Geriatrix

Aging what you see, and what you don't see

Saurabh Kadekodi⁺, Vaishnavh Nagarajan⁺, Gregory R. Ganger⁺ and Garth A. Gibson^{+*}

+Parallel Data Laboratory, *Vector Institute Carnegie Mellon University

In a nutshell

- File system aging <u>still</u> matters
 - Recreated published experiments w/ aging
 - Aging is even more important on SSDs

- Geriatrix a file system aging suite
 - Induces adequate file & free space fragmentation
 - Profile driven with 8 built-in aging profiles

Why study file system aging?

 FS performance can deteriorate with prolonged usage, mainly due to fragmentation

- Responsible FS benchmarking *must* include aging
 - Shown by Keith Smith & Margo Seltzer in 1997
- Despite evidence, aging and its effects are largely ignored
 - 13 of 20 file system papers fail to mention aging

Fragmentation

- Aging produces two kinds of fragmentation:
 - File fragmentation

- File readback causes long seeks
- Free space fragmentation

- Writing file causes long seeks
- Leads to file fragmentation
- Current aging tools only focus on file fragmentation

Part 1

File System aging <u>still</u> matters

SSDs can perform worse than HDDs after aging

Carnegie Mellon Parallel Data Laboratory

Recreated experiments

- Recreated experiments from three publications:
- Btrfs ACM TOS 2013 (HDD and SSD)
 - HDD: 100GB aged image with 80% fullness
 - SSD: 60GB aged image with 70% fullness
- F2fs USENIX FAST 2015 (SSD)
- NOVA USENIX FAST 2016 (NVM)

Recreated experiments

- Recreated experiments from three publications:
- Btrfs ACM TOS 2013 (HDD and SSD)
 - HDD: 100GB aged image with 80% fullness
 - SSD: 60GB aged image with 70% fullness
- F2fs USENIX FAST 2015 (SSD)
- NOVA USENIX FAST 2016 (NVM)

Benchmarking with Geriatrix

Carnegie Mellon Parallel Data Laboratory

Benchmarking with Geriatrix

Carnegie Mellon Parallel Data Laboratory

Benchmarking with Geriatrix

Carnegie Mellon Parallel Data Laboratory

Benchmarking configuration

- All recreations are Filebench benchmark reruns
- Each benchmark run lasted 10 min
- Three runs of each benchmark for variance
 - Error bars not shown since RMSE < 0.01%
- Throughput in **ops / s** as shown by Filebench
- All results are normalized to Ext4 performance

• The filebench workload used to benchmark the FS

- The filebench workload used to benchmark the FS
- Published results (with raw performance numbers on the bar)

- The filebench workload used to benchmark the FS
- Published results (with raw performance numbers on the bar)
- Performance of unaged FS on our h/w using the publication config

- The filebench workload used to benchmark the FS
- Published results (with raw performance numbers on the bar)
- Performance of unaged FS on our h/w using the publication config
- Performance of FS aged using indicated aging profile on our h/w Carnegie Mellon Parallel Data Laboratory

- The filebench workload used to benchmark the FS
- Published results (with raw performance numbers on the bar)
- Performance of unaged FS on our h/w using the publication config
- Performance of FS aged using indicated aging profile on our h/w Carnegie Mellon Parallel Data Laboratory

Btrfs 2013 HDD Recreation

- 16-22% difference before and after aging
- Geriatrix also acts as stress tester
- As Smith and Seltzer said we must pay attention to FS aging

Btrfs 2013 SSD Recreation

- Rank ordering completely different from publication
- Different aging profiles result in different performance ranking
- SSD ages along with file system exaggerated by free space fragmentation

Other experiments (F2fs, NOVA)

- F2fs USENIX FAST 2015 (SSD)
 - Different SSDs both across and within classes age very differently
- NOVA USENIX FAST 2016 (NVM)
 - Aged NOVA shows little throughput reduction (upto 6%)
 - Aged tail latencies are much more affected than throughput
 - For very low-latency FSes, tail latency slowdown is commentary on FS design
- Both recreations show different rank ordering of FSes compared to publication

Part 2

Geriatrix — The aging suite

Carnegie Mellon Parallel Data Laboratory

Aging profiles easily measured by a simple FS tree walk

Geriatrix aging process

controlled sequence of file creates / deletes

Carnegie Mellon Parallel Data Laboratory

Geriatrix aging process

controlled sequence of file creates / deletes

Carnegie Mellon Parallel Data Laboratory

Geriatrix aging methodology

1. Rapid aging

- Only file creates (aim is to achieve fullness %)
- Continuously maintaining size & dir depth distrs.

2. Stable aging

- File creates and deletes w/ fair coin tosses
 - to maintain fullness %
- Continuously maintaining size & dir depth distrs.
- Aim is to achieve relative age distribution

Is Geriatrix accurate?

Is Geriatrix accurate?

• Captured an aging profile from a colleague's HDD

Is Geriatrix accurate?

- Captured an aging profile from a colleague's HDD
 - Grundman aging profile included with Geriatrix

- Copying is similar to freshly fragmented
- Impressions has only large free space extents
- Geriatrix mimics original free space fragmentation Carnegie Mellon Parallel Data Laboratory

How costly is Geriatrix?

50GB XFS image aged in memory w/ Geriatrix using 32 threads

Aging profile	Age (yrs)	Workload (TB)	Duration (hrs)
Meyer	2	7.8	1.3
Wang-LANL	11	1.4	2.4
Agrawal	14	12	7.8
Wang-OS	22	1.7	3.9

How costly is Geriatrix?

50GB XFS image aged in memory w/ Geriatrix using 32 threads

Aging profile	Age (yrs)	Workload (TB)	Duration (hrs)		
Mever	2	7.8	1.3		
In-memory aging done in hrs					
Wang-OS	22	1.7	3.9		
Comocio Mollon			I		

Geriatrix — The tool

- Developed in C++
- Has 8 built-in aging profiles to standardize aging
 - 3 regular usage laptop workloads,
 - 2 desktop workloads,
 - 1 deduplication workload,
 - 1 OS archive (CMU datacenter)
 - 1 HPC workload
- Multi-threaded for faster aging
- Uses **fallocate** to avoid writing data

Conclusion

- Responsible FS benchmarking *must* include aging
 - FS aging exists and continues to be ignored
 - Aging effects sometimes more dramatic on SSDs
- **Geriatrix** an efficient, profile driven and reproducible aging suite that simplifies FS aging
 - Induces adequate file and free space fragmentation

bit.ly/geriatrix-code

Contributions encouraged

Carnegie Mellon Parallel Data Laboratory saukad@cs.cmu.edu