
USENIX ATC’18

Accelerating PageRank using
Partition-Centric Processing

Kartik Lakhotia, Rajgopal Kannan, Viktor Prasanna

2

Outline

• Introduction

• Partition-centric Processing Methodology

• Analytical Evaluation

• Experimental Results

• Generalization

• Conclusion

3

Graph Analytics

• Graphs → ubiquitously preferred data representation

• Era of Big Data, Era of large Graphs

– Billions of nodes and edges

– Need high performance processing

Internet Road Network Social network

…

4

PageRank

• Fundamental Node Ranking algorithm

– Iteratively compute weighted sum of neighbor’s 𝑃𝑅,-

• Important benchmark for the performance of

– Graph Analytics

– Sparse Matrix Vector multiplication

 core kernel of many scientific and engg. applications

5

Challenges: Pull Direction PageRank (PDPR)

– ↓ cache line utilization, ↑ DRAM traffic

– ↓ sustained memory bandwidth

– Cache misses, CPU stalls

1. PDPR Algorithm

2. Random accesses to 𝑺𝑷𝑹 3. DRAM traffic due to random accesses

Read 𝑃𝑅 𝑢 → fine-grained random
memory accesses

6

Challenges: Vertex-Centric GAS (BVGAS)

• State-of-the-art method1,2
– 𝑆𝑐𝑎𝑡𝑡𝑒𝑟 → ∀𝑢 ∈ 𝑉, write 𝑚𝑠𝑔 = 𝑃𝑅 𝑢 , 𝑣 ∀ 𝑣 ∈ 𝑁𝑜(𝑢)

(semi-sorted on 𝑣)

– 𝐺𝑎𝑡ℎ𝑒𝑟 → Read 𝑚𝑠𝑔 and accumulate 𝑃𝑅,𝑢- into 𝑃𝑅,𝑣-

– ↑ cache line utilization; prevent CPU stalls

• Drawbacks:

– Traverse entire graph twice

 inherently sub-optimal

– oblivious to vertex ordering induced locality

– coarse-grained random accesses → poor DRAM BW

1. Buono, Daniele, et al. "Optimizing sparse matrix-vector multiplication for large-scale data
analytics." Proceedings of the 2016 International Conference on Supercomputing. ACM, 2016

2. Beamer, Scott, et al. "Reducing PageRank communication via propagation blocking." Proceedings of Parallel and
Distributed Processing Symposium. IEEE, 2017

7

Contributions

• Novel Partition-centric Processing Methodology

 enables efficient Processor-DRAM communication

• Optimizations to address communication challenges

 Partition-centric update propagation → ↓ DRAM traffic

 Partition-Node Graph Data Layout → sequential DRAM accesses

 Branch avoidance mechanism → remove data-dependent branches

• Achieves

 upto 𝟒. 𝟕 GTEPS sustained throughput using 16 cores

 upto 𝟕𝟕% of peak DRAM bandwidth

• Applicable to weighted graphs and generic SpMV computation

8

Outline

• Introduction

• Partition-centric Processing Methodology

• Analytical Evaluation

• Experimental Results

• Generalization

• Conclusion

9

Graph Partitioning

• 𝑃𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛𝑠 → disjoint 𝑐𝑎𝑐ℎ𝑒𝑎𝑏𝑙𝑒 sets of vertices

• Partition-centric abstraction of 𝐺𝑟𝑎𝑝ℎ → set of links between
nodes and partitions

– unlocks comm. efficiency not achievable with VC/EC paradigms

• Index based partitioning

– simple, low pre-processing overhead

10

Partition-Centric Processing Methodology (PCPM)

• Partition-Centric Processing with GAS model

– 𝑆𝑐𝑎𝑡𝑡𝑒𝑟 messages to neighbouring partitions

– 𝐺𝑎𝑡ℎ𝑒𝑟 incoming messages to compute new
PageRank values

• Write messages in statically allocated disjoint
memory spaces (𝑏𝑖𝑛𝑠)
– no locks/atomics, ↑ scalability

– 𝐷𝑒𝑠𝑡. 𝐼𝐷 written only in first iteration, ↓ comm.

• Each thread processes 1 partition at a time
– Vertex data 𝑐𝑎𝑐ℎ𝑒𝑎𝑏𝑙𝑒

– low latency random access

11

Optimization 1: Partition-Centric Update Propagation

• 𝑆𝑖𝑛𝑔𝑙𝑒 update from a node to all neighbours in
a partition
– Natural outcome of PC abstraction

– Drastically reduce communication volume

• MSB of destination IDs for demarcation
– read new update if MSB = 1

• Issues to address
– 𝑆𝑐𝑎𝑡𝑡𝑒𝑟

• traverses 𝑢𝑛𝑢𝑠𝑒𝑑 edges *(7,1), (7,2)+

• switch bins for each update insertion

– 𝐺𝑎𝑡ℎ𝑒𝑟
• Data-dependent unpredictable branches due to

MSB check

12

Optimization 2: Data Layout

• Bipartite Partition-Node Graph (PNG)
– at most 1 edge between node and partition

– eliminate 𝑢𝑛𝑢𝑠𝑒𝑑 edge traversal

• Group the edges by destination partition

– All updates to one bin at a time

– Random access to vertices

• Create PNG on a per-partition basis

– Vertices cached, DRAM accesses 𝑠𝑒𝑞𝑢𝑒𝑛𝑡𝑖𝑎𝑙

1. Original Graph 2. PNG Layout

13

Optimization 3: Branch Avoidance

• 𝐺𝑎𝑡ℎ𝑒𝑟 uses pointers to read bins

– 𝑑𝑒𝑠𝑡𝐼𝐷_𝑝𝑡𝑟 for 𝑑𝑒𝑠𝑡𝐼𝐷_𝑏𝑖𝑛𝑠

– 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑡𝑟 for 𝑢𝑝𝑑𝑎𝑡𝑒_𝑏𝑖𝑛𝑠

• When to increment pointers?

– 𝑑𝑒𝑠𝑡𝐼𝐷_𝑝𝑡𝑟 every iteration

– 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑡𝑟 if MSB = 1

• Directly add MSB to 𝑢𝑝𝑑𝑎𝑡𝑒_𝑝𝑡𝑟

– no branch based cond. check on
MSB

14

Outline

• Introduction

• Partition-centric Processing Methodology

• Analytical Evaluation

• Experimental Results

• Generalization

• Conclusion

15

Parameters

• Original Graph 𝐺 𝑉, 𝐸
 𝑛 = 𝑉

 𝑚 = 𝐸

• PNG Layout 𝐺′ 𝑃, 𝑉, 𝐸′
 𝐸′ → edges between nodes and

partitions

 𝑘 = 𝑃 = # partitions

∗

𝑟 =
𝐸

𝐸′ ≥ 1

• Software

 𝑑𝑣 = sizeof (updates) = 4𝐵/8𝐵

 𝑑𝑖 = sizeof (index) = 4𝐵

• Cache

∗

𝑐𝑚𝑟 = PDPR cache miss ratio

 𝑙 = sizeof (cache line) = 64𝐵

* 𝑟 and 𝑐𝑚𝑟 are a function of graph locality. As locality increases, 𝑟 ↑ and 𝑐𝑚𝑟 ↓

16

DRAM Communication Model

Method Communication Volume

𝑃𝐷𝑃𝑅𝑐𝑜𝑚𝑚 𝑚 𝑑𝑖 + 𝑐𝑚𝑟𝑙

𝐵𝑉𝐺𝐴𝑆𝑐𝑜𝑚𝑚 2𝑚 𝑑𝑖 + 𝑑𝑣

𝑃𝐶𝑃𝑀𝑐𝑜𝑚𝑚 𝑚 𝑑𝑖 1 +
1

𝑟
+

2𝑑𝑣

𝑟

• 𝐵𝑉𝐺𝐴𝑆𝑐𝑜𝑚𝑚 oblivious to locality
 good if locality is low and 𝑐𝑚𝑟 is high

• 𝑃𝐶𝑃𝑀𝑐𝑜𝑚𝑚 ≤ 𝐵𝑉𝐺𝐴𝑆𝑐𝑜𝑚𝑚

 good if locality is low and 𝑐𝑚𝑟 is high

 linear in
1

𝑟
 → good for high locality

graphs as well

17

Random Access Model

Method # Random DRAM accesses

𝑃𝐷𝑃𝑅𝑟𝑎 𝑚𝑐𝑚𝑟

∗
𝐵𝑉𝐺𝐴𝑆𝑟𝑎

𝑚𝑑𝑣

𝑙

𝑃𝐶𝑃𝑀𝑟𝑎 𝑘2

• 𝑃𝐶𝑃𝑀𝑟𝑎 ≪ 𝐵𝑉𝐺𝐴𝑆𝑟𝑎 < 𝑃𝐷𝑃𝑅𝑟𝑎

*Assuming full cache line utilization for BVGAS

• Example → 𝑘𝑟𝑜𝑛 graph
• 𝑛 = 33.5𝑀, 𝑚 = 1.05𝐵, 𝑘 = 512, 𝑙 = 64𝐵
• 𝑃𝐶𝑃𝑀𝑟𝑎 ≈ 0.26𝑀 ≪ 𝐵𝑉𝐺𝐴𝑆𝑟𝑎 ≈ 67𝑀

18

Outline

• Introduction

• Partition-centric Processing Methodology

• Analytical Evaluation

• Experimental Results

• Generalization

• Conclusion

19

Experimental Setup

• Large real-life and synthetic graphs

• Intel Xeon E5-2650 v2 processor @ 2.3 GHz
 Dual-socket – 8 cores per socket

 32 KB L1 cache, 256 KB L2 cache

 DRAM – 59.6 GB/s Read bandwidth, 32.9 GB/s Write bandwidth

Datasest Description # Nodes (M) # Edges (M)

gplus Google+ social network 28.9 463

pld Pay-level-domain (web crawl) 42.9 623

web Webbase-2001 (high locality) 118.1 992.8

Kron Synthetic (high density) 33.5 1048

twitter Follower network 61.6 1468.4

sd1 Subdomain graph (web crawl) 95 1937.5

20

Comparison with Baselines: Execution Time

• Upto 𝟒. 𝟏 × speedup over
PDPR

• Upto 𝟑. 𝟖 × speedup over
BVGAS

• Average 𝟓 × speedup in the
𝑆𝑐𝑎𝑡𝑡𝑒𝑟 phase

Table: Execution Time of 1 PageRank Iteration

• Radically faster than BVGAS
for high locality 𝑤𝑒𝑏 graph

21

Comparison with Baselines: DRAM Performance

• Average 𝟏. 𝟕 × reduction in
comm. volume over BVGAS

• Average 𝟐. 𝟐 × reduction in
comm. volume over PDPR

• For 𝑠𝑑1, PCPM sustained
BW ≈ 𝟕𝟕% of peak BW

• Average 𝟏. 𝟔 × higher
bandwidth than BVGAS

22

Comparison with Baselines: Effect of Locality

• 𝑂𝑟𝑖𝑔 → graph with original node labeling

• 𝐺𝑂𝑟𝑑𝑒𝑟 → graph with GOrder1 node labeling
– Increased spatial locality among node neighbors

1. Wei, Hao, et al. "Speedup graph processing by graph ordering." Proceedings of the 2016
International Conference on Management of Data. ACM, 2016.

Table: PDPR and PCPM benefit from optimized node labeling

23

PCPM: Effect of Optimizations

• Opt 1 → Partition-centric Update Propagation

• Opt 2 → PNG Data Layout

• Opt 3 → Branch Avoidance in 𝐺𝑎𝑡ℎ𝑒𝑟

24

PCPM: Effect of Partition Size

• ↑ partition size → ↑ 𝑟, ↓ DRAM traffic

• ↑ partition size beyond cache capacity → cache misses,
sudden ↑ in DRAM traffic

• 256𝐾𝐵 ≤ size ≤ 1𝑀𝐵 → DRAM traffic ↓, execution time ↑
 Vertex accesses served by slower L3 cache

25

Pre-processing Time

• Pre-processing → compute bin sizes, PNG construction

• Optimizations

– Pre-process all partitions in parallel

– Exploit overlap in bin size computation and PNG construction

• Result → very small overhead

– Easily amortized over few PageRank iterations

Table: Pre-processing time of
different methodologies

26

Outline

• Introduction

• Partition-centric Processing Methodology

• Analytical Evaluation

• Experimental Results

• Generalization

• Conclusion

27

Generalization

• PageRank is an example

• PCPM for processing weighted graphs
– possible programming model for graph analytics

• Extendible to generic SpMV (non-square matrices) computation
– partition rows and columns separately

– parallelize 𝑆𝑐𝑎𝑡𝑡𝑒𝑟 over column partitions

– parallelize 𝐺𝑎𝑡ℎ𝑒𝑟 over row partitions

PR[6]

PR[7]

2

0

1

2

Bin 0

Updates Dest. ID Edge Wt.

w62

w70

w71

w72

28

Generalization

• PCPM optimizations are generic software techniques

 not specific to the multicore platform used

• Can be ported to FPGAs and GPUs as well

 FPGAs → store vertex data in BRAM

 GPUs → store vertex data in shared memory

 user-controlled on-chip memories even more suitable

29

Outline

• Introduction

• Partition-centric Processing Methodology

• Analytical Evaluation

• Experimental Results

• Generalization

• Conclusion

30

Conclusion

• Proposed novel Partition-centric method for PageRank

• Developed optimizations to

– Reduce volume of DRAM traffic

– Enhance sustained DRAM bandwidth

• Comparison with state-of-the-art on multicore

– Average 𝟐. 𝟕 × increase in throughput

– Average 𝟏. 𝟕 × reduction in DRAM communication

– Average 𝟏. 𝟔 × higher sustained memory bandwidth

• Can be extended to

– Weighted graphs and generic SpMV

– Other platforms such as GPUs and FPGAs etc.

Comments & Questions

projectsharp.usc.edu

https://github.com/kartiklakhotia/pcpm

