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A single query involves hundreds of  machines!

≤ 0.1 s

Embarrassingly 
parallel search
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Slowest response 
must be << 0.1 s

Multiple layers of aggregation!
Just one service out of many!
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Datacenters have spare resources

How can we leverage this ?

>>



Solution: colocate batch jobs with online services

• Get spare resources to do useful work

• Primary tenant     – guaranteed performance
• e.g., Bing IndexServe

• Secondary tenant – best-effort performance
• e.g., Apache Spark

Primary Idle Primary
Batch 
Job

Without colocation With colocation + PerfIso
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PerfIso: performance isolation for online services
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PerfIso: performance isolation for online services

• Maintains P99 of response-times (10s of ms) under colocation

Provides performance isolation of Primary

• 45% of the CPU is used to do useful batch work

Increases system efficiency

• Many different interactive services and hardware setups

Deployed on over 90,000 servers
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Many papers published on performance isolation

Quasar [ASPLOS ‘14] Heracles [ISCA ‘15] Elfen [USENIX ATC ’16]
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Existing solutions do not fit our requirements



PerfIso: Requirements
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PerfIso: Requirements

1. “Black-box”: Fewest assumptions about tenants (wider applicability)

2. “Standalone”: Primary acts like it runs alone (negligible interference)

3. “Integrability”: Minimize software-stack changes (easy deployment)
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Why is Performance Isolation hard?



Interactive services – highly sensitive to interference!

Leaf-servers keep 99th percentile low

• Over 10 years of optimization work!
• e.g., compression, adaptive parallelism, etc.

How often does the 99th percentile occur?

• For 10,000 queries / s → 100 times / s

What happens in a 100-node fanout?

• Every query runs at the 99th percentile!
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The Primary demands many resources quickly

• Bing IndexServe: multi-threaded web-index server

➢Up to 15 threads wake up in 5𝜇s1

1Constant query rate 4,000 Q/s, 500k queries experiment
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The Primary demands many resources quickly

• Bing IndexServe: multi-threaded web-index server

➢Up to 15 threads wake up in 5𝜇s1

• Burstiness due to query-processing optimizations!
• some queries will spawn many workers

• Workload arrives in bursts – exacerbates problem

1Constant query rate 4,000 Q/s, 500k queries experiment
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The Primary must behave as if  it were standalone
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The Primary must behave as if  it were standalone

• Primary’s resource demands must be fulfilled instantly.

• Any delays → performance penalties incurred

• Any resource can become a performance bottleneck.

If a query is delayed, it is already too late!
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PerfIso



PerfIso: Implemented as a user-mode service
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OS

Primary

PerfIso

Secondary

• Only keeps track of Secondary’s PID



PerfIso: Managed resources

15 / 297/12/18

OS

CPU

Primary

PerfIso

Secondary

Blind Isolation



PerfIso: Managed resources

15 / 297/12/18

OS

DISK

Primary

PerfIso

Secondary

I/O throttling

CPU



PerfIso: Managed resources
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PerfIso: Managed resources
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PerfIso: CPU is the most important resource
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CPU sharing without PerfIso

• Primary and Secondary compete for cores.

• Secondary is aggressive: no idle cores exist.
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Machine with 12 cores

Primary

Secondary



CPU Blind Isolation: Keep a “buffer” of  idle cores

• PerfIso only knows the Secondary.

• Restrict Secondary by changing core affinities.
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• PerfIso only knows the Secondary.

• Restrict Secondary by changing core affinities.
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CPU Blind Isolation: React to bursts from Primary

• Continuously read idle core status.

• Adjust Secondary ”slice” to maintain buffer.
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CPU Blind Isolation: Secondary gets spare cores

• Allow Secondary to use spare idle cores.

• Release spare cores incrementally.
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CPU Blind Isolation: Secondary gets spare cores

• Allow Secondary to use spare idle cores.

• Release spare cores incrementally.
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CPU Blind Isolation: We dedicate 1 core to PerfIso

• PerfIso does continuous polling → we affinitize it to 1 core.

PerfIso

Machine with 12 cores

Restricted Secondary

Buffer of idle cores

Idle

Primary

Secondary
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Evaluation



Experiment testbed

Hardware

• Intel Xeon E5 – 24 cores (48 w/ HT)

• 128GB RAM

Primary: Bing IndexServe

• 569 GB index-slice

• Open-loop client

• 500,000 queries @ 2,000 Q / s

Secondary: CPU micro-benchmark
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46% of CPU time → useful work



Restricting CPU cycles does not work
Secondary: CPU-intensive micro-benchmark
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Secondary → 5% of CPU cycles

P99 latency – 3x higher than SLO!



Restricting CPU cores does not work
Secondary: CPU-intensive micro-benchmark

0

20

40

60

80

100

C
P

U
 u

ti
liz

at
io

n
 %

Primary Secondary

PerfIsoStandalone Restrict cores

SLO 11.65

349.08

12.07 11.63

1

10

100

1000

P
9

9
 la

te
n

cy
 (

m
s)

Standalone No isolation

PerfIso Restrict cores

21%

67%

26 / 297/12/18

38%
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1-hour run of  650 machine cluster

Average CPU utilization is 50% - 80%!

Secondary: Machine-Learning computation
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Interesting details in the paper

• Effectiveness of static CPU isolation methods

• Restricting CPU cycles

• Restricting CPU cores

• Comparison of state-of-the-art techniques

• Managing disk, memory, and network
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PerfIso: colocate batch jobs with online services
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PerfIso: colocate batch jobs with online services

• Black-box: do not tailor to one specific service

• Robustness: favor user-mode over kernel implementation

• Headroom: some core-slack makes Primary behave like standalone

• CPU Blind Isolation → colocation without impacting service performance
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