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Introduction
● Serverless computing enables launching short-lived 

tasks with high elasticity and fine-grain resource billing 

● This makes serverless computing appealing for 
interactive analytics
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Introduction
● Serverless computing enables launching short-lived 

tasks with high elasticity and fine-grain resource billing 

● This makes serverless computing appealing for 
interactive analytics

● The challenge: tasks (‘lambdas’) need an efficient way 
to communicate intermediate results
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ephemeral data
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In traditional analytics...
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● Direct communication between lambdas is difficult: 

○ Lambdas are short-lived and stateless
○ Users have no control over lambda scheduling 

In serverless analytics...



7

● Direct communication between lambdas is difficult: 

○ Lambdas are short-lived and stateless
○ Users have no control over lambda scheduling 

In serverless analytics...

mapper
0

mapper
1

mapper
2

mapper
3

reducer
0

reducer
1

?



8

● The natural approach is to share data through a 
common data store 

In serverless analytics...
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● The natural approach is to share data through a 
common data store 

In serverless analytics...
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However, it is not clear whether 
existing storage systems are a good 
fit for ephemeral data sharing. 
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1. What are the ephemeral I/O characteristics of 
serverless analytics applications?

2. How do applications perform using existing 
systems (e.g., S3, Redis) for ephemeral I/O? 

3. What storage media (DRAM, Flash, HDD) 
satisfies I/O requirements at the lowest cost? 

Questions:



1. Application Ephemeral I/O Patterns
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Distributed 
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High throughput and IOPS due 
to high parallelism: lambdas 
each compile independent files 

Archiving and linking lambdas are 
serialized as they depend on previous 
lambdas → low parallelism, low I/O rate
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Application Type

Distributed 
Compilation

MapReduce

High throughput due to high 
I/O intensity and parallelism

(up to 7.5 GB/s with 500 
concurrent lambdas) 
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Wide range of I/O sizes 
(bytes to 100s of MBs)

Ephemeral I/O Size

1. Application Ephemeral I/O Patterns

Thus, an ephemeral storage 
system should support high 
throughput and low latency.
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2. Existing Storage Systems

1. Cloud object storage system (e.g. Amazon S3)
○ Pay only for the capacity and throughput you use
○ Resources managed by cloud provider

2. In-memory key-value store (e.g. Redis)
○ High performance at the higher cost of DRAM
○ Manually select and scale storage instance

3. Distributed Flash-based data store (e.g. Crail-ReFlex)
○ Use Flash vs. DRAM for high bandwidth at lower cost
○ Manually select and scale storage instances

We focus on three different categories:
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Latency sensitivity
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● Distributed compilation job shows some sensitivity to latency due to small I/Os

As concurrency increases, 
job runtime becomes 

dominated by the sequential 
portion of the application



The impact of application parallelism

21

Distributed compilation (gg-cmake) with up to 650 concurrent lambdas using S3 

Lambda #

Ephemeral read I/O
Compute
Ephemeral write I/O

Figure based on Fig. 6 in  “A thunk to remember: make -j1000 (and other jobs) on functions-as-a-service infrastructure (preprint).” Fouladi, S., et al.



The impact of application parallelism
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Distributed compilation (gg-cmake) with up to 650 concurrent lambdas using Redis 

Each lambda spends less 
time on I/O

But job runtime is the 
same as with S3

Lambda #

Ephemeral read I/O
Compute
Ephemeral write I/O

Figure based on Fig. 6 in  “A thunk to remember: make -j1000 (and other jobs) on functions-as-a-service infrastructure (preprint).” Fouladi, S., et al.



The impact of application parallelism
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Distributed compilation (gg-cmake) with up to 650 concurrent lambdas using Redis 

Runtime is limited by dependencies 
on compute-bound lambdas 

Lambda #

Ephemeral read I/O
Compute
Ephemeral write I/O

Figure based on Fig. 6 in  “A thunk to remember: make -j1000 (and other jobs) on functions-as-a-service infrastructure (preprint).” Fouladi, S., et al.



The impact of application parallelism
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Distributed compilation (gg-cmake) with up to 650 concurrent lambdas using Redis 

Lambda #

Applications with inherently limited 
parallelism have lower ephemeral 

I/O throughput demands

Ephemeral read I/O
Compute
Ephemeral write I/O

Figure based on Fig. 6 in  “A thunk to remember: make -j1000 (and other jobs) on functions-as-a-service infrastructure (preprint).” Fouladi, S., et al.



High I/O intensity
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MapReduce sort (100 GB) demands high throughput

Input/Output I/O
Compute 
Ephemeral data I/O

Original input/output data I/O



High I/O intensity
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MapReduce sort (100 GB) demands high throughput

S3 does not provide 
sufficient  throughput

S3 also does not provide 
sufficient IOPS scalability

Compute 
Ephemeral data I/O

Original input/output data I/O



High I/O intensity
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MapReduce sort (100 GB) demands high throughput

Compute 
Ephemeral data I/O

Original input/output data I/O

Similar performance 
with Flash and DRAM



High I/O and compute intensity
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Video analytics has both high I/O and compute intensity 

Similar performance 
with Flash and DRAM



3. Choice of storage media

29

● Compare throughput:capacity ratios of DRAM, Flash, HDD

DRAM: 20 GB/s / 64 GB    = 0.3

Flash:  3.2 GB/s / 500 GB   = 0.006

Disk:   0.7 GB/s / 6000 GB =  0.0001
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3. Choice of storage media
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● Compare throughput:capacity ratios of DRAM, Flash, HDD

DRAM: 20 GB/s / 64 GB    = 0.3

Flash:  3.2 GB/s / 500 GB   = 0.006

Disk:   0.7 GB/s / 6000 GB =  0.0001

Application throughput:capacity 
ratios are in DRAM - Flash regimes

Using Flash vs. DRAM, jobs 
achieve similar performance 

at lower cost per bit 
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Putting it all together...
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● Ephemeral storage wishlist for serverless analytics: 

● Existing systems provide some but not all of these properties

★ High throughput and IOPS

★ Low latency, particularly important for small requests

★ Fine-grain, elastic scaling to adapt to elastic application load 

★ Automatic rightsizing of resource allocations

★ Low cost, pay-what-you-use
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● Our analysis motivates the design of an ephemeral 
storage service that supports automatic, fine-grain 
storage capacity and throughput allocation

● Ephemeral I/O requirements depend on a job’s 
latency sensitivity, inherent parallelism and its I/O 
vs. compute intensity

● Flash is an appealing storage media for ephemeral 
I/O performance-cost requirements

Conclusion


