
Scaling Guest OS Critical 
Sections with eCS

Sanidhya Kashyap, Changwoo Min, Taesoo Kim



The physical and virtual CPU abstraction

● Mismatch between 

CPU abstraction 

2



The physical and virtual CPU abstraction

3

Physical machine (Host)
pCPU 1 pCPU 2 pCPU 3 pCPU 4

● Mismatch between 

CPU abstraction 



The physical and virtual CPU abstraction

4

Hardware 
abstraction Physical machine (Host)

pCPU 1 pCPU 2 pCPU 3 pCPU 4

● Mismatch between 

CPU abstraction 



The physical and virtual CPU abstraction

5

Physical machine (Host)
pCPU 1

Hypervisor

pCPU 2 pCPU 3 pCPU 4

Virtual machine
vCPU 1 vCPU 2 vCPU 3 vCPU 4

App App App...
Hardware 
abstraction

● Mismatch between 

CPU abstraction 



The physical and virtual CPU abstraction

6

Hardware 
abstraction

Software 
abstraction

Physical machine (Host)
pCPU 1

Hypervisor

pCPU 2 pCPU 3 pCPU 4

Virtual machine
vCPU 1 vCPU 2 vCPU 3 vCPU 4

App App App...
● Mismatch between 

CPU abstraction 



The physical and virtual CPU abstraction

● Mismatch between 

CPU abstraction 

● VM consolidation
- Contention on pCPU

7

Hardware 
abstraction

Software 
abstraction

Physical machine (Host)
pCPU 1

Hypervisor

pCPU 2 pCPU 3 pCPU 4

Virtual machine
vCPU 1 vCPU 2 vCPU 3 vCPU 4

App App App...

Multiple vCPUs

Physical machine (Host)
pCPU 1

Hypervisor

pCPU 2 pCPU 3 pCPU 4

VM2

Apps

VM3

Apps

VM4

Apps

VM1

Apps



The physical and virtual CPU abstraction

● Mismatch between 

CPU abstraction 

● VM consolidation
- Contention on pCPU

8

Hardware 
abstraction

Software 
abstraction

Physical machine (Host)
pCPU 1

Hypervisor

pCPU 2 pCPU 3 pCPU 4

Virtual machine
vCPU 1 vCPU 2 vCPU 3 vCPU 4

App App App...

Multiple vCPUs

Physical machine (Host)
pCPU 1

Hypervisor

pCPU 2 pCPU 3 pCPU 4

VM2

Apps

VM3

Apps

VM4

Apps

VM1

Apps

A vCPU can be preempted without notification



The physical and virtual CPU abstraction

● Mismatch between 

CPU abstraction 

● VM consolidation
- Contention on vCPU

9

Hardware 
abstraction

Software 
abstraction

Physical machine (Host)
pCPU 1

Hypervisor

pCPU 2 pCPU 3 pCPU 4

Virtual machine
vCPU 1 vCPU 2 vCPU 3 vCPU 4

App App App...

Multiple vCPUs

Physical machine (Host)
pCPU 1

Hypervisor

pCPU 2 pCPU 3 pCPU 4

VM2

Apps

VM3

Apps

VM4

Apps

VM1

Apps

A vCPU can be preempted without notification

Double scheduling issue



vCPU 1 vCPU 3vCPU 2vCPU 1

Double scheduling: Lock holder preemption (LHP)

● vCPU holding a lock is preempted

● Preemption hinders forward progress of the VM

● Can lead to application slowdown by 20 -- 130%
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Efforts to mitigate preemption issues
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Still the double scheduling is looming!
● LHP for blocking locks

○ mutex, rwsem

● Readers preemption (RP) in read-write locks

○ A reader is preempted while holding the lock

● Interrupt context preemption (ICP)

○ Preemption of a vCPU processing an interrupt
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○ Waking up a blocked thread on an idle vCPU is at least 10 times costlier
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● Blocked-waiter wakeup (BWW)

○ Waking up a blocked thread on an idle vCPU is at least 10 times costlier

Semantic gap between virtual and physical CPU



Our approach to address semantic gap
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Insight:
A vCPU may be running a critical task!

Approach:
Avoid preempting a vCPU with a critical task

Design:
Identify and mark/unmark a critical task



vCPU 1vCPU 1 vCPU 2vCPU 2 vCPU 3

Identifying each critical section with eCS

16

Scheduled
vCPU

Preempted
vCPU

A B C

File

Access a file

● Synchronization primitives protect critical sections → ensure OS progress

● Mark and unmark critical sections before and after the critical section

● Conservative, but effective approach to address each preemption problem

○ 60 LoC annotates 85K lock invocations in 13M LoC in Linux

Running task 
in a VM



vCPU 1vCPU 1 vCPU 2vCPU 2 vCPU 3

Identifying each critical section with eCS

17

Scheduled
vCPU

Preempted
vCPU

A B C

File

Access a file Enlightened
vCPU 

● Synchronization primitives protect critical sections → ensure OS progress

● Mark and unmark critical sections before and after the critical section

● Conservative, but effective approach to address each preemption problem

○ 60 LoC annotates 85K lock invocations in 13M LoC in Linux

Running task 
in a VM



vCPU 1 vCPU 2vCPU 2 vCPU 3

Identifying each critical section with eCS

18

Scheduled
vCPU

Preempted
vCPU

A B C

File

Access a file Enlightened
vCPU 

● Synchronization primitives protect critical sections → ensure OS progress

● Mark and unmark critical sections before and after the critical section

● Conservative, but effective approach to address each preemption problem

○ 60 LoC annotates 85K lock invocations in 13M LoC in Linux

Running task 
in a VM



Sharing the state for efficient notification

19

vCPU(A) vCPU(B) vCPU(C)

eCS
states

eCS
states

eCS
states

VM

...

pcpu_overloaded (0/1)
vcpu_preempted (0/1)

non_preemptable_ecs_count
preemptable_ecs_count

vCPU(A)
state

eCS
states

eCS
states

eCS
states

vCPU(B)
state

vCPU(C)
state

Hypervisor

...

● Each vCPU shares memory with the hypervisor

● vCPU updates information for critical sections

○ Notifies critical task to the hypervisor

● Hypervisor also updates scheduler context 

before/after scheduling out a vCPU

○ Enables vCPU to make efficient scheduling 

decisions



Lightweight para-virtualized APIs to update states
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Hypervisor checks eCS state before scheduling out a vCPU
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The case for system eventual fairness
● Hypervisor accounts extra time and later penalizes the enlightened VM

○ Penalize the schedule of an enlightened VM

○ Extend the schedule of the very next VM

● Hypervisor optimistically extends time for an enlightened CS

○ Decision made just before scheduling out a vCPU

○ Extra time (schedule) to avoid preemption: 1 ms

23



Even vCPU can make efficient scheduling decisions

● Share the hypervisor context with each VM
○ Lock waiters can avoid bWW problem

● Virtualized scheduling-aware spinning
○ Lock waiter keeps spinning until the lock is not 

acquired if the pCPU is not overloaded
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Implementation

● Rely on paravirtualized VM

● Extended scheduler’s preempt_notifier API to check eCS states

○ Rely on scheduler_tick() to avoid vCPU preemption

● Overall implementation is 1000 LoC

○ 60 LoC for annotating almost every lock-based critical section
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Evaluation

● Does eCS improves VM’s performance?

● Does hypervisor maintain system eventual fairness?

● Setup: 8-socket, 80-core NUMA machine
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Impact of eCS in over-committed scenario
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Apache web server Psearchy

● Experiment: run two VMs running same application

● eCS improves application throughput by 1.2 -- 2.3X

● eCS avoids preemptions by 85.8--100% → an extra schedule tick is sufficient

Preemptions avoided



Impact of eCS in under-committed scenario
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● Experiment: Run only one VM with an application

● eCS improves application performance by 1.2 -- 1.9X

● Virtualized scheduling-aware spinning addresses BWW for blocking locks
Apache web server Psearchy



System eventual fairness
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● Experiment: an application reading a file

● Hypervisor’s scheduler (CFS) maintains eventual fairness 

● Both VMs get equal time even though VM2 (eCS) is granted extra schedules

● CFS maintains eventual fairness by penalizing VM2

○ Each run for equal time (4.95 seconds out of 10 seconds)



Discussion

● Right approach for Linux adoption

○ Leverage steal_time_struct that exposes preempted method

● Annotation

○ Use VM → Hypervisor API to mark functions

● Extending the concept to the userspace

○ Require composable scheduling abstraction to support user space
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Conclusion

● Double scheduling leads to several preemption problems

● Six lightweight paravirtualized methods to annotate critical sections

● Leverage hypervisor’s scheduler to mitigate vCPU preemptions

● Allow vCPU to make efficient scheduling decision

● A generic approach to mitigate all preemption problems!
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Thank you!


