
Scaling Guest OS Critical 
Sections with eCS

Sanidhya Kashyap, Changwoo Min, Taesoo Kim



The physical and virtual CPU abstraction

● Mismatch between 

CPU abstraction 

2



The physical and virtual CPU abstraction

3

Physical machine (Host)
pCPU 1 pCPU 2 pCPU 3 pCPU 4

● Mismatch between 

CPU abstraction 



The physical and virtual CPU abstraction

4

Hardware 
abstraction Physical machine (Host)

pCPU 1 pCPU 2 pCPU 3 pCPU 4

● Mismatch between 

CPU abstraction 



The physical and virtual CPU abstraction

5

Physical machine (Host)
pCPU 1

Hypervisor

pCPU 2 pCPU 3 pCPU 4

Virtual machine
vCPU 1 vCPU 2 vCPU 3 vCPU 4

App App App...
Hardware 
abstraction

● Mismatch between 

CPU abstraction 



The physical and virtual CPU abstraction

6

Hardware 
abstraction

Software 
abstraction

Physical machine (Host)
pCPU 1

Hypervisor

pCPU 2 pCPU 3 pCPU 4

Virtual machine
vCPU 1 vCPU 2 vCPU 3 vCPU 4

App App App...
● Mismatch between 

CPU abstraction 



The physical and virtual CPU abstraction

● Mismatch between 

CPU abstraction 

● VM consolidation
- Contention on pCPU

7

Hardware 
abstraction

Software 
abstraction

Physical machine (Host)
pCPU 1

Hypervisor

pCPU 2 pCPU 3 pCPU 4

Virtual machine
vCPU 1 vCPU 2 vCPU 3 vCPU 4

App App App...

Multiple vCPUs

Physical machine (Host)
pCPU 1

Hypervisor

pCPU 2 pCPU 3 pCPU 4

VM2

Apps

VM3

Apps

VM4

Apps

VM1

Apps



The physical and virtual CPU abstraction

● Mismatch between 

CPU abstraction 

● VM consolidation
- Contention on pCPU

8

Hardware 
abstraction

Software 
abstraction

Physical machine (Host)
pCPU 1

Hypervisor

pCPU 2 pCPU 3 pCPU 4

Virtual machine
vCPU 1 vCPU 2 vCPU 3 vCPU 4

App App App...

Multiple vCPUs

Physical machine (Host)
pCPU 1

Hypervisor

pCPU 2 pCPU 3 pCPU 4

VM2

Apps

VM3

Apps

VM4

Apps

VM1

Apps

A vCPU can be preempted without notification



The physical and virtual CPU abstraction

● Mismatch between 

CPU abstraction 

● VM consolidation
- Contention on vCPU

9

Hardware 
abstraction

Software 
abstraction

Physical machine (Host)
pCPU 1

Hypervisor

pCPU 2 pCPU 3 pCPU 4

Virtual machine
vCPU 1 vCPU 2 vCPU 3 vCPU 4

App App App...

Multiple vCPUs

Physical machine (Host)
pCPU 1

Hypervisor

pCPU 2 pCPU 3 pCPU 4

VM2

Apps

VM3

Apps

VM4

Apps

VM1

Apps

A vCPU can be preempted without notification

Double scheduling issue



vCPU 1 vCPU 3vCPU 2vCPU 1

Double scheduling: Lock holder preemption (LHP)

● vCPU holding a lock is preempted

● Preemption hinders forward progress of the VM

● Can lead to application slowdown by 20 -- 130%

10

vCPU
scheduled

vCPU
preempted

A B C

File

Access a file Running task 
in a VM



Efforts to mitigate preemption issues

11

● Focussed only non-blocking locks

○ Acquire iff sufficient schedule time

● Hotplug vCPUs on the fly

○ May not scale to large vCPU VMs

● VM co-scheduling

○ Does not always alleviate the issue

● Mostly address other preemption 

problem

○ Blocking locks

○ Unfair non-blocking locks

● Hardware features to mitigate 

preemptions

Research efforts Current practice



Efforts to mitigate preemption issues

12

● Focussed only non-blocking locks

○ Acquire iff sufficient schedule time

● Hotplug vCPUs on the fly

○ May not scale to large vCPU VMs

● VM co-scheduling

○ Does not always alleviate the issue

● Mostly address other preemption 

problem

○ Blocking locks

○ Unfair non-blocking locks

● Hardware features to mitigate 

preemptions

Research efforts Current practice

Prior approaches are mostly specialized



Still the double scheduling is looming!
● LHP for blocking locks

○ mutex, rwsem

● Readers preemption (RP) in read-write locks

○ A reader is preempted while holding the lock

● Interrupt context preemption (ICP)

○ Preemption of a vCPU processing an interrupt

13

● Blocked-waiter wakeup (BWW)

○ Waking up a blocked thread on an idle vCPU is at least 10 times costlier



Still the double scheduling is looming!
● LHP for blocking locks

○ mutex, rwsem

● Readers preemption (RP) in read-write locks

○ A reader is preempted while holding the lock

● Interrupt context preemption (ICP)

○ Preemption of a vCPU processing an interrupt

14

● Blocked-waiter wakeup (BWW)

○ Waking up a blocked thread on an idle vCPU is at least 10 times costlier

Semantic gap between virtual and physical CPU



Our approach to address semantic gap

15

Insight:
A vCPU may be running a critical task!

Approach:
Avoid preempting a vCPU with a critical task

Design:
Identify and mark/unmark a critical task



vCPU 1vCPU 1 vCPU 2vCPU 2 vCPU 3

Identifying each critical section with eCS

16

Scheduled
vCPU

Preempted
vCPU

A B C

File

Access a file

● Synchronization primitives protect critical sections → ensure OS progress

● Mark and unmark critical sections before and after the critical section

● Conservative, but effective approach to address each preemption problem

○ 60 LoC annotates 85K lock invocations in 13M LoC in Linux

Running task 
in a VM



vCPU 1vCPU 1 vCPU 2vCPU 2 vCPU 3

Identifying each critical section with eCS

17

Scheduled
vCPU

Preempted
vCPU

A B C

File

Access a file Enlightened
vCPU 

● Synchronization primitives protect critical sections → ensure OS progress

● Mark and unmark critical sections before and after the critical section

● Conservative, but effective approach to address each preemption problem

○ 60 LoC annotates 85K lock invocations in 13M LoC in Linux

Running task 
in a VM



vCPU 1 vCPU 2vCPU 2 vCPU 3

Identifying each critical section with eCS

18

Scheduled
vCPU

Preempted
vCPU

A B C

File

Access a file Enlightened
vCPU 

● Synchronization primitives protect critical sections → ensure OS progress

● Mark and unmark critical sections before and after the critical section

● Conservative, but effective approach to address each preemption problem

○ 60 LoC annotates 85K lock invocations in 13M LoC in Linux

Running task 
in a VM



Sharing the state for efficient notification

19

vCPU(A) vCPU(B) vCPU(C)

eCS
states

eCS
states

eCS
states

VM

...

pcpu_overloaded (0/1)
vcpu_preempted (0/1)

non_preemptable_ecs_count
preemptable_ecs_count

vCPU(A)
state

eCS
states

eCS
states

eCS
states

vCPU(B)
state

vCPU(C)
state

Hypervisor

...

● Each vCPU shares memory with the hypervisor

● vCPU updates information for critical sections

○ Notifies critical task to the hypervisor

● Hypervisor also updates scheduler context 

before/after scheduling out a vCPU

○ Enables vCPU to make efficient scheduling 

decisions



Lightweight para-virtualized APIs to update states

20

vCPU(A) vCPU(B) vCPU(C)

eCS
states

eCS
states

eCS
states

VM

...

pcpu_overloaded (0/1)
vcpu_preempted (0/1)

Hint API

VM → Hypervisor

activate_non_preemptable_ecs(cpu)

deactivate_non_preemptable_ecs(cpu_id)

activate_preemptable_ecs(cpu_id))

deactivate_preemptable_ecs(cpu_id)

Hypervisor → VM
is_vcpu_preempted(cpu_id)

is_pcpu_overloaded(cpu_id)

non_preemptable_ecs_count
preemptable_ecs_count

vCPU(A)
state

eCS
states

eCS
states

eCS
states

vCPU(B)
state

vCPU(C)
state

Hypervisor

...

Updated by each vCPU; read by the hypervisor

Update by the hypervisor; read by a vCPU



vCPU 1 vCPU 3vCPU 2vCPU 1

Hypervisor checks eCS state before scheduling out a vCPU

21

A B C

File

Access a file

vCPU(A) vCPU(B) vCPU(C)

eCS
states

eCS
states

eCS
states

ecs_count (0)

VM1

...

ecs_count (1)ecs_count (0)

...

Time shared
pCPU 1

vCPU 1VM2

vCPU 1VM1

Scheduled
vCPU

Preempted
vCPU

Enlightened
vCPU 

Running task 
in a VM

➀ Running vCPU 1
➁ vCPU 1 acquires lock
➂ vCPU 1 updates eCS count
➃ Hypervisor checks states before vCPU 1 
preemption
➄ Hypervisor lets vCPU 1 runs for extra time
➅ vCPU 1 finishes and updates eCS count
➆ Hypervisor penalizes vCPU 1 later

VM1

➀

➁

➂
➃

➄

➅

➆



vCPU 1 vCPU 3vCPU 2vCPU 1

Hypervisor checks eCS state before scheduling out a vCPU

22

A B C

File

Access a file

vCPU(A) vCPU(B) vCPU(C)

eCS
states

eCS
states

eCS
states

ecs_count (0)

VM1

...

ecs_count (1)ecs_count (0)

...

Time shared
pCPU 1

vCPU 1VM2

vCPU 1VM1

Scheduled
vCPU

Preempted
vCPU

Enlightened
vCPU 

Running task 
in a VM

➀ Running vCPU 1
➁ vCPU 1 acquires lock
➂ vCPU 1 updates eCS count
➃ Hypervisor checks states before vCPU 1 
preemption
➄ Hypervisor lets vCPU 1 runs for extra time
➅ vCPU 1 finishes and updates eCS count
➆ Hypervisor penalizes vCPU 1 later

VM1

➀

➁

➂
➃

➄

➅

➆

Extended schedule Penalized schedule



The case for system eventual fairness
● Hypervisor accounts extra time and later penalizes the enlightened VM

○ Penalize the schedule of an enlightened VM

○ Extend the schedule of the very next VM

● Hypervisor optimistically extends time for an enlightened CS

○ Decision made just before scheduling out a vCPU

○ Extra time (schedule) to avoid preemption: 1 ms

23



Even vCPU can make efficient scheduling decisions

● Share the hypervisor context with each VM
○ Lock waiters can avoid bWW problem

● Virtualized scheduling-aware spinning
○ Lock waiter keeps spinning until the lock is not 

acquired if the pCPU is not overloaded

24

vCPU(A) vCPU(B) vCPU(C)

eCS
states

eCS
states

eCS
states

vCPU(A)
state

eCS
states

eCS
states

eCS
states

vCPU(B)
state

vCPU(C)
state

Hypervisor

VM

...

...

pcpu_overloaded (0/1)



Implementation

● Rely on paravirtualized VM

● Extended scheduler’s preempt_notifier API to check eCS states

○ Rely on scheduler_tick() to avoid vCPU preemption

● Overall implementation is 1000 LoC

○ 60 LoC for annotating almost every lock-based critical section

25



Evaluation

● Does eCS improves VM’s performance?

● Does hypervisor maintain system eventual fairness?

● Setup: 8-socket, 80-core NUMA machine

26



Impact of eCS in over-committed scenario

27

Apache web server Psearchy

● Experiment: run two VMs running same application

● eCS improves application throughput by 1.2 -- 2.3X

● eCS avoids preemptions by 85.8--100% → an extra schedule tick is sufficient

Preemptions avoided



Impact of eCS in under-committed scenario

28

● Experiment: Run only one VM with an application

● eCS improves application performance by 1.2 -- 1.9X

● Virtualized scheduling-aware spinning addresses BWW for blocking locks
Apache web server Psearchy



System eventual fairness

29

● Experiment: an application reading a file

● Hypervisor’s scheduler (CFS) maintains eventual fairness 

● Both VMs get equal time even though VM2 (eCS) is granted extra schedules

● CFS maintains eventual fairness by penalizing VM2

○ Each run for equal time (4.95 seconds out of 10 seconds)



Discussion

● Right approach for Linux adoption

○ Leverage steal_time_struct that exposes preempted method

● Annotation

○ Use VM → Hypervisor API to mark functions

● Extending the concept to the userspace

○ Require composable scheduling abstraction to support user space

30



Conclusion

● Double scheduling leads to several preemption problems

● Six lightweight paravirtualized methods to annotate critical sections

● Leverage hypervisor’s scheduler to mitigate vCPU preemptions

● Allow vCPU to make efficient scheduling decision

● A generic approach to mitigate all preemption problems!

31

Thank you!


