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Graph Analytics

* Graphs — ubiquitously preferred data representation

Social network Internet Road Network
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* Era of Big Data, Era of large Graphs
— Billions of nodes and edges
— Need high performance processing
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PageRank

* Fundamental Node Ranking algorithm
— lteratively compute weighted sum of neighbor’s PR|]

1—d PR,;(M)
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* Important benchmark for the performance of
— Graph Analytics

— Sparse Matrix Vector multiplication
= core kernel of many scientific and engg. applications
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Challenges: Pull Direction PageRank (PDPR)

for ;’;ZE% Read PR|u] — fine-grained random
for all u € N;(v) do memory accesses
temp+ =CR[uD — | cache line utilization, T DRAM traffic
PR [V] . (l—d)><]V|_1 + dxtemp ] ]
next [V} = No(v)] — | sustained memory bandwidth
swap(PR, PRyext) — Cache misses, CPU stalls

1. PDPR Algorithm
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2. Random accesses to SPR 3. DRAM traffic due to random accesses
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Challenges: Vertex-Centric GAS (BVGAS)

» State-of-the-art method?!?
— Scatter —» Yu € V, write msg = {PR|u],v} Vv € N,(u)
(semi-sorted on v)
— Gather — Read msg and accumulate PR[u] into PR[V]

— T cache line utilization; prevent CPU stalls

* Drawbacks:
— Traverse entire graph twice
" inherently sub-optimal
— oblivious to vertex ordering induced locality

— coarse-grained random accesses — poor DRAM BW

1. Buono, Daniele, et al. "Optimizing sparse matrix-vector multiplication for large-scale data
analytics." Proceedings of the 2016 International Conference on Supercomputing. ACM, 2016
2. Beamer, Scott, et al. "Reducing PageRank communication via propagation blocking." Proceedings of Parallel and

Distributed Processing Symposium. |EEE, 2017
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Contributions

Novel Partition-centric Processing Methodology

= enables efficient Processor-DRAM communication

Optimizations to address communication challenges
= Partition-centric update propagation — | DRAM traffic
= Partition-Node Graph Data Layout — sequential DRAM accesses

® Branch avoidance mechanism — remove data-dependent branches

Achieves
= upto 4.7 GTEPS sustained throughput using 16 cores
= upto 77% of peak DRAM bandwidth

Applicable to weighted graphs and generic SpMV computation
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* Partition-centric Processing Methodology
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Graph Partitioning

 Partitions — disjoint cacheable sets of vertices

* Partition-centric abstraction of Graph — set of links between
nodes and partitions

— unlocks comm. efficiency not achievable with VC/EC paradigms
Index based partitioning

— simple, low pre-processing overhead
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Example graph with partitions of size 3
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Partition-Centric Processing Methodology (PCPM)

Partition-Centric Processing with GAS model

— Scatter messages to neighbouring partitions

— Gather incoming messages to compute new
PageRank values

Write messages in statically allocated disjoint
memory spaces (bins)
— no locks/atomics, T scalability

— Dest. ID written only in first iteration, | comm.

Each thread processes 1 partition at a time
— Vertex data cacheable
— low latency random access
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Optimization 1: Partition-Centric Update Propagation

* Single update from a node to all neighbours in

a pa rtition Propagate Updates
on all Edges Updates| Dest. ID
— Natural outcome of PC abstraction 6 > PRl6] | 2
— Drastically reduce communication volume PRH ;’
» PR[7
PR[7] 2
* MSB of destination IDs for demarcation Bin 0
— read new update if MSB=1 (a) Scatter in Vertex-centric GAS
Non-redundant |
. updates only Updates IVISB Dest. ID
Issues to address 6 {1 2
— Scatter 7 R 1 0
8 0| 1
* traverses unused edges {(7,1),(7,2)} : 4{0 ,
* switch bins for each update insertion g0
— Gather (b) Scatter in PCPM
e Data-dependent unpredictable branches due to
MSB check
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Optimization 2: Data Layout

e Bipartite Partition-Node Graph (PNG)

— at most 1 edge between node and partition

— eliminate unused edge traversal Algorithm PCPM scatter phase using PNG layout

. . - ! ! Pl s inned .
* Group the edges by destination partition GRV,E) = PNG, N/(p') — in-neighbors of par
tition p’ in bipartite graph of partition p
— All updates to one bin at a time or all p € P do in parallel SScatter
) for all p’ € P do
— Random access to vertices for all u € N”(p/) do

insert PR[u] into update_bins[p'

 Create PNG on a per-partition basis

— Vertices cached, DRAM accesses sequential

Partitions e
Po P P \o
o] [3][e (7)
s . o
2 5 8 Graph between P Graph between P e
and nodesin P, and nodes in F;
Graph between P
and nodesin P>
1. Original Graph 2.  PNG Layout
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Optimization 3: Branch Avoidance

* (Gather uses pointers to read bins
— destlD _ptr for destID_bins
— update_ptr for update_bins

Algorithm Branch Avoiding gather function in PCPM

1. PR:]=0
2: for all p € P do in parallel > Gather
3: {destID_ptr, update_ptr} + 0

while destID_ptr < size(destID bins[p]) do
— destlD_ptr every iteration id + destID _bins[p|[destID_ptr ++]

4
5

— update_ptr if MSB = 1 j update_ptr += MSB(id) >
8

* When to increment pointers?

id < id & bitmask
PRlid] += update_bins|p|[update_ptr]|

* Directly add MSB to update_ptr

— no branch based cond. check on
MSB
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Parameters

* Original Graph G(V,E) * Software

= n=|V| " d, = sizeof (updates) = 4B /8B

= m = |E| " d; =sizeof (index) = 4B
 PNG Layout G'(P,V,E") * Cache

= E' — edges between nodes and . Cmyr = PDPR cache miss ratio

partitions = | =sizeof (cache line) = 64B
= k = |P| = # partitions
R — ﬂ > 1
|E'|

* r and c,,,,- are a function of graph locality. As locality increases, r T and ¢, 4
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DRAM Communication Model
| Method | CommunicationVolume

PDPR.,m m(d; + ¢cp-l)
BVGAS,,,.. 2m(d; + d,)
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« PCPM_ymm < BVGAS omm

S

= good if locality is low and c¢,,,- is high 0
. . 1 . . 0 5 10 15 - 20. 25 30 35
= Jinearin - good for high locality Compression fato 1
graphs as well Figure : Predicted DRAM traffic for kron graph with

n=335M,m=1070M, k =512 and d; = d, = 4 Bytes.
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Random Access Model

m # Random DRAM accesses

PDPR,, e
“ BVGAS,., mld”
PCPM,, Iz

. PCPM,, < BVGAS,, < PDPR,,

 Example — kron graph
e n=33.5M,m =1.05B,k =512,l = 64B
* PCPM,, = 0.26M < BVGAS,, = 67M

*Assuming full cache line utilization for BVGAS
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Experimental Setup

* Large real-life and synthetic graphs

o L e )

gplus Google+ social network 28.9

pld Pay-level-domain (web crawl) 42.9 623

web Webbase-2001 (high locality) 118.1 992.8

Kron Synthetic (high density) 33.5 1048
twitter Follower network 61.6 1468.4

sdl Subdomain graph (web crawl) 95 1937.5

* Intel Xeon E5-2650 v2 processor @ 2.3 GHz
= Dual-socket — 8 cores per socket
= 32 KB L1 cache, 256 KB L2 cache
= DRAM —59.6 GB/s Read bandwidth, 32.9 GB/s Write bandwidth
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Comparison with Baselines: Execution Time

5
4
wn 3
i PDPR
[
©2 m BVGAS
m PCPM
1
0
gplus kron twitter sdl
Datasets
PDPR BVGAS PCPM
Dataset Total | (Scatter) Gather Total | (Scatter) Gather Total
atase Time(s) | [lime(s)] Time(s) Time(s) | [Time(s)] Time(s) Time(s)
gplus 0.44 0.26 0.12 0.38 0.06 0.1 0.16
pld 0.68 0.33 015 ()48 0.09 0.13 0.22
<—_web 0.21 0.58 0.23 0.81 || 0.04 0.17 021
kron 0.65 0.5 022 072 |10. 0.18 0.25
twitter 1.83 0.79 0.32 1.11 0.18 0.27 0.45
sdl 197 [L1.07 J 042 149 L 024 J 035 0.59
Table: Execution Time of 1 PageRank Iteration
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* Upto 4.1 X speedup over
PDPR

e Upto 3.8 X speedup over
BVGAS

e Average 5 X speedup in the
Scatter phase

» Radically faster than BVGAS
for high locality web graph




Comparison with Baselines: DRAM Performance

60 -

50
£a0 * Average 1.7 X reduction in
g 30 PDPR comm. volume over BVGAS
§ m BVGAS . .
$ 20 - = PCPM e Average 2.2 X reduction in
@ 10 - comm. volume over PDPR
@ O

gplus web kron  twitter sdl
Datasets
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£ 40 .
) * For sd1, PCPM sustained
E OPR BW =~ 77% of peak BW
5% = BVeAS * Average 1.6 X higher
> .
s 10 bandwidth than BVGAS
S
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Comparison with Baselines: Effect of Locality

* Orig — graph with original node labeling
* GOrder — graph with GOrder! node labeling

— Increased spatial locality among node neighbors

PDPR BVGAS PCPM
Dataset | Orig GOrder | Orig GOrder | Orig GOrder
gplus 13.1 7.4 9.3 9.3 6.6 5.1
pld 24.5 10.7 12.6 12.5 9.4 6.1
web 7.5 7.6 21.6 21.3 8.5 8.4
kron 18.1 10.8 19.9 19.5 10.4 7.5
twitter | 68.2 31.6 28.8 28.2 19.4 13.4

sdl /651 238 | K378 378> |[269 156\
/ \ ! 3

Table: PDPR and PCPM benefit from optimized node labeling

1. Wei, Hao, et al. "Speedup graph processing by graph ordering." Proceedings of the 2016
International Conference on Management of Data. ACM, 2016.
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PCPM: Effect of Optimizations

 Opt 1 - Partition-centric Update Propagation
* Opt 2 > PNG Data Layout
 Opt 3 — Branch Avoidance in Gather

mNoOpt mPCPM:Optl ®mPCPM:Optl+ Opt2 mPCPM: Optl+ Opt2 + Opt3
1.2

1 F

Normalized Execution Time
o
(@)

gplus pld web kron twitter sdl
Datasets
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PCPM: Effect of Partition Size

* T partition size = T r, | DRAM traffic

» T partition size beyond cache capacity — cache misses,
sudden T in DRAM traffic

e 256KB < size < 1MB — DRAM traffic |, execution time T
= \ertex accesses served by slower L3 cache
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Partition Size (in Bytes) Partition Size (in Bytes)
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Pre-processing Time

* Pre-processing = compute bin sizes, PNG construction
* Optimizations

— Pre-process all partitions in parallel

— Exploit overlap in bin size computation and PNG construction
* Result — very small overhead

— Easily amortized over few PageRank iterations

Dataset | PCPM | BVGAS | PDPR
gplus 0.25s 0.1s Os
pld 0.325 0.15s Os Table: Pre-processing time of
web 0.26s 0.18s Os different methodologies
kron 0.43s 0.22s Os
twitter 0.7s 0.27s Os
sd1 0.95s 0.32s Os
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Generalization

 PageRank is an example

« PCPM for processing weighted graphs
— possible programming model for graph analytics

Updates || Dest. ID ' Edge Wt.|
PR[6] 2 E Ws> E
PR[7] 0 I wp !
1 E W71 E
2w |

Bin O

e Extendible to generic SpMV (non-square matrices) computation
— partition rows and columns separately
— parallelize Scatter over column partitions
— parallelize Gather over row partitions
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Generalization

 PCPM optimizations are generic software techniques

" not specific to the multicore platform used

 Can be ported to FPGAs and GPUs as well
" FPGAs — store vertex data in BRAM
= GPUs — store vertex data in shared memory
= user-controlled on-chip memories even more suitable
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Conclusion

* Proposed novel Partition-centric method for PageRank

* Developed optimizations to
— Reduce volume of DRAM traffic
— Enhance sustained DRAM bandwidth

 Comparison with state-of-the-art on multicore
— Average 2.7 X increase in throughput
— Average 1.7 X reduction in DRAM communication

— Average 1.6 X higher sustained memory bandwidth

* (Can be extended to
— Weighted graphs and generic SpMV
— Other platforms such as GPUs and FPGAs etc.
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Code can be found at:
https://github.com/kartiklakhotia/pcpm

Comments & Questions

Thank you
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