
Coccinelle: 10 Years of Automated Evolution in the
Linux Kernel

Julia Lawall, Gilles Muller (Inria/LIP6)
July 12, 2018

1

Context

The Linux kernel:

• Open source OS kernel, used in smartphones to supercomputers.
• 16MLOC and rapidly growing.
• Frequent changes to improve correctness and performance.

Issues:

• How to perform evolutions in such a large code base?
• Once a bug is found, how to check whether it occurs elsewhere?

2

How to better maintain large code bases?

Patches: The key to reasoning about change in the Linux kernel.

From:

@@ -1348,8 +1348,7 @@
- fh = kmalloc(sizeof(struct zoran_fh), GFP_KERNEL);
+ fh = kzalloc(sizeof(struct zoran_fh), GFP_KERNEL);
if (!fh) {
dprintk(1,

KERN_ERR "%s: zoran_open(): allocation of zoran_fh failed\n",
ZR_DEVNAME(zr));

return -ENOMEM;
}

- memset(fh, 0, sizeof(struct zoran_fh));

SmPL = Semantic Patch Language
Coccinelle applies SmPL semantic patches across a code base.
Development began in 2006, first released in 2008.

3

Coccinelle

A SmPL idea: Raise the level of abstraction to semantic patches.

From:
@@ -1348,8 +1348,7 @@
- fh = kmalloc(sizeof(struct zoran_fh), GFP_KERNEL);
+ fh = kzalloc(sizeof(struct zoran_fh), GFP_KERNEL);
if (!fh) {
dprintk(1,

KERN_ERR "%s: zoran_open(): allocation of zoran_fh failed\n",
ZR_DEVNAME(zr));

return -ENOMEM;
}

- memset(fh, 0, sizeof(struct zoran_fh));

SmPL = Semantic Patch Language
Coccinelle applies SmPL semantic patches across a code base.
Development began in 2006, first released in 2008.

4

Coccinelle

A SmPL idea: Raise the level of abstraction to semantic patches.

To:
@@
expression x,E1,E2;
@@
- x = kmalloc(E1,E2);
+ x = kzalloc(E1,E2);
...

- memset(x, 0, E1);

• SmPL = Semantic Patch Language
• Coccinelle applies SmPL semantic patches across a code base.
• Development began in 2006, first released in 2008. 5

Usage in the Linux kernel

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
0

200

400
#
of
co
m
m
its

Coccinelle developers Outreachy interns Dedicated user
0-day Kernel maintainers Others

• Over 5500 commits.
• 59 semantic patches in the Linux kernel, usable via make coccicheck.

• 44% of the 88 kernel developers who have at least one commit that touches
100 files also have at least one commit that uses Coccinelle.

6

Usage in the Linux kernel

2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
0

200

400
#
of
co
m
m
its

Coccinelle developers Outreachy interns Dedicated user
0-day Kernel maintainers Others

• Over 5500 commits.
• 59 semantic patches in the Linux kernel, usable via make coccicheck.
• 44% of the 88 kernel developers who have at least one commit that touches
100 files also have at least one commit that uses Coccinelle.

6

How did we get here?

7

Design dimensions

• Expressivity

• Performance

• Correctness guarantees

• Dissemination

Did we make the right decisions?
8

Coccinelle design: expressivity

Original hypothesis: Linux kernel developers will find it easy and convenient to
describe needed code changes in terms of fragments of removed and added code.

@@
expression x,E1,E2;
@@
- x = kmalloc(E1,E2);
+ x = kzalloc(E1,E2);
...

- memset(x, 0, E1);

9

Expressivity evolutions

Confrontation with the real world:

• Many language evolutions: C features, metavariable types, etc.

• Position variables.
– Record and match position of a token.

• Scripting language rules.
– Original goal: bug finding, eg buffer overflows.
– Used in practice for error reporting, counting, etc.

10

Position variables and scripts

@ r @
expression object;
position p
@@
(
drm_connector_reference@p(object)
|
drm_connector_unreference@p(object)
)

@script:python@
object << r.object;
p << r.p;
@@

msg="WARNING: use get/put helpers to reference and dereference %s" % (object)
coccilib.report.print_report(p[0], msg)

11

Status: Use of new features

• 3325 commits contain semantic patches.

• 18% use position variables.

• 5% use scripts.

• 43% of the semantic patches using position variables or scripts are from
outside the Coccinelle team.

• All 59 semantic patches in the Linux kernel use both.

12

Coccinelle design: performance

Goal: Be usable on a typical developer laptop.

Target code base: 5MLOC in Feb 2007, 16.5MLOC in Jan 2018.

Original design choices:

• Intraprocedural, one file at a time.
• Process only .c files, by default.
• Include only local or same-named headers, by default.
• No macro expansion, instead use heuristics to parse macro uses.
• Provide best-effort type inference, but no other program analysis.

13

Performance evolutions

Confrontation with the real world:

• 1, 5, or 15 MLOC is a lot of code.
• Parsing is slow, because of backtracking heuristics.

Evolutions:

• Indexing, via glimpse, id-utils.
• Parallelism, via parmap.

14

Performance evolutions

Confrontation with the real world:

• 1, 5, or 15 MLOC is a lot of code.
• Parsing is slow, because of backtracking heuristics.

Evolutions:

• Indexing, via glimpse, id-utils.
• Parallelism, via parmap.

14

Status: Performance

0

2,000

4,000

semantic patches
el
ap
se
d
tim

e
(s
ec
.)

2 cores (4 threads). i5 CPU 2.30GHz

0

20,000

40,000

semantic patches

nu
m
be
ro
ffi
le
s

files considered

Based on the 59 semantic patches in the Linux kernel.

15

Coccinelle design: correctness guarantees

Ensure that outermost terms are replaced by like outermost terms
@@
expression x,E1,E2,E3;
@@
- x = kmalloc(E1,E2);
+ x = kzalloc(E1,E2);
...

- memset(x, 0, E1);

No other correctness guarantees:

• Bug fixes and evolutions may not be semantics preserving.
• Improves expressiveness and performance.
• Rely on developer’s knowledge of the code base and ease of creating and
refining semantic patches.

16

Correctness guarantee evolutions

Confrontation with the real world:

Mostly, developer control over readable rules is good enough.

17

Coccinelle design: dissemination strategy

Show by example:

• June 1, 2007: Fix parse errors in kernel code.

• July 7, 2007: Irq function evolution
– Updates in 5 files, in net, atm, and usb

• July 6, 2007: kmalloc + memset −→ kzalloc
– Updates to 166 calls in 146 files.
– A kernel developer responded “Cool!”.
– Violated patch-review policy of Linux.

• July 2008: Use by a non-Coccinelle developer.

• October 2008: Open-source release.

18

Dissemination strategy evolutions

Confrontation with the real world:

• Showing by example generated initial interest.
• Organized four workshops: industry participants.
• Presentations at developer conferences: FOSDEM, Linux Plumbers, etc.
• LWN articles by kernel developers.

19

Impact: Changed lines

ar
ch

bl
oc
k

cr
yp
to

dr
iv
er
s fs

in
cl
ud
e

in
it

ip
c

ke
rn
el lib m
m ne
t

sa
m
pl
es

se
cu
rit
y

so
un
d

to
ol
s

vi
rt

101

103

105
lin
es
of
co
de

(lo
g
sc
al
e)
Removed lines Added lines

20

Impact: Maintainer use

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
0

100

200

300

nu
m
be
ro
fc
om

m
its Cleanups

Bug fixes

21

Impact: Maintainer use examples

TTY. Remove an unused function argument.

• 11 affected files.

DRM. Eliminate a redundant field in a data structure.

• 54 affected files.

Interrupts. Prepare to remove the irq argument from interrupt handlers, and then
remove that argument.

• 188 affected files.

22

Impact: Intel’s 0-day build-testing service

59 semantic patches in the Linux kernel with a dedicated make target.

2013 2014 2015 2016 2017
0

200

400

#
wi
th
pa
tc
he
s

api free iterators locks null tests misc

2013 2014 2015 2016 2017
0

100

200

#
wi
th
m
es
sa
ge
on
ly

23

Coccinelle community

25 contributors

• Most from the Coccinelle team, due to use of OCaml and PL concepts.
• Active mailing list (cocci@systeme.lip6.fr).

Availability

• Packaged for many Linux distros.

Use outside Linux

• RIOT, systemd, qemu, etc.

24

Conclusion

• Initial design decisions mostly remain valid, with some extensions.
– Take the expertise of the target users into account.
– Avoid creeping featurism: Do one thing and do it well.

• Tool should be easy to access and install, and easy to use and robust.

• Success measure: Over 5500 commits in the Linux kernel based on Coccinelle.

• Probably, everyone in this room uses some Coccinelle modified code!

http://coccinelle.lip6.fr

25

Conclusion

• Initial design decisions mostly remain valid, with some extensions.
– Take the expertise of the target users into account.
– Avoid creeping featurism: Do one thing and do it well.

• Tool should be easy to access and install, and easy to use and robust.

• Success measure: Over 5500 commits in the Linux kernel based on Coccinelle.

• Probably, everyone in this room uses some Coccinelle modified code!

http://coccinelle.lip6.fr

25

Conclusion

• Initial design decisions mostly remain valid, with some extensions.
– Take the expertise of the target users into account.
– Avoid creeping featurism: Do one thing and do it well.

• Tool should be easy to access and install, and easy to use and robust.

• Success measure: Over 5500 commits in the Linux kernel based on Coccinelle.

• Probably, everyone in this room uses some Coccinelle modified code!

http://coccinelle.lip6.fr

25

