts-site-speed-as-ranking-factor-39708

USENIX Aunal Technical Conference

Geo-Replication helps

- Performance: local reads
- Availability: data still available unless all replicas fail or become unreachable
- Scalability: load balance across sites for reads

ADSLAB

USENIX Aunal Technical Conference

July 12, 2018

Our prior work

RedBlue Consistency [OSDI'12, ATC'14] allows operations to be executed under either strong or eventual consistency.

Strong consistency (SC)

- e.g., Paxos [TOCS'98]
- State convergence
 Invariant preservation

July 12, 2018

Eventual consistency (EC)

DSLAB

- e.g., Dynamo [SOSP'07]
- Low latency
 - High throughput

Coarse-grained classification may add unnecessary coordination!

USENIX Aunal Technical Conference

July 12, 2018

USENIX Aunal Technical Conference

Visibility restrictions

July 12, 2018

USTC, CHINA

14

 A restriction between two operations implies that one must see effects introduced by the other.

If $a \prec b \lor b \prec a$,

then r(a, b) is met in \prec .

• For operation a, b, the restriction r(a, b) implies that $a \prec a$ $b \lor b \prec a$ w.r.t any partial order \prec .

Partial order-restrictions (PoR) Consistency ADSLAB

• A geo-replicated system S is associated with a set of restrictions Rs.

• S is **PoR Consistent** if, for any its executions, there exists an admissible partial order, where all restrictions in Rs are met.

July 12, 2018

USENIX Aunal Technical Conference

Partial order-restrictions (PoR) Consistency ADSLAB

- A geo-replicated system S is associated with a set of restrictions Rs.
- S is **PoR Consistent** if, for any its executions, there exists an admissible partial order, where all restrictions in Rs are met.

July 12, 2018

USENIX Aunal Technical Conference

Partial order-restrictions (PoR) Consistency ADSLAB • A geo-replicated system S is associated with a set of restrictions Rs. • S is **PoR Consistent** if, for any its executions, there exists an admissible partial order, where all restrictions in Rs are met. Fewer restrictions Weaker consistency Tunable (parameterized) consistency model **Causal consistency Serializability RedBlue consistency** $Rs = \{r(a,b) \mid a, b \text{ are red operations}\}$ $Rs = \{r(a,b) \mid \text{for any pair of operations } a, b\}$ $Rs = \{\}$ **USENIX** Aunal Technical Conference July 12, 2018 17

Challenges of adopting PoR

ADSLAB

- What are the set of restrictions to be added?
 - They must ensure relevant properties, e.g., state convergence, invariant preservation.
- Is the set of added restrictions minimal?
 - i.e., no unnecessary coordination

State convergence

• If all replicas execute the same set of operations then they reach the same state

USTC, CHINA

- Must place a restriction over any pair of non-commuting operations
- Consider a geo-replicated bank example

Invariant preservation

ADSLAB

• Insight: for any violation, add restrictions among a *minimal* set of *concurrent* conflicting operations

- i.e., removing any conflicting op, violation disappears
- named as "I-conflict set"

USENIX Aunal Technical Conference

- {close, bid} is an "I-conflict set".
- The restriction r{close, bid} must be enforced!

Olisipo - Design rationale

Give a restriction r(a, b)• Workload I: a and b have the same prevalence

• Workload 2: *a* occurs more often than *b*

USENIX Aunal Technical Conference

ADSLAB

Olisipo - Design rationale

Give a restriction r(a, b)• Workload I: a and b have the same prevalence

Symmetry protocol: Every a(b) instance acquires a permission from a centralized server w.r.t all concurrent b(a) instances.

• Workload 2: a occurs more often than b

USENIX Aunal Technical Conference

Olisipo - Design rationale

ADSLAB

27

Give a restriction r(a, b)• Workload I: a and b have the same prevalence

Symmetry protocol: Every a(b) instance acquires a permission from a centralized server w.r.t all concurrent b(a) instances.

• Workload 2: *a* occurs more often than *b*

Asymmetry protocol: Every b instance acts as a global barrier w.r.t all concurrent a instances.

USENIX Aunal Technical Conference

July 12, 2018

July 12, 2018

.

Olisipo - Overview

a

proxy

July 12, 2018

USENIX Aunal Technical Conference

31

USTC, CHINA

DSLAB

July 12, 2018

USENIX Aunal Technical Conference

Case study

RUBiS

• An e-commerce benchmark that emulates an auction site

• 3 invariants corresponding to 3 I-conflict sets

- {registerUser', registerUser'}
- {storeBuyNow', storeBuyNow'}
- {placeBid', closeAuction'}

ADSLAB

33

PoR consistency places fewer restrictions than RedBlue!

Experimental setup

- Replicating RUBiS across three regions in EC2 platform
 EU-FRA, US-EAST, US-WEST
- Baselines:
 - Unreplicated RUBiS offering strong consistency
 - Three-region RUBiS replication under RedBlue consistency
- Questions to answer:
 - User observed latency improvement
 - Peak throughput improvement
 - Performance impact when choosing different coordination policy

July 12, 2018

Improper choice leads to performance penalty

Proper choice makes latency for requests demanding coordination as local access

Conclusion

ADSLAB

- Fundamental tension between performance and consistency
- PoR consistency maps consistency semantics to a minimal set of visibility restrictions over a pair of operations.
- Olisipo enforces all restrictions throughout all executions of a georeplicated system.
- Results show that PoR consistency places fewer restrictions and achieves better performance than RedBlue consistency.

Fine-grained consistency for geo-replicated systems

Cheng Li, Nuno Preguica, Rodrigo Rodrigues

Thanks for your attention!

