
HashKV: Enabling Efficient Updates in KV

Storage via Hashing

Helen H. W. Chan†, Yongkun Li‡, Patrick P. C. Lee†, Yinlong Xu‡

† The Chinese University of Hong Kong
‡ University of Science and Technology of China

USENIX ATC 2018

1

Background

Update-intensive workloads are common in key-value (KV) stores

• Online transaction processing (OLTP)

• Enterprise servers

• Yahoo’s workloads are shifting from reads to writes [*]

Log-structured merge (LSM) tree

• Transform random writes into sequential writes

• Support efficient range scans

• Limitation: high read and write amplifications during compaction

2[*] Sears et al., “bLSM: A General Purpose Log Structured Merge Tree”, SIGMOD 2012

LSM-tree in LevelDB

3

1. Read SSTables

2. Merge and sort by keys

3. Split into new SSTables

High I/O amplifications!

Immutable

MemTable
MemTable

flushMemory

Disk

…

…

…

KV pairs

(Sorted)

Metadata

SSTable
L0

L1

Lk – 1

…

Compaction

KV pairs

KV Separation[*]

Store values separately to reduce LSM-tree size

• LSM-tree: keys and metadata for indexing

• vLog: circular log for KV pairs

4[*] Lu et al., “WiscKey: Separating Keys from Values in SSD-Conscious Storage”, FAST 2016

KV pairs

Key, value

Key, value

Key, value

Log tail

Log head

vLog

KV Separation

Does KV separation solve all problems?

• High garbage collection (GC) overhead in vLog management

• More severe if reserved space is limited

• Update-intensive workloads aggravate GC overhead

• GC needs to query the LSM-tree to check if KV pairs are valid

5

High write amplification of vLog

if reserved space is filled

Reserved space

not filled up yet

Filled

reserved space

Our Contributions

HashKV, an efficient KV store for update-intensive workloads

• Extend KV separation with hash-based data grouping for value storage

• Mitigate GC overhead with smaller I/O amplifications and without LSM-

tree queries

Three extensions that adapt to workload characteristics

• E1: Dynamic reserved space allocation

• E2: Hotness awareness

• E3: Selective KV separation

Extensive prototype experiments

• 4.6x throughput and 53.4% less write traffic over circular log

6

Hash-based Data Grouping

Hash values into fixed-size partitions by keys

• Partition isolation: all value updates of the same key must go to the

same partition in a log-structured manner

• Deterministic grouping: instantly locate the partition of a given key

Allow flexible and lightweight GC

• Localize all updates of a key in the same partition

7

What if a partition is full?

…

LSM-tree

(for indexing)

KV pairs

…

value store

E1: Dynamic Reserved Space Allocation

 Layout:

• Logical address space: main segments (e.g., 64 MiB)

• Reserved space: log segments (e.g., 1 MiB)

• Segment group: 1 main segment + multiple log segments

 In-memory segment table tracks all segment groups

• Checkpointed for fault tolerance

8

Reserved

space

Segment

group

Log

segment
…

Main

segment
…

Segment group

…

LSM-tree

Group-Based Garbage Collection

Select a segment group for GC

• e.g., the one with largest amount of writes

• Likely to have many invalid KV pairs to reclaim free space

 Identify all valid KV pairs in selected group

• Since each group stores updates in a log-structured manner, the latest

version of each key must reside at the end of the group

• No LSM-tree queries required

Write all valid KV pairs to new segments

Update LSM-tree

9

E2: Hotness Awareness

Problem: mix of hot and cold KV pairs

• Unnecessary rewrites for cold KV pairs

Tagging:

• Add a tag in metadata to indicate

presence of cold values

• Cold values are separately stored

• Hot-cold value separation

GC rewrites small tags instead of

values

10

E3: Selective KV Separation

KV separation for small values incurs extra costs to access both

LSM-tree and value store

Selective approach:

• Large values: KV separation

• Small values: stored entirely in LSM-tree

Open issue: how to distinguish between small and large values?

11

Other Issues

Range scans:

• Leverage read-ahead (via posix_fadvise) for speedup

Metadata journaling:

• Crash consistency for both write and GC operations

 Implementation:

• Multi-threading for writes and GC

• Batched writes for KV pairs in the same segment group

• Built on SSDs

12

Putting It All Together: HashKV Architecture

13

…

Memory

Persistent

Storage

Write cache

(meta, key, value)

KV separation
(meta, key)

LSM-tree

MemTable

…

Value store

Reserved

space

Cold data log

Segment

group

Log

segment
…

Main

segment
…

Segment group

Write

journal

GC

journal

Segment table

Group 1

Group 2

(end pos, segments)

(end pos, segments)

Experiments

Testbed backed with an SSD RAID array

KV stores

• LevelDB, RocksDB, HyperLevelDB, PebblesDB (default parameters)

• vLog (circular log) and HashKV: built on LevelDB for KV separation

Workloads

• 40 GiB for main segments + 12 GiB (30%) reserved space for log segments

• Load: 40 GiB of 1-KiB KV pairs (Phase P0)

• Update: 40 GiB of updates for three phases (Phases P1, P2, P3)

• P1: reserved space gradually filled up

• P2 & P3: reserved space fully filled (stabilized performance)

14

Update Performance of HashKV

Compared to LevelDB, RocksDB, and vLog:

• 6.3-7.9x , 1.3-1.4x, and 3.7-4.6x throughput, resp.

• 49.6-71.5% lower write size

Much lower KV store size than HyperLevelDB and PebblesDB
15

Throughput Write size KV store size

Impact of Reserved Space

HashKV’s throughput increases with reserved space size

 vLog has high LSM-tree query overhead (80% of latency)

16

Throughput Latency breakdown (V = vLog; H = HashKV)

Range Scans

HashKV maintains high range scan performance

17

Optimization Features

Higher throughput and smaller write size with

optimization features enabled

18

Hotness awareness Selective KV separation

Conclusions

HashKV: hash-based data grouping for efficient updates

• Dynamic reserved space allocation

• Hotness awareness via tagging

• Selective KV separation

More evaluation results and analysis in paper and technical report

Source code: http://adslab.cse.cuhk.edu.hk/software/hashkv

19

http://adslab.cse.cuhk.edu.hk/software/hashkv

