
Understanding
Ephemeral Storage for

Serverless Analytics

Ana Klimovic*, Yawen Wang*, Christos Kozyrakis*,
Patrick Stuedi+, Jonas Pfefferle+, Animesh Trivedi+

*Stanford University, +IBM Research

USENIX ATC 2018

Introduction
● Serverless computing enables launching short-lived

tasks with high elasticity and fine-grain resource billing

● This makes serverless computing appealing for
interactive analytics

2

Introduction
● Serverless computing enables launching short-lived

tasks with high elasticity and fine-grain resource billing

● This makes serverless computing appealing for
interactive analytics

● The challenge: tasks (‘lambdas’) need an efficient way
to communicate intermediate results

3

ephemeral data

4

In traditional analytics...

mapper
0

mapper
1

mapper
2

mapper
3

reducer
0

reducer
1

● Ephemeral data is exchanged directly between tasks

5

In traditional analytics...

mapper
0

mapper
1

mapper
2

mapper
3

reducer
0

reducer
1

● Ephemeral data is exchanged directly between tasks

6

● Direct communication between lambdas is difficult:

○ Lambdas are short-lived and stateless
○ Users have no control over lambda scheduling

In serverless analytics...

7

● Direct communication between lambdas is difficult:

○ Lambdas are short-lived and stateless
○ Users have no control over lambda scheduling

In serverless analytics...

mapper
0

mapper
1

mapper
2

mapper
3

reducer
0

reducer
1

?

8

● The natural approach is to share data through a
common data store

In serverless analytics...

9

● The natural approach is to share data through a
common data store

In serverless analytics...

reducer
0

reducer
1

mapper
0

mapper
1

mapper
2

mapper
3

10

● The natural approach is to share data through a
common data store

In serverless analytics...

reducer
0

reducer
1

However, it is not clear whether
existing storage systems are a good
fit for ephemeral data sharing.

11

1. What are the ephemeral I/O characteristics of
serverless analytics applications?

2. How do applications perform using existing
systems (e.g., S3, Redis) for ephemeral I/O?

3. What storage media (DRAM, Flash, HDD)
satisfies I/O requirements at the lowest cost?

Questions:

1. Application Ephemeral I/O Patterns

12

0.85 GB

100 GB

6 GB

Ephemeral Data CapacityEphemeral I/O Throughput:
Write (dotted), Read (solid)

Time (s)

T
o

ta
l G

B
/s

Application Type

Distributed
Compilation

High throughput and IOPS due
to high parallelism: lambdas
each compile independent files

Archiving and linking lambdas are
serialized as they depend on previous
lambdas → low parallelism, low I/O rate

13

0.85 GB

100 GB

6 GB

Ephemeral Data CapacityEphemeral I/O Throughput:
Write (dotted), Read (solid)

Time (s)

T
o

ta
l G

B
/s

1. Application Ephemeral I/O Patterns

Application Type

Distributed
Compilation

MapReduce

High throughput due to high
I/O intensity and parallelism

(up to 7.5 GB/s with 500
concurrent lambdas)

14

0.85 GB

100 GB

6 GB

Ephemeral Data CapacityEphemeral I/O Throughput:
Write (dotted), Read (solid)

T
o

ta
l G

B
/s

1. Application Ephemeral I/O Patterns

Application Type

Distributed
Compilation

MapReduce

Video Analytics

15

Wide range of I/O sizes
(bytes to 100s of MBs)

Ephemeral I/O Size

1. Application Ephemeral I/O Patterns

Thus, an ephemeral storage
system should support high
throughput and low latency.

16

2. Existing Storage Systems

1. Cloud object storage system (e.g. Amazon S3)
○ Pay only for the capacity and throughput you use
○ Resources managed by cloud provider

2. In-memory key-value store (e.g. Redis)
○ High performance at the higher cost of DRAM
○ Manually select and scale storage instance

3. Distributed Flash-based data store (e.g. Crail-ReFlex)
○ Use Flash vs. DRAM for high bandwidth at lower cost
○ Manually select and scale storage instances

We focus on three different categories:

17

2. Existing Storage Systems

1. Cloud object storage system (e.g. Amazon S3)
○ Pay only for the capacity and throughput you use
○ Resources managed by cloud provider

2. In-memory key-value store (e.g. Redis)
○ High performance at the higher cost of DRAM
○ Manually select and scale storage instance

3. Distributed Flash-based data store (e.g. Crail-ReFlex)
○ Use Flash vs. DRAM for high bandwidth at lower cost
○ Manually select and scale storage instances

We focus on three different categories:

18

2. Existing Storage Systems

1. Cloud object storage system (e.g. Amazon S3)
○ Pay only for the capacity and throughput you use
○ Resources managed by cloud provider

2. In-memory key-value store (e.g. Redis)
○ High performance at the higher cost of DRAM
○ Manually select and scale storage instance

3. Distributed Flash-based data store (e.g. Crail-ReFlex)
○ Use Flash vs. DRAM for high bandwidth at lower cost
○ Manually select and scale storage instances

We focus on three different categories:

19

2. Existing Storage Systems

1. Cloud object storage system (e.g. Amazon S3)
○ Pay only for the capacity and throughput you use
○ Resources managed by cloud provider

2. In-memory key-value store (e.g. Redis)
○ High performance at the higher cost of DRAM
○ Manually select and scale storage instance

3. Distributed Flash-based data store (e.g. Crail-ReFlex)
○ Use Flash for high bandwidth at lower cost
○ Manually select and scale storage instances

We focus on three different categories:

Latency sensitivity

20

● Distributed compilation job shows some sensitivity to latency due to small I/Os

As concurrency increases,
job runtime becomes

dominated by the sequential
portion of the application

The impact of application parallelism

21

Distributed compilation (gg-cmake) with up to 650 concurrent lambdas using S3

Lambda #

Ephemeral read I/O
Compute
Ephemeral write I/O

Figure based on Fig. 6 in “A thunk to remember: make -j1000 (and other jobs) on functions-as-a-service infrastructure (preprint).” Fouladi, S., et al.

The impact of application parallelism

22

Distributed compilation (gg-cmake) with up to 650 concurrent lambdas using Redis

Each lambda spends less
time on I/O

But job runtime is the
same as with S3

Lambda #

Ephemeral read I/O
Compute
Ephemeral write I/O

Figure based on Fig. 6 in “A thunk to remember: make -j1000 (and other jobs) on functions-as-a-service infrastructure (preprint).” Fouladi, S., et al.

The impact of application parallelism

23

Distributed compilation (gg-cmake) with up to 650 concurrent lambdas using Redis

Runtime is limited by dependencies
on compute-bound lambdas

Lambda #

Ephemeral read I/O
Compute
Ephemeral write I/O

Figure based on Fig. 6 in “A thunk to remember: make -j1000 (and other jobs) on functions-as-a-service infrastructure (preprint).” Fouladi, S., et al.

The impact of application parallelism

24

Distributed compilation (gg-cmake) with up to 650 concurrent lambdas using Redis

Lambda #

Applications with inherently limited
parallelism have lower ephemeral

I/O throughput demands

Ephemeral read I/O
Compute
Ephemeral write I/O

Figure based on Fig. 6 in “A thunk to remember: make -j1000 (and other jobs) on functions-as-a-service infrastructure (preprint).” Fouladi, S., et al.

High I/O intensity

25

MapReduce sort (100 GB) demands high throughput

Input/Output I/O
Compute
Ephemeral data I/O

Original input/output data I/O

High I/O intensity

26

MapReduce sort (100 GB) demands high throughput

S3 does not provide
sufficient throughput

S3 also does not provide
sufficient IOPS scalability

Compute
Ephemeral data I/O

Original input/output data I/O

High I/O intensity

27

MapReduce sort (100 GB) demands high throughput

Compute
Ephemeral data I/O

Original input/output data I/O

Similar performance
with Flash and DRAM

High I/O and compute intensity

28

Video analytics has both high I/O and compute intensity

Similar performance
with Flash and DRAM

3. Choice of storage media

29

● Compare throughput:capacity ratios of DRAM, Flash, HDD

DRAM: 20 GB/s / 64 GB = 0.3

Flash: 3.2 GB/s / 500 GB = 0.006

Disk: 0.7 GB/s / 6000 GB = 0.0001

T
o

ta
l e

p
h

em
er

al
 G

B
/s

 p
er

 G
B

3. Choice of storage media

30

● Compare throughput:capacity ratios of DRAM, Flash, HDD

DRAM: 20 GB/s / 64 GB = 0.3

Flash: 3.2 GB/s / 500 GB = 0.006

Disk: 0.7 GB/s / 6000 GB = 0.0001

Application throughput:capacity
ratios are in DRAM - Flash regimes

T
o

ta
l e

p
h

em
er

al
 G

B
/s

 p
er

 G
B

3. Choice of storage media

31

● Compare throughput:capacity ratios of DRAM, Flash, HDD

DRAM: 20 GB/s / 64 GB = 0.3

Flash: 3.2 GB/s / 500 GB = 0.006

Disk: 0.7 GB/s / 6000 GB = 0.0001

Application throughput:capacity
ratios are in DRAM - Flash regimes

Using Flash vs. DRAM, jobs
achieve similar performance

at lower cost per bit

T
o

ta
l e

p
h

em
er

al
 G

B
/s

 p
er

 G
B

Putting it all together...

32

● Ephemeral storage wishlist for serverless analytics:

● Existing systems provide some but not all of these properties

★ High throughput and IOPS

★ Low latency, particularly important for small requests

★ Fine-grain, elastic scaling to adapt to elastic application load

★ Automatic rightsizing of resource allocations

★ Low cost, pay-what-you-use

33

● Our analysis motivates the design of an ephemeral
storage service that supports automatic, fine-grain
storage capacity and throughput allocation

● Ephemeral I/O requirements depend on a job’s
latency sensitivity, inherent parallelism and its I/O
vs. compute intensity

● Flash is an appealing storage media for ephemeral
I/O performance-cost requirements

Conclusion

