N SN
Pl

o o i 4 '
P, Y

il T {
- 'Q,;.\ %

! "8 Understanding.
g Ephemeral Storage for
il Serverless Analytics

%, » .

13

. PN
< 7S
p Zu > A
», ’

. S Ana Klimovic*, Yawen Wang*, Christos Kozyrakis®,
Patrick Stuedi’, Jonas Pfefferle’, Animesh Trivedi*
*Stanford University, "IBM Research

} Stanford T===

University Resear .

- e USENIX ATC 2018

Introduction

e Serverless computing enables launching short-lived o
tasks with high elasticity and fine-grain resource billing __....4

(20

e This makes serverless computing appealing for
interactive analytics

Introduction

e Serverless computing enables launching short-lived o
tasks with high elasticity and fine-grain resource billing __....4

e This makes serverless computing appealing for 3
interactive analytics

e The challenge: tasks (‘lambdas’) need an efficient way
to communicate intermediate results

\ }
|

ephemeral data

In traditional analytics...

e Ephemeral datais exchanged directly between tasks

mapper, P .
Feaucer Rl
. |
mapper,; o o
MabPe, s m reducer,

mapper; m m

In traditional analytics...

e Ephemeral datais exchanged directly between tasks

reducerO
mapper,
mapper, reducer,

mapper,

In serverless analvtics...

e Direct communication between lambdas is difficult:

o Lambdas are short-lived and stateless e
o Users have no control over lambda scheduling- ",

In serverless analvtics...

e Direct communication between lambdas is difficult:

o Lambdas are short-lived and stateless et
o Users have no control over lambda scheduling+ ;3

mapper,
ae ;
reducer
0
mapper; o o
?
maPPe @ reducer,

mapper; m m

In serverless analvtics...

e The natural approachis to share data through a
common data store

In serverless analvtics...

e The natural approachis to share data through a
common data store

mapper,
mapper1 reducero
mapper,

reducer,
Mapper,

In serverless analvtics...

e The natural approachis to share data through a
common data store

reducerO

reducer1

However, it is not clear whether - E
existing storage systems are a good '3 o
fit for ephemeral data sharing.

Questions:

1. What are the ephemeral I/O characteristics of
serverless analytics applications?

2. How do applications perform using existing
systems (e.g., S3, Redis) for ephemeral |/0?

3. What storage media (DRAM, Flash, HDD)
satisfies I/O requirements at the lowest cost?

1. Application Ephemeral |/O Patterns

Ephemeral I/0 Throughput:

Application Type Write (dotted), Read (solid)

Ephemeral Data Capacity

L o4 —— gg-cmake
Distributed O 02 0.85 GB
Compilation :__,O“ o
|_
High throughput and IOPS due Archiving and linking lambdas are
to high parallelism: lambdas serialized as they depend on previous
each compile independent files lambdas — low parallelism, low I/O rate

12

1. Application Ephemeral |/O Patterns

Ephemeral I/0 Throughput:

Application Type Write (dotted), Read (solid)

Ephemeral Data Capacity

0.41 —— gg-cmake
Dlstr|-but-ed @ 0 0.85 GB
Compilation o0 .
O oo : €T et tadlone eSS : -
© 7.5 10.0 12.5 15.0 17.5 20.0
45 7.5
= —— sort100GB
5.0
MapReduce N 100 GB
0.0

High throughput due to high
I/O intensity and parallelism
(upto 7.5 GB/s with 500
concurrent lambdas)

13

1. Application Ephemeral |/O Patterns

Ephemeral I/0 Throughput:

Aoplication T . : Ephemeral D i
pplication Type Write (dotted), Read (solid) phemeral Data Capacity
0.41 —— gg-cmake
Distributed 02l 0.85 GB
Compilation -~ N
" oo 75 10.0 125 150 175 20.0
g " —— sort100GB
MapReduce T L. 100GB
E 0:0
0 10 20 30
1'5i video-analytics
Video Analytics ol ‘ 6 GB
*% 5 10 ’ 15 20 25 30 35 40

14

1. Application Ephemeral |/O Patterns

Ephemeral 1/0 Size

1.0
1 gg cmake
0.8: __ video analytics
% sortl00GB Ve i el 1O s
0.6/ (bytes to 100s of MBs)
é %/\
0.4
Thus, an ephemeral storage
0.2] system should support high
throughput and low latency.

0900102 10° 10¢° 105 10° 107 10°
I/O size (bytes)

15

2. Existing Storage Systems

We focus on three different categories:

16

2. Existing Storage Systems

We focus on three different categories:

1. Cloud object storage system (e.g. Amazon S3)
o Payonly for the capacity and throughput you use
o Resources managed by cloud provider

Amazon S3

17

2. Existing Storage Systems

We focus on three different categories:

1. Cloud object storage system (e.g. Amazon S3)

2.

©)

©)

Pay only for the capacity and throughput you use
Resources managed by cloud provider

In-memory key-value store (e.g. Redis)

O

O

High performance at the higher cost of DRAM
Manually select and scale storage instance

Amazon S3

redis

18

2. Existing Storage Systems

We focus on three different categories:

1. Cloud object storage system (e.g. Amazon S3)
o Payonly for the capacity and throughput you use
o Resources managed by cloud provider

2. In-memory key-value store (e.g. Redis)
o High performance at the higher cost of DRAM
o Manually select and scale storage instance

3. Distributed Flash-based data store (e.g. Crail-ReFlex)
o Use Flash for high bandwidth at lower cost
o Manually select and scale storage instances

Amazon S3

redis

19

Latency sensitivity

e Distributed compilation job shows some sensitivity to latency due to small 1/Os

800

—— Redis
-=-=- S3

o
o
©

~

As concurrency increases,
job runtime becomes
dominated by the sequential
portion of the application

Job Runtime (s)
D
o
o

N
o
Q

-
]
=
Ny g -y
s ~

1 10 100 1000
Number of concurrent lambdas

20

The impact of application parallelism

Distributed compilation (gg-cmake) with up to 650 concurrent lambdas using S3
30

® Ephemeral read I/0 o5
® Compute

B Ephemeral write /O

20
15

time (s)

W 10

“ ’H][5

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

/|
|
.
‘ |
\ i) T

Lambda # 21

Figure based on Fig. 6 in “A thunk to remember: make -j1000 (and other jobs) on functions-as-a-service infrastructure (preprint).” Fouladi, S., et al.

The impact of application parallelism

Distributed compilation (gg-cmake) with up to 650 concurrent lambdas using Redis

. . —30
But job runtime is the
® Ephemeral read I/0 same as with S3 o5
= Compute Each lambda spends less ;
B Ephemeral write I/0 imeen o o <0 -
il W 1 =
1 10
L ‘
M 1001 il L -
0
0 200 400 600 800 1000 1200 1400 1600 1800 2000
Lambda # 22

Figure based on Fig. 6 in “A thunk to remember: make -j1000 (and other jobs) on functions-as-a-service infrastructure (preprint).” Fouladi, S., et al.

The impact of application parallelism

Distributed compilation (gg-cmake) with up to 650 concurrent lambdas using Redis
30
B Ephemeral read 1/O Runtime is limited by dependencies
P _ 25
B Compute on compute-bound lambdas
_l 20

B Ephemeral write I/O
ks | 19

time (s)

10

AERIRTATIE powci 5

0
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Lambda # 23

Figure based on Fig. 6 in “A thunk to remember: make -j1000 (and other jobs) on functions-as-a-service infrastructure (preprint).” Fouladi, S., et al.

The impact of application parallelism

Distributed compilation (gg-cmake) with up to 650 concurrent lambdas using Redis

30
= Ephemeral read I/0 Applications with inherently limited 25
= Compute parallelism have lower ephemeral ;
I Ephemeral write 1/O I/0 throughput demands | 20 -
/115 o
=
| y 10 ©
' | | ' e [l | i 5
i ”“'&. .‘uidml\ “\\J‘\i‘\‘ ol “
0

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Lambda # 24

Figure based on Fig. 6 in “A thunk to remember: make -j1000 (and other jobs) on functions-as-a-service infrastructure (preprint).” Fouladi, S., et al.

High I/O intensity

MapReduce sort (100 GB) demands high throughput

100
B Original input/output data I/0

B Compute
¥ Ephemeral data I/0

H ()] (o]
o o o

Average Time per Lambda (s)
N
<

o

S3 Redis Crail-ReFlex Redis Crail-ReFlex Redis Crail-ReFlex
250 lambdas 500 lambdas 1000 lambdas

25

High I/O intensity

MapReduce sort (100 GB) demands high throughput

100+

Average Time per Lambda (s)

o

(o]
o

(@)}
o

I
o

N
o

53

S3 does not provide
sufficient throughput

B Original input/output data I/0
B Compute
¥ Ephemeral data I/0

Redis Crail-ReFlex
250 lambdas

S3 also does not provide
sufficient IOPS scalability

Redis Crail-ReFlex Redis Crail-ReFlex

500 lambdas

1000 lambdas

26

High I/O intensity

MapReduce sort (100 GB) demands high throughput

100
B Original input/output data I/0

B Compute
¥ Ephemeral data I/0

(o]
o

(@)}
o

I
o

Similar performance
with Flash and DRAM

Average Time per Lambda (s)
N
<

o

S3 Redis Crail-ReFlex Redis Crail-ReFlex Redis Crail-ReFlex 27
250 lambdas 500 lambdas 1000 lambdas

High |/O and compute intensity

Video analytics has both high I/0 and compute intensity

=
N

=
o

Average Time per Lambda (s)
[e)}

o

Stage 1: Decode frames

ep

s

N

Z.

7 7.

S3

Redis Crail-ReFlex

Stage 2: MXNET classification
12

10

8.

v/ 1/0 Read
EEm Compute
@ 1/O Write

S3

Redis Crail-ReFlex

Similar performance
with Flash and DRAM

28

Total ephemeral GB/s per GB

3. Choice of storage media

0.50+

0.254

0.00+

0.05+

0.00

0.2

0.14

0.0

Compare throughput:capacity ratios of DRAM, Flash, HDD

—— gg-cmake
g F S i Fone
) 7.5 10.0 12.5 15.0 17.5 20.0
Favi —— Sort100GB
,I \‘~‘ /\’\/Q\V\'\M‘
/\/l \
/ \
\
\‘ ___________________
10 20 30 40 50 60 70 80
,’/‘\ ——— video-analytics
]
1, ‘\
/ \
5 10 15 20 25 30 35

Time (s)

40

DRAM:20GB/s/64GB =0.3
Flash: 3.2 GB/s/500GB =0.006
Disk: 0.7 GB/s/ 6000 GB = 0.0001

29

Total ephemeral GB/s per GB

3. Choice of storage media

0.50+

0.254

0.00+

0.05+

0.00

0.2

0.14

0.0

Compare throughput:capacity ratios of DRAM, Flash, HDD

—— gg-cmake
g F S i Fone
) 7.5 10.0 12.5 15.0 17.5 20.0
Favi —— Sort100GB
l, \‘~‘ /\’\/~‘\—\,\’\~\‘
r\// \
/ \
\
_ ___________________
10 20 30 40 50 60 70 80
//“ —— video-analytics
/
/I ‘\
/ \
5 10 15 20 25 30 35

Time (s)

40

DRAM:20GB/s/64GB =0.3
Flash: 3.2 GB/s/500GB =0.006
Disk: 0.7 GB/s/ 6000 GB = 0.0001

|

Application throughput:capacity
ratios are in DRAM - Flash regimes

30

Total ephemeral GB/s per GB

3. Choice of storage media

0.50+

0.254

0.00+

0.05+

0.00

0.2

0.14

0.0

Compare throughput:capacity ratios of DRAM, Flash, HDD

—— gg-cmake
g B i e
) 7.5 10.0 12.5 15.0 17.5 20.0
2V —— Sort100GB
r\// \
/ \
\
N el e e e e N
10 20 30 40 50 60 70 80
//‘\ —— video-analytics
/
/I ‘\
/ \
— II _\. M
5 10 15 20 25 30 35

Time (s)

DRAM:20GB/s/64GB =0.3
Flash: 3.2 GB/s/500GB =0.006
Disk: 0.7 GB/s/ 6000 GB = 0.0001

Application throughput:capacity
ratios are in DRAM - Flash regimes

Using Flash vs. DRAM, jobs
achieve similar performance
at lower cost per bit

31

Putting it all together...

e Ephemeral storage wishlist for serverless analytics:

*
*
*
*
*

High throughput and IOPS

Low latency, particularly important for small requests
Fine-grain, elastic scaling to adapt to elastic application load
Automatic rightsizing of resource allocations

Low cost, pay-what-you-use

e Existing systems provide some but not all of these properties

32

Conclusion

e Our analysis motivates the design of an ephemeral
storage service that supports automatic, fine-grain
storage capacity and throughput allocation '

e Ephemeral I/O requirements depend on ajob’s
latency sensitivity, inherent parallelism and its |/O
vs. compute intensity

e Flashis an appealing storage media for ephemeral
|/O performance-cost requirements

