
USENIX ATC’18 

Accelerating PageRank using  
Partition-Centric Processing 

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna 
 



2 

Outline 

• Introduction  
 

• Partition-centric Processing Methodology 
 

• Analytical Evaluation 
 
• Experimental Results 

 
• Generalization 
 
• Conclusion 



3 

Graph Analytics 

• Graphs → ubiquitously preferred data representation 
 
 
 
 
 
 

• Era of Big Data, Era of large Graphs 

– Billions of nodes and edges 

– Need high performance processing 

Internet Road Network Social network 

…  
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PageRank 

• Fundamental Node Ranking algorithm 

– Iteratively compute weighted sum of neighbor’s 𝑃𝑅,- 
 
 
 
 

• Important benchmark for the performance of 

– Graph Analytics 

– Sparse Matrix Vector multiplication 

 core kernel of many scientific and engg. applications 
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Challenges: Pull Direction PageRank (PDPR) 

– ↓ cache line utilization, ↑ DRAM traffic 

– ↓ sustained memory bandwidth 

– Cache misses, CPU stalls 

1. PDPR Algorithm 

2. Random accesses to 𝑺𝑷𝑹 3. DRAM traffic due to random accesses 

Read 𝑃𝑅 𝑢 → fine-grained random 
memory accesses 
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Challenges: Vertex-Centric GAS (BVGAS) 

• State-of-the-art method1,2 
– 𝑆𝑐𝑎𝑡𝑡𝑒𝑟 → ∀𝑢 ∈ 𝑉, write 𝑚𝑠𝑔 = 𝑃𝑅 𝑢 , 𝑣  ∀ 𝑣 ∈ 𝑁𝑜(𝑢)  

(semi-sorted on 𝑣) 

– 𝐺𝑎𝑡ℎ𝑒𝑟 → Read 𝑚𝑠𝑔 and accumulate 𝑃𝑅,𝑢- into 𝑃𝑅,𝑣- 

– ↑ cache line utilization; prevent CPU stalls 

• Drawbacks: 

– Traverse entire graph twice 

 inherently sub-optimal 

– oblivious to vertex ordering induced locality  

– coarse-grained random accesses → poor DRAM BW 

1. Buono, Daniele, et al. "Optimizing sparse matrix-vector multiplication for large-scale data 
analytics." Proceedings of the 2016 International Conference on Supercomputing. ACM, 2016 

2. Beamer, Scott, et al. "Reducing PageRank communication via propagation blocking." Proceedings of Parallel and 
Distributed Processing Symposium. IEEE, 2017 
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Contributions 

• Novel Partition-centric Processing Methodology 

 enables efficient Processor-DRAM communication 

• Optimizations to address communication challenges 

 Partition-centric update propagation → ↓ DRAM traffic 

 Partition-Node Graph Data Layout → sequential DRAM accesses 

 Branch avoidance mechanism → remove data-dependent branches 

• Achieves 

 upto 𝟒. 𝟕 GTEPS sustained throughput using 16 cores 

 upto 𝟕𝟕% of peak DRAM bandwidth  

• Applicable to weighted graphs and generic SpMV computation 
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Graph Partitioning 

• 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 → disjoint 𝑐𝑎𝑐ℎ𝑒𝑎𝑏𝑙𝑒 sets of vertices 

• Partition-centric abstraction of 𝐺𝑟𝑎𝑝ℎ → set of links between 
nodes and partitions 

– unlocks comm. efficiency not achievable with VC/EC paradigms 

• Index based partitioning  

– simple, low pre-processing overhead 
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Partition-Centric Processing Methodology (PCPM) 

• Partition-Centric Processing with GAS model 

–  𝑆𝑐𝑎𝑡𝑡𝑒𝑟 messages to neighbouring partitions 

– 𝐺𝑎𝑡ℎ𝑒𝑟 incoming messages to compute new 
PageRank values 
 

• Write messages in statically allocated disjoint 
memory spaces (𝑏𝑖𝑛𝑠) 
– no locks/atomics, ↑ scalability 

– 𝐷𝑒𝑠𝑡. 𝐼𝐷 written only in first iteration, ↓ comm. 

 

• Each thread processes 1 partition at a time 
– Vertex data 𝑐𝑎𝑐ℎ𝑒𝑎𝑏𝑙𝑒  

– low latency random access 
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Optimization 1: Partition-Centric Update Propagation 

• 𝑆𝑖𝑛𝑔𝑙𝑒 update from a node to all neighbours in 
a partition 
– Natural outcome of PC abstraction 

– Drastically reduce communication volume 
 

• MSB of destination IDs for demarcation 
– read new update if MSB = 1 

 

• Issues to address 
– 𝑆𝑐𝑎𝑡𝑡𝑒𝑟  

• traverses 𝑢𝑛𝑢𝑠𝑒𝑑 edges *(7,1), (7,2)+ 

• switch bins for each update insertion  

– 𝐺𝑎𝑡ℎ𝑒𝑟 
• Data-dependent unpredictable branches due to 

MSB check 
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Optimization 2: Data Layout 

• Bipartite Partition-Node Graph (PNG) 
– at most 1 edge between node and partition 

– eliminate 𝑢𝑛𝑢𝑠𝑒𝑑 edge traversal 

• Group the edges by destination partition 

– All updates to one bin at a time 

– Random access to vertices 

• Create PNG on a per-partition basis 

– Vertices cached, DRAM accesses 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙  

1. Original Graph 2. PNG Layout 
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Optimization 3: Branch Avoidance 

• 𝐺𝑎𝑡ℎ𝑒𝑟 uses pointers to read bins 

– 𝑑𝑒𝑠𝑡𝐼𝐷_𝑝𝑡𝑟 for 𝑑𝑒𝑠𝑡𝐼𝐷_𝑏𝑖𝑛𝑠 

– 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑡𝑟 for 𝑢𝑝𝑑𝑎𝑡𝑒_𝑏𝑖𝑛𝑠 

 

• When to increment pointers? 

– 𝑑𝑒𝑠𝑡𝐼𝐷_𝑝𝑡𝑟 every iteration 

– 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑡𝑟 if MSB = 1 
 

• Directly add MSB to 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑡𝑟 

– no branch based cond. check on 
MSB 
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Parameters 

• Original Graph 𝐺 𝑉, 𝐸  
 𝑛 = 𝑉  

 𝑚 = 𝐸  
 

• PNG Layout 𝐺′ 𝑃, 𝑉, 𝐸′  
 𝐸′ → edges between nodes and 

partitions 

 𝑘 = 𝑃 = # partitions 


∗

𝑟 =
𝐸

𝐸′ ≥ 1   

 

• Software 

 𝑑𝑣 = sizeof (updates) = 4𝐵/8𝐵 

 𝑑𝑖 = sizeof (index) = 4𝐵 
 

• Cache 


∗  

𝑐𝑚𝑟 = PDPR cache miss ratio  

 𝑙 = sizeof (cache line) = 64𝐵 

 

* 𝑟 and 𝑐𝑚𝑟 are a function of graph locality. As locality increases, 𝑟 ↑ and 𝑐𝑚𝑟 ↓ 
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DRAM Communication Model 

Method Communication Volume 

𝑃𝐷𝑃𝑅𝑐𝑜𝑚𝑚 𝑚 𝑑𝑖 + 𝑐𝑚𝑟𝑙  

𝐵𝑉𝐺𝐴𝑆𝑐𝑜𝑚𝑚 2𝑚 𝑑𝑖 + 𝑑𝑣  

𝑃𝐶𝑃𝑀𝑐𝑜𝑚𝑚 𝑚 𝑑𝑖 1 +
1

𝑟
+

2𝑑𝑣

𝑟
 

• 𝐵𝑉𝐺𝐴𝑆𝑐𝑜𝑚𝑚 oblivious to locality 
 good if locality is low and 𝑐𝑚𝑟 is high 

 
• 𝑃𝐶𝑃𝑀𝑐𝑜𝑚𝑚 ≤ 𝐵𝑉𝐺𝐴𝑆𝑐𝑜𝑚𝑚 

 good if locality is low and 𝑐𝑚𝑟 is high 

 linear in 
1

𝑟
 → good for high locality 

graphs as well 
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Random Access Model 

Method # Random DRAM accesses 

𝑃𝐷𝑃𝑅𝑟𝑎 𝑚𝑐𝑚𝑟 

∗
𝐵𝑉𝐺𝐴𝑆𝑟𝑎 

𝑚𝑑𝑣

𝑙
 

𝑃𝐶𝑃𝑀𝑟𝑎 𝑘2 

• 𝑃𝐶𝑃𝑀𝑟𝑎 ≪ 𝐵𝑉𝐺𝐴𝑆𝑟𝑎 < 𝑃𝐷𝑃𝑅𝑟𝑎 

*Assuming full cache line utilization for BVGAS 

• Example → 𝑘𝑟𝑜𝑛 graph  
• 𝑛 = 33.5𝑀, 𝑚 = 1.05𝐵, 𝑘 = 512, 𝑙 = 64𝐵 
• 𝑃𝐶𝑃𝑀𝑟𝑎 ≈ 0.26𝑀 ≪ 𝐵𝑉𝐺𝐴𝑆𝑟𝑎 ≈ 67𝑀 
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Experimental Setup 

• Large real-life and synthetic graphs 

 

 

 

 

 

 

• Intel Xeon E5-2650 v2 processor @ 2.3 GHz 
 Dual-socket – 8 cores per socket 

 32 KB L1 cache, 256 KB L2 cache  

 DRAM – 59.6 GB/s Read bandwidth, 32.9 GB/s Write bandwidth 

 

 

Datasest Description # Nodes (M) # Edges (M) 

gplus Google+ social network 28.9 463 

pld Pay-level-domain (web crawl) 42.9 623 

web Webbase-2001 (high locality) 118.1 992.8 

Kron Synthetic (high density) 33.5 1048 

twitter Follower network 61.6 1468.4 

sd1 Subdomain graph (web crawl) 95 1937.5 
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Comparison with Baselines: Execution Time 

• Upto 𝟒. 𝟏 × speedup over 
PDPR  

• Upto 𝟑. 𝟖 × speedup over 
BVGAS  

 

• Average 𝟓 × speedup in the 
𝑆𝑐𝑎𝑡𝑡𝑒𝑟 phase 

Table:  Execution Time of 1 PageRank Iteration 

• Radically faster than BVGAS 
for high locality 𝑤𝑒𝑏 graph 
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Comparison with Baselines: DRAM Performance 

• Average 𝟏. 𝟕 × reduction in 
comm. volume over BVGAS 

• Average 𝟐. 𝟐 × reduction in 
comm. volume over PDPR 

• For 𝑠𝑑1, PCPM sustained 
BW ≈ 𝟕𝟕% of peak BW 

• Average 𝟏. 𝟔 × higher 
bandwidth than BVGAS 



22 

Comparison with Baselines: Effect of Locality 

• 𝑂𝑟𝑖𝑔 → graph with original node labeling 

• 𝐺𝑂𝑟𝑑𝑒𝑟 → graph with GOrder1 node labeling 
– Increased spatial locality among node neighbors 

1. Wei, Hao, et al. "Speedup graph processing by graph ordering." Proceedings of the 2016 
International Conference on Management of Data. ACM, 2016. 

Table: PDPR and PCPM benefit from optimized node labeling 
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PCPM: Effect of Optimizations 

• Opt 1 → Partition-centric Update Propagation 

• Opt 2 → PNG Data Layout 

• Opt 3 → Branch Avoidance in 𝐺𝑎𝑡ℎ𝑒𝑟 
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PCPM: Effect of Partition Size 

• ↑ partition size → ↑ 𝑟, ↓ DRAM traffic  

• ↑ partition size beyond cache capacity → cache misses, 
sudden ↑ in DRAM traffic 

• 256𝐾𝐵 ≤ size ≤ 1𝑀𝐵 → DRAM traffic ↓, execution time ↑ 
 Vertex accesses served by slower L3 cache 
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Pre-processing Time 

• Pre-processing → compute bin sizes, PNG construction 

• Optimizations 

– Pre-process all partitions in parallel 

– Exploit overlap in bin size computation and PNG construction 

• Result → very small overhead 

– Easily amortized over few PageRank iterations 

Table: Pre-processing time of 
different methodologies 
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Generalization 

• PageRank is an example 

• PCPM for processing weighted graphs 
– possible programming model for graph analytics 

 

 

 

 

 

 
 

 

• Extendible to generic SpMV (non-square matrices) computation 
– partition rows and columns separately 

– parallelize 𝑆𝑐𝑎𝑡𝑡𝑒𝑟 over column partitions 

– parallelize 𝐺𝑎𝑡ℎ𝑒𝑟 over row partitions 

PR[6]

PR[7]

2

0

1

2

Bin 0

Updates Dest. ID Edge Wt.

w62

w70

w71

w72
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Generalization 

• PCPM optimizations are generic software techniques 

 not specific to the multicore platform used 
 

• Can be ported to FPGAs and GPUs as well 

 FPGAs → store vertex data in BRAM 

 GPUs → store vertex data in shared memory 

 user-controlled on-chip memories even more suitable 
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Conclusion 

• Proposed novel Partition-centric method for PageRank  

• Developed optimizations to 

– Reduce volume of DRAM traffic 

– Enhance sustained DRAM bandwidth 

• Comparison with state-of-the-art on multicore 

– Average 𝟐. 𝟕 × increase in throughput 

– Average 𝟏. 𝟕 × reduction in DRAM communication 

– Average 𝟏. 𝟔 × higher sustained memory bandwidth 

• Can be extended to 

– Weighted graphs and generic SpMV 

– Other platforms such as GPUs and FPGAs etc. 



Comments & Questions 

projectsharp.usc.edu 

https://github.com/kartiklakhotia/pcpm


