
HashKV: Enabling Efficient Updates in KV

Storage via Hashing

Helen H. W. Chan†, Yongkun Li‡, Patrick P. C. Lee†, Yinlong Xu‡

† The Chinese University of Hong Kong
‡ University of Science and Technology of China

USENIX ATC 2018

1

Background

Update-intensive workloads are common in key-value (KV) stores

• Online transaction processing (OLTP)

• Enterprise servers

• Yahoo’s workloads are shifting from reads to writes [*]

Log-structured merge (LSM) tree

• Transform random writes into sequential writes

• Support efficient range scans

• Limitation: high read and write amplifications during compaction

2[*] Sears et al., “bLSM: A General Purpose Log Structured Merge Tree”, SIGMOD 2012

LSM-tree in LevelDB

3

1. Read SSTables

2. Merge and sort by keys

3. Split into new SSTables

High I/O amplifications!

Immutable

MemTable
MemTable

flushMemory

Disk

…

…

…

KV pairs

(Sorted)

Metadata

SSTable
L0

L1

Lk – 1

…

Compaction

KV pairs

KV Separation[*]

Store values separately to reduce LSM-tree size

• LSM-tree: keys and metadata for indexing

• vLog: circular log for KV pairs

4[*] Lu et al., “WiscKey: Separating Keys from Values in SSD-Conscious Storage”, FAST 2016

KV pairs

Key, value

Key, value

Key, value

Log tail

Log head

vLog

KV Separation

Does KV separation solve all problems?

• High garbage collection (GC) overhead in vLog management

• More severe if reserved space is limited

• Update-intensive workloads aggravate GC overhead

• GC needs to query the LSM-tree to check if KV pairs are valid

5

High write amplification of vLog

if reserved space is filled

Reserved space

not filled up yet

Filled

reserved space

Our Contributions

HashKV, an efficient KV store for update-intensive workloads

• Extend KV separation with hash-based data grouping for value storage

• Mitigate GC overhead with smaller I/O amplifications and without LSM-

tree queries

Three extensions that adapt to workload characteristics

• E1: Dynamic reserved space allocation

• E2: Hotness awareness

• E3: Selective KV separation

Extensive prototype experiments

• 4.6x throughput and 53.4% less write traffic over circular log

6

Hash-based Data Grouping

Hash values into fixed-size partitions by keys

• Partition isolation: all value updates of the same key must go to the

same partition in a log-structured manner

• Deterministic grouping: instantly locate the partition of a given key

Allow flexible and lightweight GC

• Localize all updates of a key in the same partition

7

What if a partition is full?

…

LSM-tree

(for indexing)

KV pairs

…

value store

E1: Dynamic Reserved Space Allocation

 Layout:

• Logical address space: main segments (e.g., 64 MiB)

• Reserved space: log segments (e.g., 1 MiB)

• Segment group: 1 main segment + multiple log segments

 In-memory segment table tracks all segment groups

• Checkpointed for fault tolerance

8

Reserved

space

Segment

group

Log

segment
…

Main

segment
…

Segment group

…

LSM-tree

Group-Based Garbage Collection

Select a segment group for GC

• e.g., the one with largest amount of writes

• Likely to have many invalid KV pairs to reclaim free space

 Identify all valid KV pairs in selected group

• Since each group stores updates in a log-structured manner, the latest

version of each key must reside at the end of the group

• No LSM-tree queries required

Write all valid KV pairs to new segments

Update LSM-tree

9

E2: Hotness Awareness

Problem: mix of hot and cold KV pairs

• Unnecessary rewrites for cold KV pairs

Tagging:

• Add a tag in metadata to indicate

presence of cold values

• Cold values are separately stored

• Hot-cold value separation

GC rewrites small tags instead of

values

10

E3: Selective KV Separation

KV separation for small values incurs extra costs to access both

LSM-tree and value store

Selective approach:

• Large values: KV separation

• Small values: stored entirely in LSM-tree

Open issue: how to distinguish between small and large values?

11

Other Issues

Range scans:

• Leverage read-ahead (via posix_fadvise) for speedup

Metadata journaling:

• Crash consistency for both write and GC operations

 Implementation:

• Multi-threading for writes and GC

• Batched writes for KV pairs in the same segment group

• Built on SSDs

12

Putting It All Together: HashKV Architecture

13

…

Memory

Persistent

Storage

Write cache

(meta, key, value)

KV separation
(meta, key)

LSM-tree

MemTable

…

Value store

Reserved

space

Cold data log

Segment

group

Log

segment
…

Main

segment
…

Segment group

Write

journal

GC

journal

Segment table

Group 1

Group 2

(end pos, segments)

(end pos, segments)

Experiments

Testbed backed with an SSD RAID array

KV stores

• LevelDB, RocksDB, HyperLevelDB, PebblesDB (default parameters)

• vLog (circular log) and HashKV: built on LevelDB for KV separation

Workloads

• 40 GiB for main segments + 12 GiB (30%) reserved space for log segments

• Load: 40 GiB of 1-KiB KV pairs (Phase P0)

• Update: 40 GiB of updates for three phases (Phases P1, P2, P3)

• P1: reserved space gradually filled up

• P2 & P3: reserved space fully filled (stabilized performance)

14

Update Performance of HashKV

Compared to LevelDB, RocksDB, and vLog:

• 6.3-7.9x , 1.3-1.4x, and 3.7-4.6x throughput, resp.

• 49.6-71.5% lower write size

Much lower KV store size than HyperLevelDB and PebblesDB
15

Throughput Write size KV store size

Impact of Reserved Space

HashKV’s throughput increases with reserved space size

 vLog has high LSM-tree query overhead (80% of latency)

16

Throughput Latency breakdown (V = vLog; H = HashKV)

Range Scans

HashKV maintains high range scan performance

17

Optimization Features

Higher throughput and smaller write size with

optimization features enabled

18

Hotness awareness Selective KV separation

Conclusions

HashKV: hash-based data grouping for efficient updates

• Dynamic reserved space allocation

• Hotness awareness via tagging

• Selective KV separation

More evaluation results and analysis in paper and technical report

Source code: http://adslab.cse.cuhk.edu.hk/software/hashkv

19

http://adslab.cse.cuhk.edu.hk/software/hashkv

