Perflso: Performance Isolation for
Commercial Latency-Sensitive Services

Calin lorgulescu Reza Azimi Youngjin Kwon
EPFL Brown University University of Texas

Sameh Elnikety Manoj Syamala Vivek Narasayya Herodotus Herodotou
Microsoft Research Cyprus University of Technology

Paulo Tomita Alex Chen Jack Zhang Junhua Wang
Microsoft Bing

=" Microsoft

Interactive services must feel instantaneous

Interactive services must feel instantaneous

7/12/18 2/29

Interactive services must feel instantaneous

7/12/18 2/29

A single query involves hundreds of machines!

®)

web
< | Index

A single query involves hundreds of machines!

A single query involves hundreds of machines!

Embarrassingly i :
parallel search I

- = g

7/12/18 3/29

A single query involves hundreds of machines!

Slowest response
must be << 0.1 s

7/12/18

A single query involves hundreds of machines!
Slowest response | " [
parallel search must be << 0.1s i
Multiple layers of aggregation!

iyt N\
(D)|<o0.15s s
iy A\

) .'§§y L 7

| : e\

7/12/18

Query Arrival Rate

Machines are provisioned for peak load

Wednesday Thursday Friday Saturday Sunday Monday Tuesday

Request-rate variation for a Microsoft Bing sub-cluster over 1 week in 2017

7/12/18

4/29

Query Arrival Rate

Machines are provisioned for peak load

Average load

S OOE S

Wednesday Thursday Friday Saturday Sunday Monday Tuesday

7/12/18

Request-rate variation for a Microsoft Bing sub-cluster over 1 week in 2017

4/29

Query Arrival Rate

Machines are provisioned for peak load

‘ Peak load ‘ Average load

Y « hnud |.'li.. 1

Vil

Wednesday Thursday Friday Saturday Sunday Monday Tuesday

Request-rate variation for a Microsoft Bing sub-cluster over 1 week in 2017

7/12/18

4/29

Machines are provisioned for peak load
‘Peak Ioad‘ >> | Average load

g EOE N « hud ‘.l. 1

Vil

Query Arrival Rate

Wednesday Thursday Friday Saturday Sunday Monday Tuesday

Request-rate variation for a Microsoft Bing sub-cluster over 1 week in 2017

7/12/18 4/29

Query Arrival Rate

Machines are provisioned for peak load

. -
7 L

Wed

7/12/18

Peak load | >> |Average load

(Ju ‘.l. | .L . A 4

T F % "'-.l-'- NA."VY.AEEAL 'Y EERAL VEN
Datacenters have spare resources

How can we leverage this ?

Request-rate variation for a Microsoft Bing sub-cluster over 1 week in 2017

4/29

Solution: colocate batch jobs with online services

* Get spare resources to do useful work

* Primary tenant —guaranteed performance
* e.g., Bing IndexServe

* Secondary tenant — best-effort performance
e e.g., Apache Spark

Without colocation With colocation + Perflso

Primary Idle 4 Primary BJa(;c;h

Perflso: performance 1solation for online services

Perflso: performance 1solation for online services

‘ Provides performance isolation of Primary ‘

e Maintains P99 of response-times (10s of ms) under colocation

Perflso: performance 1solation for online services

‘ Provides performance isolation of Primary ‘

e Maintains P99 of response-times (10s of ms) under colocation

‘ Increases system efficiency ‘

e 45% of the CPU is used to do useful batch work

Perflso: performance 1solation for online services

‘ Provides performance isolation of Primary ‘

e Maintains P99 of response-times (10s of ms) under colocation

‘ Increases system efficiency ‘

e 45% of the CPU is used to do useful batch work

‘ Deployed on over 90,000 servers ‘

e Many different interactive services and hardware setups

Many papers published on performance isolation

uasar [ASPLOS ‘14] Heracles [ISCA ‘15] Elfen [USENIX ATC '16]

Heracles: Improving Resource Efficiency at Scale

Quasar: Resource-Efficient and QoS-Aware Cluster Management Liqun Cheng?, Rama Govindaraju®, Parthasarathy Ranganathan® and Christos Kozyrakis™

Stanford University" Google, Inc.? Elfen Scheduling: Fine-Grain Principled Borrowing from Latency-Critical

g o " . ‘Workloads using Simultaneous Multithreading
Christina Delimitrou and Christos Kozyrakis

Stanford University Abstract
{cdel, kozyraki}@stanford.edu

But, to amortize the much larger capital expenses, an increased

emphasis on the effective use of server resources is warranted. Xi Yang" Stephen M. Blackburn® Kathryn S. McKinley*

facing, latency-sensitive services, such as websearch, + ” . . . =
i Several studies have established that the average server uti- ‘Australian National University tMicrosoft Research

underuilize their computing resources during daily periods of

Abstract

Cloud computing promises flexibility and high performance
for users and high cost-efficiency for operators. Neverthe-
less, most cloud facilities operate at very low utilization,
hurting both cost effectiveness and future scalability.

We present Quasar, a cluster management system that
increases resource utilization while providing consistently
high application performance. Quasar employs three tech-
niques. First, it does not rely on resource reservations,
which lead to underutilization as users do not necessarily
understand workload dynamics and physical resource re-
quirements of complex codebases. Instead, users express

rformance constraints for each workload, letting Quasar
determine the right amount of resources to meet these con-
straints at any point. Second, Quasar uses classification tech-
niques to quickly and accurately determine the impact of
the amount of resources (scale-out and scale-up), type of
resources, and interference on performance for each work-
load and dataset. Third, it uses the classification results to
Jointly perform resource allocation and assignment, quickly
exploring the large space of options for an efficient way
to pack workloads on available resources. Quasar monitors
workload performance and adjusts resource allocation and
assignment when needed. We evaluate Quasar over a wide
range of workload scenarios, including combinations of dis-
tributed analytics frameworks and low-latency, stateful ser.
vices, both on a local cluster and a cluster of dedicated EC2
servers. Al steady state, Quasar improves resource utiliza-
tion by 47% in the 200-server EC2 cluster, while meeting
performance constraints for workloads of all types.

Categories and Subject Descriptors C.5.1 [Computer Sys-
tem Implementation]: Super (very large) computers; D.4.1
[Process Management]: Scheduling

Keywords Cloud computing, datacenters, resource effi-
ciency, quality of service, cluster management, resource al-
location and assignment.

1. Introduction

An increasing amount of computing is now hosted on pub-
lic clouds, such as Amazon's EC2 [2], Windows Azure [65)
and Google Compute Engine [25), or on private clouds man-
aged by frameworks such as VMware vCloud [61], Open-
Stack [48], and Mesos [32]. Cloud platforms provide two
major advantages for end-users and cloud operators: flexibil-
ity and cost efficiency [9, 10, 31, Users can quickly launch
jobs that range from short, single-process applications to
large, multi-tier services, only paying for the resources used
at each point. Cloud operators can achieve economies of
scale by building large-scale datacenters (DCs) and by shar
ing their resources between multiple users and workloads.
Nevertheless, most cloud facilities operate at very low
utilization which greatly adheres cost effectiveness [9, S1].
This is the case even for cloud facilities that use cluster
management frameworks that enable cluster sharing across
warkloads. In Figure 1, we present a utilization analysis for
a production cluster at Twitter with thousands of servers,
managed by Mesos [32] over one month. The cluster mostly
hosts user-facing services. The aggregate CPU uilization
is consistently below 20%, even though reservations reach
up to 80% of total capacity (Fig. 1.a). Even when looking
at individual servers, their majority does not exceed 50%
utilization on any week (Fig. 1.c). Typical memory use is
higher (40-50%) but still differs from the reserved capac-
ity. Figure 1.d shows that very few workloads reserve the
right amount of resources (compute resources shown here,
similar for memory); most workloads (70%) overestimate
reservations by up to 10x, while many (20%) underestimate
rescevations by up to 5x. Similarly, Reiss ct al. showed that a
12,000-server Google cluster managed with the more mature
achieves aggregate CPU utilization

7/12/18

of 25-35% and aggregate memory utilization of 40% [S1]. In
contrast, reserved resources exceed 75% and 60% of avail-
able capacity for CPU and memory respectively.

Twitter and Google are in the high end of the utilization
spectrum. Utilization estimates are even lower for cloud fa-
cilities that do not co-locate workloads the way Google and

low trafic. Reusing those resources for other tasks i rarely done
in production services since the contention for shared resources
can cause latency spikes that violate the service-level objectives
of latency-sensitive tasks. The resulting under-wilization hurts
both the affordability and energy-efficiency of large-scale data:
centers. With technology scaling slowing down, it becomes im-
portant 1o address this opportunity:

We present Heracles, a feedback-based controller that en-
ables the safe colocaion of best-effort tasks alongside a latency-
eritical service. Heracles dynamically manages multiple hard-
ware and software isolation mechanisms, such as CPU, memory,
and network isolation. 10 ensure that the latency-sensitive job
meets latency targets while maximizing the resources given 10
best-effort tasks. We evaluate Heracles using production latency
eritical and batch workloads from Google and demonstrate aver

e server wilizations of 90% without latency violations across
all the load and colocation scenarios that we evaluated.

1 Introduction

Public and privat: cloud frameworks allow us to host an in-
creasing number of workloads in large-scale datacenters with
tens of thousands of servers. The business models for cloud
services emphasize reduced infrastructure costs. Of the total
cost of ownership (TCO) for modern encrgy-efficient datacen-
ters, servers are the largest fraction (50-T0%) [7). Maximizing
server utilization is therefore important for continued scaling.

Until recently, scaling from Moore’s law provided higher
compute per dollar with every server gencration, allowing dat.
acenters o scale without raising the cost. However, with sev.
eral imminent chalkenges in technology scaling [21, 251, alter
nate approaches are needed. Some cfforts seck to reduce the
server cost through balanced designs or cost<flective compo-
nents [31, 48, 42]. An orthogonal approach is to improve the
retum on investment and utlity of datacenters by raising server
utilization. Low utilization negatively impacts both operational
and capital components of cost efficiency. Energy proportion
ality can reduce operational expenses at low utilization [6, 47].

Permission to make digital or hard copies of all or part of this woek for
personal or chassroom wse s granied withowt fee provided thal copies are not
made or distributed for profi or commereial advantage and thal copcs bear
the full citation o the fins page. Copy
med by odhers than ACM must be hosore
s permitied. To copy otherwise, or republish, 1 post o servers or to
m\xnlur o, sk spcifc pormion smor . Rt

lization in most datacenters is low, ranging between 10% and
50% (14,74, 66,7, 19, 13]. A primary reason for the low uti-
lization is the popularity of latency-critical (LC) services such as
social media, search engines, software-as-a-service, online maps,
webmail, machine translation, online shopping and advertising.
These user-facing services arc typically scaled across thousands
of servers and access distributed state stored in memory or Flash
across these servers. While their load varies significantly due to
diurnal patterns and unpredictable spikes in user accesses, it is
difficult to consolidate load on a subset of highly utilized servers
because the application state does not fit in a small number of
servers and moving

utilization can be sigs

servers often have an average idleness of 30% over a 24 hour
period [47]. For a hypothetical cluster of 10,000 servers, this
idleness translates to a wasted capacity of 3,000 servers.

A promising way to improve efficiency is to launch best-
effort batch (BE) tasks on the same scrvers and exploit any re-
sources underutilized by LC workloads . 18]. Batch an-
alytics frameworks can generate numerous BE tasks and derive
significant value even if these tasks are occasionally deferred or
restarted [19, 10, 13, 16). The main challenge of this approach is
interference between colocated workloads on shared resources
such as caches, memory, VO channels, and network links. LC
tasks operate with strict service level objectives (SLOs) on tail
latency, and even small amounts of interference can cause sig-
nificant SLO violations [S1, 54, 39]. Hence, some of the past
work on worklaad colocation focused only on throughput work
Toads 58, 15. More recent systems predict or detect when a LC
task suffers significant interference from the colocated tasks, and
avoid or terminate the colocation [75, 60, 19, 50, 51, 81]. These
systems protect LC workloads, but reduce the opportunities for
higher utilization through colocation.

Recently introduced hardware features for cache isolation and
fine-grained power control allow us to improve colocation. This
work aims to enable aggressive colocation of LC workloads and

jobs by automatically coordinating multiple hardware and
software isolation mechanisms in modern servers. We focus on
two hardware mechasisms, shared cache paritioning and fine-
settings,
core/thread scheduling and network traffic control. u.. goal is
to climinate SLO violations at all levels of load for the LC job
while maximizing the throughput for BE tasks,

There are several chalkenges towards this goal. First, we must
carcfully share cach individual resource; conservative allocation
will minimize the throughput for BE tasks, while optimistic al-
focation will kad to SLO violations for the LC tasks. Sccond,
the performance of both types of tasks depends on muktiple re-
sources, which leads 10 a large allocation space that must be

Abstract

Web services from search to games to stock trading im-
pose strict Service Level Objectives (SLOs) on taillatency.
Meeting these objectives is challenging because the com-
putational demand of each request is highly variable and
load is bursty. Consequently, many servers run at low
utilization (10 to 45%); turn off simultancous multithread-
ing (SMT); and execute only a single service — wasting
hardware, energy, and money. Although co-running bach
jobs with latency critical requests 10 utilize multiple SMT
hardware contexts (lanes) is appealing, unmitigated shar-
ing of core resources induces non-lincar effects on tail
latency and SLO violations.

We introduce principled borrowing 1 control SMT
‘hardware execution in which batch threads borrow core
resources. A batch thread executes in a reserved batch
SMT lane when no latency-critical thread is executing
in the partner request lane. We instrument batch threads.
10 quickly detect execution in the request lane, step out
of the way, and promptly return the borrowed resources.
We introduce the nanonap system call to stop the batch
thread's execution without yielding its lane to the OS
scheduler, ensuring that requests have exclusive use of
the core’s resources. We evaluate our approach for co-
locating batch workloads with latency-critical requests
using the Apache Lucene search engine. A conservative
policy that executes batch threads only when request lane
is idle improves utilization between 90% and 25% on
one core depending on load, without compromising re-
quest SLOs. Our approach is straightforward, robust, and
unobtrusive, opening the way to substantially improved

resource utilization in datacenters running latency-critical
workloads.
1 Introduction

Latency-critical web services, such as scarch, trading,
games, and social media, must consistently deliver low-
latency responses (o attract and satisfy users. This
requirement translates into Service Level Objectives
(SLOs) governing latency. For example, an SLO may
include an average latency constraint and a fail con-
straint, such as that 99% of requests must complete within
100ms (6,7, 13, 34]. Many such services, such as Google
Search and Twitter (6, 8, 18], systematically underuti-
lize the available hardware (o meet SLO. Furthermore,

servers often execute only one service to ensure that
latency-critical requests are free from interference. The
result i that server utilizations are as low as 10 (0 45%.
Since these services are widely deployed in large num-
bers of datacenters, their poor utilization incurs enormous
commensurate capital and operating costs. Even small

improve

Meeting SLOs in these highly engineered systems is
challenging because: (1) requests often have variable
computational demands and (2) load is unpredictable
and bursty. Since computation demands of requests may
differ by factors of ten or more and load bursts induce
queving delay, overloading & server results in highly non-
linear increases in tail-latency. The conservative solution
providers often take is to significantly over-provision.

Interference arises in chip multiprocessors (CMPs)
and in simultancous multithreading (SMT) cores when
contending for shared resources. A spate of recent re-
search explores how 10 predict and model interference
between different workloads executing on distinct CMP
cores [8, 23, 25, 28), but these approaches target and
exploit large scale diurnal patterns of utilization, e.g., co-
locating batch workloads at night when load is low. Lo et
al. explicitly rule out SMT because of the highly unpre-
dictable and non-linear impact on tail latency (which we
confirm) and the inadequacy of high-latency OS schedul-
ing [23). Zhang et al. do not attempt to reduce SMT-
induced overheads, but rather they accommodate them us-
ing a model of interference for co-running workloads [35].
Their approach requires ahead-of-time profiling of all co-
located workloads and over-provisioning. Prior work
lacks dynamic mechanisms to monitor and control batch
workloads on SMT with low latency.

‘This research exploits SMT resources to increase
utilization without compromising SLOs. We introduce
principled borrowing, which dynamically identifies idle
cycles and borrows these resources. We implement bor-
rowing in the ELFEN' scheduler, which co-runs batch
threads and latency-critical requests, and meets request
SLOs. Our work is complementary to managing shared
cache and memory resources. We first show that laten
critical workloads impose many idle periods and they are
short. This result confirms that scheduling at OS granu-

In the Grimm fairy tale, Die Wichtelminner, chves boerow cob-
bler's tools while he siocps, making him beautiful shoes

USENIX Association

2016 USENIX Annual Technical Conference 308

7/29

Many papers published on performance isolation

Quasar [ASPLOS ‘14]

Quasar: Resource-Efficient and QoS-Aware Cluster Management

Christina Delimitrou and Christos Kozyrakis

Stanford University

Abstract
Cloud computing promises fl

increases resource utilization While providing consistently
high application performance. Quasar employs three tech:
niques. First, it does not rely on resource reservations,
which lead to underutilization as users do not necessarily
understand workload dynamics and physical resource re-
quirements of complex codebases. Instead, users express
performance constraints for cach workload, letting Quasar
determine the right amount of resources to meet these con-
straints at any point. Second, Quasar uses classification tec
niques to quickly and accurately determine the impact of
the amount of resources (scale-out and scale-up), type of
resources, and interference on performance for each work-
load and dataset. Third, it uses the classification results to
jointly perform resource allocation and assignment, quickly
exploring the large space of options for an efficient way
to pack workloads on available resources. Quasar monitors
workload performance and adjusts resource allocation and
assignment when needed. We evaluate Quasar over a wide
range of workload scenarios, including combinations of dis
tributed analytics frameworks and low-latency, stateful ser-
vices, both on a local cluster and a cluster of dedicated EC2
servers. Al steady state, Quasar improves resource utiliza-
tion by 47% in the 200-server EC2 cluster, while meeting
performance constraints for workloads of all types.

Categories and Subject Descriptors C.5.1 [Computer Sy
tem Implementation]: Super (very large) computers; D.4.1
[Process Management): Scheduling

s o band copies of al or et of this week for personl or

with fo promaded t copics are o e —
s hat copies b this i the full

owted by oters un the

101145254190 2541941

{cdel, kozyraki}@stanford.edu

lic clouds, such as Amazon's EC2 [2), Windows Azure [65)
and Google Compute Engine [25], or on private clouds man-
aged by frameworks such as VMware vCloud [61], Open-
Stack 48], and Mesos [32]. Cloud platforms provide two
major advantages for end-users and cloud operators: flexibil-
ity and cost efficiency [9, 10, 31). Users can quickly launch
jobs that range from short, single-process applications to
large, multi-tier services, only paying for the resources used
at each point. Cloud operators can achieve economies of
scale by building large-scale datacenters (DCs) and by shar-
ing their resources between multiple users and workloads.

Nevertheless, most cloud facilities operate at very low
utilization which greatly adheres cost effectiveness (9, S1).
This is the case even for cloud facilities that use cluster
management frameworks that enable cluster sharing across
workloads. In Figure 1, we present a utilization analysis for
a production cluster at Twitter with thousands of servers,
managed by Mesos [32] over one month, The cluster mostly
hosts user-facing services. The aggregate CPU utilization
is consistently below 20%, even though reservations reach
up to 80% of total capacity (Fig. 1.a). Even when looking
at individual servers, their majority does not exceed 0%
utilization on any week (Fig. 1.c). Typical memory use is
higher (40-50%) but still differs from the reserved capac-
ity. Figure 1.d shows that very few workloads reserve the
right amount of resources (compute resources shown here,
similar for memory); most workloads (70%) overestimate
reservations by up to 10x, while many (20%) underestimate
reservations by up to Sx. Similarly, Reiss et al. showed that a
12,000-server Google cluster managed with the more mature
Borg system consistently achieves aggregate CPU utilization
of 25-35% and aggregate memory utilization of 40% [51]. In
contrast, reserved resources exceed 75% and 60% of avail-
able capacity for CPU and memory respectively.

Twitter and Google are in the high end of the utilization
spectrum. Utilization estimates are even lower for cloud fa
cilities that do not co-locate workloads the way Google and

7/12/18

eracles [ISCA ‘15]

Heracles: Improving Resource Efficiency at Scale

David Lo', Liqun Cheng?, Rama Govindaraju®, Parthasarathy Ranganathan® and Christos Kozyrakis'

Stanford University"

Abstract

Userfacing, latency-sensitive services, such as websearch,

and network isolation, 10 ensure that the latency-sensitive job
meess latency targets while maximizing the resources given to
best-effort tasks. We evaluate Heracles using production lat
eritical and batch workloads from Google and demonstrate aver
age server wilizations of 9% without latency violations across

all the load and colocation scenarios thar we evalu

1 Introduction

Public and private cloud frameworks allow us to host an in-
creasing number of workloads in large-scale datacenters with
tens of thousands of servers. ‘The business models for cloud
services emphasize reduced infrastructure costs. Of the total
cost of ownership (TCO) for modern e flicient datacen-
st fraction (50-70%) 7). Maximizing
lore important for continued scaling.

Unil recently, scaling from Moores law provided higher
compute per dollar with every server gencration, allowing dat
acenters to scale without raising the cost. However, with sev
eral imminent challenges in technology scaling [21, 25, alter.
nate approaches are needed. Some fforts seek to reduce the
server cost through balanced designs or costeflective compo-
nents (31, 48, 42). An orthogonal approach is to improve the
retum on investment and utility of datacenters by raising server
utilization. Low utilization negatively impacts both operational
and capital components of cost efficiency. Energy propor

ality can reduce operational expenses at low utilization [6, 4

I

Permission to make digital or hard copies of all or part of this woek for

work owned by cehers than A
ted. To copy otherwise, o mpublish, 1o post on servees of 1o
redistribute 1o lists, requires peior specific permission and/or a foe. Request
permissions from P

ISCA 15, June 13- 17,

©2015 ACM. ISBN 978-1 4503340

DO ht ax.

Google, Inc.*

But, to amortize the much larger capital expenses, an increased
‘emphasis on the effective use of server resources is warrante

xpensive. The cost of such under-
Google websearch

For instan

have an average idleness of 30% over a 24 hour
For a hypothetical cluster of 10,000 servers, this
dlcness translates to a wasted capacity of 3,000 servers.

A promising way to improve efficiency is to launch best-
effort batch (BE) tasks on the same scrvers and exploit any re-
sources underutilized by LC workloads [52, 51, 18]. Batc
alytics frameworks can gencerate numerous BE tasks and derive
significant value even if these tasks are occasionally deferred or
restarted [19, 10, 13, 16). The main challenge of this approach is
interference between colocated workloads on shared resources
such as caches, memory, VO channels, and network links. LC
tasks operate with strict service level objectives (SLOS) on tail
Iatency, and even small amounts of interference can cause sig-
ificant SLO violations [S1, 54, 39]. Hence, some of the past
work on workload colocation focused only on throughput work
twhenaLC

loads [58, 15]. More recent systems predict or det
task suffers significant interference from the c
avoid or terminate the colocation [75, 60, 19, 50, 51, 81). These
systems protect LC workloads, but reduce the opportunitics for
higher utilization through colocation.

Recently introduced hardware features for cache isolation and
fine-grained power control allow us to improve colocation. This
work aims to enable aggressive colocation of LC workloads and
BE jobs by automatically coordinating multiple hardware and
software isolation mechanisms in modem servers. We focus on
two hardware mechanisms, shared cache partitioning and fine.

y settings, and ch
core/thread scheduling and network traffic control. Our goal is
0 climinate SLO violations at all levels of load for the LC job
while maximizing the throughput for BE tasks,

There are several chalkenges towards this goal. First, we must
carcfully share cach individual resource; conservative allocation
will minimize the throughput for BE tasks, while optimistic al-
location will kead to SLO violations for the LC tasks. Sccond.
the performance of both types of tasks depends on multiple
sources, which leads to a large allocation space that must be

Elfen [USENIX ATC’16]

Elfen Scheduling: Fine-Grain Principled Borrowing from Latency-Critical
‘Workloads using Simultaneous Multithreading

”
g

jobs with latency eritical requests to utilize multiple SMT
hardware contexts (lanes) is appealing, unmitigated shar-
ing of core resources induces non-linear effects on tail
latency and SLO violations.

We introduce principled borrowing 1 control SMT
hardware execution in which batch threads borrow core
resources. A batch thread executes in a reserved batch
SMT lane when no latency-critical thread is exccuting
in the partner request lane. We instrument batch threads
10 quickly detect execution in the request lane, step out
of the way, and prompily return the borrowed resources.
We introduce the nancnap system call to stop the batch
thread's execution without yielding its lane to the OS
scheduler, ensuring that requests have exclusive use of
the core’s resources. We evaluate our approach for co-
locating batch workloads with latency-critical requests
using the Apache Lucene search engine. A conservative
policy that executes batch threads only when request lane
is idle improves utilization between 90% and 25% on
one core depending on load, without compromising re-
quest SLOs. Our approach is straightforward, robust, and
unobtrusive, opening the way to substantially improved
resource utilization in datacenters running latency-critical
workloads.

1 Introduction

Latency-critical web services, such as search, trading,
games, and social media, must consistently deliver low-
latency responses to attract and satisfy users. This
requirement translates into Service Level Objectives
(SLOs) governing latency. For example, an SLO may
include an average latency constraint and a fail con-
straint, such as that 99% of requests must complete within
100ms [6, 7, 13, 34). Many such services, such as Google
Search and Twitter (6, 8, 18], systematically underuti-
lize the available hardware to meet SLOs. Furthermore,

Xi Yang' Stephen M. Blackburn’
A i jong ne iy

cKinley*

Kathryn S. My
oo esearch

Yicroso

one service 1o ensure that
free from interference. The
bns are as low as 10 to 45%.

perating costs. Even small
mprove profitability

ighly engineered systems is
uests often have variable
computational demands and (2) load is unpredictable
and bursty. Since computation demands of requests may
differ by factors of ten or more and load bursts induce
queuing delay, overloading a server results in highly non.
linear increases in tail-latency. The conservative solution
providers often take is to significantly over-provision,

Interfercnce arises in chip multiprocessors (CMPs)
and in simultaneous multithreading (SMT) cores when
contending for shared resources. A spate of recent re-
search explores how 10 predict and model interference
between different workloads executing on distinct CMP
cores [8, 23, 25, 28], but these approaches target and
exploit large scale diumal patterns of utilization, .g., co-
locating batch workloads at night when load is low, Lo et
al. explicitly rule out SMT because of the highly unpre-
dictable and non-linear impact on tail latency (which we
confirm) and the inadequacy of high-latency OS schedul-
ing [23). Zhang et al. do not attempt to reduce SMT-
induced overheads, but rather they accommodate them us-
ing 2 model of interference for co-running workloads [35]
Their approach requires ahead-of-time profiling of all co
located workloads and over-provisioning. Prior work
lacks dynamic mechanisms to monitor and control batch
workloads on SMT with low latency.

‘This research exploits SMT resources to increase
utilization without compromising SLOs. We introduce
principled borrowing, which dynamically identifies idle
cycles and borrows these resources. We implement bor-
rowing in the ELFEN' scheduler, which co-runs batch
threads and latency-critical requests, and meets request
SLOs. Our work is complementary to managing shared
cache and memory resources. We first show that latency-
critical workloads impose many idle periods and they are
short. This result confirms that scheduling at OS granu-

the Grimm faicy tale, Die Wichtelminner, chves boerow 3 cob-
shocs.

bler's tools while he sioeps, making him beau

USENIX Association

2016 USENIX Annual Technical Conference 308

7/29

Pertlso: Requirements

Pertlso: Requirements

1. “Black-box”: Fewest assumptions about tenants (wider applicability)

Pertlso: Requirements
1. “Black-box”: Fewest assumptions about tenants (wider applicability)

2. “Standalone”: Primary acts like it runs alone (negligible interference)

Pertlso: Requirements
1. “Black-box”: Fewest assumptions about tenants (wider applicability)
2. “Standalone”: Primary acts like it runs alone (negligible interference)

3. “Integrability”: Minimize software-stack changes (easy deployment)

Why is Performance Isolation hard?

Interactive services — highly sensitive to interference!

Leaf-servers keep 99" percentile low

* Over 10 years of optimization work!
e e.g., compression, adaptive parallelism, etc.

How often does the 99" percentile occur?
* For 10,000 queries /s =2 100 times /s

What happens in a 100-node fanout?
 Every query runs at the 99" percentile!

7/12/18

The Primary demands many resources quickly

* Bing IndexServe: multi-threaded web-index server
»Up to 15 threads wake up in 5us'

1Constant query rate 4,000 Q/s, 500k queries experiment

The Primary demands many resources quickly

* Bing IndexServe: multi-threaded web-index server
»Up to 15 threads wake up in 5us'

* Burstiness due to query-processing optimizations!
* some queries will spawn many workers

1Constant query rate 4,000 Q/s, 500k queries experiment

The Primary demands many resources quickly

* Bing IndexServe: multi-threaded web-index server
»Up to 15 threads wake up in 5us'

* Burstiness due to query-processing optimizations!
* some queries will spawn many workers

 Workload arrives in bursts — exacerbates problem

1Constant query rate 4,000 Q/s, 500k queries experiment

The Primary must behave as if 1t were standalone

The Primary must behave as if 1t were standalone

* Primary’s resource demands must be fulfilled instantly.

The Primary must behave as if 1t were standalone

* Primary’s resource demands must be fulfilled instantly.

* Any delays = performance penalties incurred

The Primary must behave as if 1t were standalone

* Primary’s resource demands must be fulfilled instantly.

* Any delays = performance penalties incurred

* Any resource can become a performance bottleneck.

The Primary must behave as if 1t were standalone

* Primary’s resource demands must be fulfilled instantly.

* Any delays = performance penalties incurred

* Any resource can become a performance bottleneck.

If a query is delayed, it is already too late!

Perflso

Perflso: Implemented as a user-mode service

* Only keeps track of Secondary’s PID

Primary Secondary

Perflso

Perflso: Managed resources

Primary Secondary

Perflso

CPU

E Blind Isolation

Perflso: Managed resources

Primary Secondary

Perflso

CPU DISK

Q 1/0 throttling

Perflso: Managed resources

Primary Secondary

Perflso

CPU DISK MEMORY

% Restrict footprint

Perflso: Managed resources

Primary Secondary

Perflso

CPU DISK MEMORY NETWORK

Q Throttle egress packets

Perflso: CPU 1s the most important resource

Primary Secondary

Perflso

CPU

E Blind Isolation

CPU sharing without Perflso

* Primary and Secondary compete for cores.
* Secondary is aggressive: no idle cores exist.

Machine with 12 cores

7/12/18 16 /29

CPU Blind Isolation: Keep a “buffer” of idle cores

* Perflso only knows the Secondary.
* Restrict Secondary by changing core affinities.

2-9-@

Restrict Secondary to create a
buffer of idle cores.

Machine with 12 cores

7/12/18 17 /29

CPU Blind Isolation: Keep a “buffer” of idle cores

* Perflso only knows the Secondary.
* Restrict Secondary by changing core affinities.

Buffer of idle cores ‘ Secondary

00000600 (X X) dle

Restricted Secondary

Machine with 12 cores

7/12/18 17 /29

CPU Blind Isolation: Keep a “buffer” of idle cores

* Primary is unrestricted. Secondary is restricted.

Buffer of idle cores ‘ Secondary

00000600 000 dle

Restricted Secondary

Primary can expand into the buffer!

Machine with 12 cores

7/12/18 17 /29

CPU Blind Isolation: Keep a “buffer” of idle cores

* Primary is unrestricted. Secondary is restricted.

Buffer of idle cores ‘ Secondary

00000000 000

Restricted Secondary

Primary can expand into the buffer!

Machine with 12 cores

7/12/18 17 /29

CPU Blind Isolation: React to bursts from Primary

 Continuously read idle core status.

* Adjust Secondary “slice” to maintain buffer.

Buffer of idle cores ‘ Secondary

00000000 000

%stricted Secondary

Machine with 12 cores

7/12/18 18/29

CPU Blind Isolation: React to bursts from Primary

e Continuously read idle core status.

* Adjust Secondary “slice” to maintain buffer.

Buffer of idle cores ‘ Secondary

XXX XXX o e

ResWecondary

Machine with 12 cores

7/12/18 18/29

CPU Blind Isolation: React to bursts from Primary

e Continuously read idle core status.

* Adjust Secondary “slice” to maintain buffer.

Buffer of idle cores ‘ Secondary

00000000 (] dle

Restricted Secondary

Machine with 12 cores

7/12/18 18/29

CPU Blind Isolation: Secondary gets spare cores

* Allow Secondary to use spare idle cores.
* Release spare cores incrementally.

Buffer of idle cores ‘ Secondary

XX X ®

b
% Restricted Secondary

Machine with 12 cores

7/12/18 19/29

CPU Blind Isolation: Secondary gets spare cores

* Allow Secondary to use spare idle cores.
* Release spare cores incrementally.

Buffer of idle cores ‘ Secondary

o000 08 -

% Restricted Secondary

Machine with 12 cores

7/12/18 19/29

CPU Blind Isolation: Secondary gets spare cores

* Allow Secondary to use spare idle cores.
* Release spare cores incrementally.

Buffer of idle cores ‘ Secondary

0606 000 dle

% Restricted Secondary

Machine with 12 cores

7/12/18 19/29

CPU Blind Isolation: Secondary gets spare cores

* Allow Secondary to use spare idle cores.
* Release spare cores incrementally.

Buffer of idle cores ‘ Secondary

0000 0000 dle

% Restricted Secondary

Machine with 12 cores

7/12/18 19/29

CPU Blind Isolation: Secondary gets spare cores

* Allow Secondary to use spare idle cores.
* Release spare cores incrementally.

Buffer of idle cores ‘ Secondary

o000 0000
=
V Restricted Secondary

Machine with 12 cores

7/12/18 19/29

CPU Blind Isolation: Secondary gets spare cores

* Allow Secondary to use spare idle cores.
* Release spare cores incrementally.

Buffer of idle cores ‘ Secondary

0000 o000 -

Restricted Secondary

Machine with 12 cores

7/12/18 19/29

CPU Blind Isolation: We dedicate 1 core to Perflso

* Perflso does continuous polling = we affinitize it to 1 core.

' Primary
Buffer of idle cores % ‘ Secondary
000 00000 dle

Restricted Secondary

Machine with 12 cores

7/12/18 20/29

Fvaluation

Experiment testbed

Hardware
* Intel Xeon E5 — 24 cores (48 w/ HT)
* 128GB RAM

Primary: Bing IndexServe

* 569 GB index-slice

* Open-loop client

e 500,000 queries @ 2,000 Q./ s

Secondary: CPU micro-benchmark

Single server: Perflso protects tail-latency
Secondary: CPU-intensive micro-benchmark

No isolation
1000
- 349.08
2
— 100 £
>
@)
-
= SLO 11.65
; 10 +
(@)
(a1
1 1

M Standalone M Colocated

7/12/18 23/29

Single server: Perflso protects tail-latency

Secondary: CPU-intensive micro-benchmark

No isolation
1000

349.08

[HEY

One order of magnitude worse !

10 £

P99 latency (ms)

1 £

M Standalone M Colocated

7/12/18

23/29

Single server: Perflso protects tail-latency

Secondary: CPU-intensive micro-benchmark

No isolation
1000

349.08

1000 ~

Perflso

11.65 12.07

T,)\ -
£
=1 One order of magnitude worse ! |90 -
ég =
Q
© [
o OF 10 ©
m - -
(a

1 L -

M Standalone M Colocated B Standalone M Colocated

7/12/18

23/29

Single server: CPU utilization 3x higher!

Secondary: CPU-intensive micro-benchmark

No colocation Perflso

100 T 1000 -

32 -

c 80 i

(o)

-S 67% 100 +

© 60 - 5

N N
B a0 4 - 11.65 12.07

>

10 -

D 21% .

o 20 + B

0 -+ 1 L

B Primary M Secondary B Standalone M Colocated

7/12/18 24/29

Single server: CPU utilization 3x higher!

Secondary: CPU-intensive micro-benchmark

No colocation Perflso
100 1000 -
X -
c 80 i
O :
| 6% of CPU time > useful work | 100
N :
B a0 4 - 11.65 12.07
> 10 +
> -
o 20 + -
@) I
0 -+ 1 L

B Primary M Secondary B Standalone M Colocated

7/12/18 24/29

Restricting CPU cycles does not work

Secondary: CPU-intensive micro-benchmark

1000 «=
= 349.08
£
= 100 ¢ Secondary = 5% of CPU cycles
8 - 33.74
= B
© SLO 11.65 12.07 P99 latency — 3x higher than SLO!
: 10 _ I I
o B
1 A
B Standalone B No isolation

B Perflso Restrict cycles

7/12/18 25/29

Restricting CPU cores does not work
Secondary: CPU-intensive micro-benchmark

Standalone Perfilso Restrict cores

1000 100 T
: 349.08 NS
) i cC> 80 +
£ 100 + + 67%
e - N 60 1
2 S
4 -SLO 41465 12.07 11.63 = o
© > 38%
10 F 40 T
(o)) - >
8 - S 21%
: ~ 204 ;
1 R I
M Standalone B No isolation 0+

B Perflso M Restrict cores B Primary M Secondary

7/12/18 26/29

Restricting CPU cores does not work

Secondary: CPU-intensive micro-benchmark
Standalone Perfilso Restrict cores

1000 ¢ 100
- X
’g I C 80
:; 100 Provisioned for peak load
C B
L [SLO . .9 o
T CPU utilization ~30% lower! 38%
<A :
o i
1 1
B Standalone B No isolation 0 -

B Perflso Restrict cores B Primary M Secondary

7/12/18 26/29

1-hour run of 650 machine cluster
Secondary: Machine-Learning computation

100
> 80
=2 40 ‘
“ 20

0

40 - 5000
= 50 - 3000 §
c 4 2000 &
- >
= 10 4 1000 &

o
o

0 10 20 30 40 50 60
Time (minutes)

—Top-Level Aggregator P99 latency (ms) =—Queries /s —Avg CPU Utilization %

7/12/18 27/29

1-hour run of 650 machine cluster
Secondary: Machine-Learning computation

100

40 - - 5000

g 30 J—\DWMV.V o0 =

~ — (%]

> 20 3000 8

= 1 2000 G
>

= 10 4 1000 &

0 0
0 10 20 30 40 50 60

Time (minutes)

—Top-Level Aggregator P99 latency (ms) =—Queries /s =—Avg CPU Utilization %

7/12/18 27/29

Interesting details in the paper

* Effectiveness of static CPU isolation methods
* Restricting CPU cycles
* Restricting CPU cores

 Comparison of state-of-the-art techniques

* Managing disk, memory, and network

7/12/18

PerfIso: Performance Isolation for Commercial Latency-Sensitive Services

Calin lorgulescu* Reza Arini*
EFFL Brown University

Manoj Syamala

Vivek Narasayya

Youngjm Kwon* Samch Elnikety
U. Texas at Austin Microsoft Research

Herodotos Herodotos®

Microsoft Research Microsoft Research Cyprus University of Technology
Pauio Tomita Alkex Chen Jack Zhang Junhas Wang
Microsoft Bing Microsoft Bing Microsoft Bing Microsoft Bing
Abstract . N
7 —
| arge connmercial latency-sensitive services, such as g T
web search, rm oo dedicated clasters peovisioned for
peak load 10 ensse responsivencss and tolerase dasa cen-
G Cvepcdl |
7 outapes. As 3 msalt, the average Joad & far lower SN el
than the pesd Joad esad for provisioning. keading 1o re- - \ \
source under utiiration. The idle resowoes can be used A x .
50 run baich jobs. compieting nseful work sed mducing (e tansy oo tted e toa

overall data cester prowisioning costs. However, this is
challeaging m practxce doe (0 the complexty amd strin
pent tadl-laency of laseocy ser-
vices. Lelt unmamaged, the comgetition for machine re
SOUTCes cam kead 10 severe response-time degeadation and
samel service-level obvectives (SLOK)

This work describes Perffso, a performumce molation
frnmework whsed has bees wsed for sesrdy thee years in
Microsoft Bing. 2 major search engime. t0 colocate hasch
jobs with prdection butency -scasitive services on over
90,000 servers. We discuss the design and implemen
wtion of Peofso, sad conduct an expetmmestal evalus
ticn in a prodectios esvovament. ' We show it colo
cating CPU-msemsine jobs with latency somiaive services
increases average CPU atilization from 21% o 66% for
off -peak losd without mmpacting tasl lalency

1 Introduction

New server acgeestion contnbutes 1o gver half of the
wotal cost of ownenbep (TCO) of modern data conters (8]
However, server stilwratson is low m dats centers host
ing large lMCHcy -SCasilive sCIVIees Tor Iwo tun reasons:
Fing, lulency -semmtve services are typscally prow isioned
for the peak Joad, wiich occurs only for a fraction of
the toeal runnimg tame [1§]. Second, besansss-continuity
plans dictae lolerating multiple major dsa center vut-
ages, such m olcestang (he falure of two Sata comions

* Mt doer witnie sEton werr o Mcroeh Rowash

Wl s - b W e v
Figee |- Architecture of index servimg system of Web
search eagime with two aggegasion levels (MLA and
TLA) The wser query s processed on index servens,
which sead responses 10 MLAS, wisch send aggrepased
resposses 10 TLA,

ot of Ssve data centers within 2 comtment while remain-
g capable of procussing peal load. The high degror of
over-peov IRoning is mupcrative: & Bvesile incadest Cans-
g doef downtime: results m kot revenoe and [nestrac)
msers, whsle an extended downtime comes with negative
headime sews and imepandile bussess damage. Even
shighaly bagher response times decrease user satisfuction
and mgpact revenues 29,10 171

Overprovissoning mwans that msoerce ulilization s
Jow, officrmg B¢ opportunity 0 collocale balch jobs
alonpside btency-ensitive seraces [BL1H] Colocation
must be samaged carcfully lest 2 degrades perfonmance
dae 1o competition co machine msoerves. Our main goal
15 10 emsene that the end-to-end servace-level obpectives
(SLOK) s met witile increasang e work dose by hasch
pobs. The man kchocal challonges arse from mas-
tning short tail lency (e.g., the 99 latency percentile
2o called P99 latency) for the ltency sensitve services
coupiod with the complexity of commencial soltware and
Lrpr deployments.

Oty the service-level obyectves ane notl Known
expicily for cach mdividual compuaent. For example,
lepe commerncaal seurch capines contain lens of ple

28/29

Pertlso: colocate batch jobs with online services

Pertlso: colocate batch jobs with online services

* Black-box: do not tailor to one specific service

Pertlso: colocate batch jobs with online services

* Black-box: do not tailor to one specific service

* Robustness: favor user-mode over kernel implementation

Pertlso: colocate batch jobs with online services

* Black-box: do not tailor to one specific service
* Robustness: favor user-mode over kernel implementation

* Headroom: some core-slack makes Primary behave like standalone

Pertlso: colocate batch jobs with online services

* Black-box: do not tailor to one specific service
* Robustness: favor user-mode over kernel implementation

* Headroom: some core-slack makes Primary behave like standalone

* CPU Blind Isolation = colocation without impacting service performance

