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Configuring analytics in the cloud
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Cloud cluster configuration is difficult yet critical for performance & cost.
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Configuring storage for analytics

e Storage configuration is particularly critical for data analytics
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Configuring storage for analytics

e Storage configuration is particularly critical for data analytics

e Jobs often have multiple data streams (e.g., shuffle, input/output data) with
diverse I/O characteristics, making them suitable for different storage options
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Configuring storage for analytics

e Storage configuration is particularly critical for data analytics

e Jobs often have multiple data streams (e.g., shuffle, input/output data) with
diverse I/O characteristics, making them suitable for different storage options
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Storage configuration is challenging

e Example: selecting between 3 storage options — all other parameters constant

Choosing the right storage is non-trivial
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Performance and cost impact

e Compare the performance and cost of TPC-DS query 64 on 10 configurations
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Performance and cost impact

e Compare the performance and cost of TPC-DS query 64 on 10 configurations
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Performance and cost impact

e Compare the performance and cost of TPC-DS query 64 on 10 configurations
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Contributions

1. Selecta, a tool that recommends near-optimal cloud VM and storage
configurations for target applications based on sparse training data

2. Analysis of data analytics performance with different storage options:
e Which storage options are good fit and for different data streams?

e Whatlessons do we learn for the design of future cloud storage systems?

14




Selecta

e Asystem that predicts the performance of a target application on candidate
configurations using sparse training data across jobs — recommend the right config
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e Asystem that predicts the performance of a target application on candidate
configurations using sparse training data across jobs — recommend the right config
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e Asystem that predicts the performance of a target application on candidate
configurations using sparse training data across jobs — recommend the right config
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Selecta

e Asystem that predicts the performance of a target application on candidate
configurations using sparse training data across jobs — recommend the right config
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Selecta

e Asystem that predicts the performance of a target application on candidate
configurations using sparse training data across jobs — recommend the right config
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Collaborative Filtering

e Collaborative filtering approach: use singular value decomposition (SVD) to
decompose app-config matrix P to uncover latent (“hidden”) similarity concepts
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Collaborative Filtering

e Collaborative filtering approach: use singular value decomposition (SVD) to
decompose app-config matrix P to uncover latent (“hidden”) similarity concepts

e Pissparse and SVD requires dense matrix — use stochastic gradient descent to
update unknown entries; objective function minimizes error on known entries
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Collaborative Filtering

e Collaborative filtering approach: use singular value decomposition (SVD) to
decompose app-config matrix P to uncover latent (“hidden”) similarity concepts

v Automatically infers (latent) features
v Works well with sparse training set
v Agnostic to the applications and configurations used
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Evaluation Methodology

e Run >100different Spark SQL/ML applications on 17 different configurations
e Two dataset sizes for each application
e Our candidate configuration space (in Amazon EC2):
o 8-node clusters of 3 different VM sizes (vary CPU cores & DRAM per node)

o Storage options:

Remote block storage (EBS) HDD
Remote block storage (EBS) SSD
Local block storage NVMe

S3 object storage
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Selecta's Accuracy

e Whatis the probability of predicting a configuration that is near-optimal?
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Selecta's Accuracy

e Recommend near-optimal (T = 0.1) config for best perf with 94% probability
e Recommend near-optimal (T=0.1) config for best cost with 80% probability

Dotted line shows
improvement with
one feedback round

cost*perf
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Comparison to alternative approaches

e Selecta’s collaborative filtering learns best from the sparse training data even
though it does not leverage as many features as the random forest predictor
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Sensitivity analysis

e Training matrix should be ~20% dense in steady state for good accuracy

T 1.0
E -
o
o /-"/\
B 0.8
=
Te]
— M\.__—_
c 0.6
S
.3 /
©
= 0.4
o
o
E— rf
£ 0.2 st
=
_‘é‘ —— [cos¥perf
a 09, 0.2 0.4 0.6 0.8 1.0

Fraction of configs profiled per training app

27



Dealing with application changes

e Changesinthe input dataset can alter the CPU vs. I/O intensity of the job and

influence the choice of optimal configuration
e When CPU utilization varies beyond a threshold, treat the job as a new application
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essons for storage system design

NVMe storage is performance and cost efficient for data analytics
o Great fit for intermediate data (shuffle, broadcast, etc.)

o Good performance for input/output data but can get expensive to store
the data long-term (use S3 instead)

Fine-grain allocation of storage capacity and bandwidth -- disaggregated from
compute resources -- is desired for better utilization

There is a need to optimize across layers (apps, frameworks, OS) as many
configurations fail to achieve their potential due to software inefficiencies
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Conclusion

e Cloud cluster configuration is difficult yet critical for performance and cost

e Selectaisatool that uses collaborative filtering to make near-optimal
configuration recommendations for a user’s performance-cost objective

m  94% probability of predicting configuration with near-optimal performance
m 80% probability of predicting configuration with near-optimal cost

e We use Selecta to explore the cloud storage landscape in the context of data
analytics to guide the design of future storage systems

30




