
Zhichao Hua, Dong Du, Yubin Xia, Haibo Chen,
Binyu Zang

Institute of Parallel and Distributed Systems (IPADS)
Shanghai Jiao Tong University

EPTI: Efficient Defense against
Meltdown Attack for Unpatched VMs

2

Meltdown
Break user/kernel isolation
► Allow attacker to read arbitrary kernel data

Hardware bug in architecture
► Hard to be fixed by micro-code patch

Exist in almost all Intel CPUs produced in past
20 years

3

Meltdown

key = 0x01

Kernel

User

Mapped with kernel
privilege in page table

Access key

Permission Error!

3

Meltdown

key = 0x01

Kernel

User

Mapped with kernel
privilege in page table

Meltdown

Can access key!

3

Meltdown

key = 0x01
Kernel

User

CPU

Instruction Effect

Cache Memory

Meltdown

3

Meltdown

key = 0x01
Kernel

User

CPU

Load key, %rax %rax = 1

Instruction Effect

Reorder
Execution

Permission Error! 1

2

Cache Memory

buf
(Attack buffer)

Meltdown

… buf[0] buf[1] buf[2] … buf[n] …

Load buf[%rax], %rbx Access buf[1]

Key = 1

Rollback status
w/o cache status!

3

Meltdown

key = 0x01
Kernel

User

CPU

Load key, %rax %rax = 1

Instruction Effect

Reorder
Execution

Permission Error! 1

2

Cache Memory

buf
(Attack buffer)

Meltdown

Key = 1

buf[1]

… buf[0] buf[1] buf[2] … buf[n] …

Load buf[%rax], %rbx Access buf[1]

3
Exception

Access
buf[1]

Fill buf[1]
to cache

2 2

Rollback status
w/o cache status!

3

Meltdown

key = 0x01
Kernel

User

CPU

Load key, %rax %rax = 1

Instruction Effect

Reorder
Execution

Permission Error! 1

2

Cache Memory

buf
(Attack buffer)

Meltdown

Key = 1

buf[1]

… buf[0] buf[1] buf[2] … buf[n] …

Load buf[%rax], %rbx Access buf[1]

3

Access
buf[1]

Fill buf[1]
to cache

2 2

Exception

Attacker finds that buf[1] is in the
cache, so that key equals to 1!

4

Existing Solution
KPTI (Kernel Page Table Isolation)
► Two page tables for user and kernel space

► User page table only maps user space
► Kernel page table maps both user and kernel space

► Switch the page table during user/kernel switching
► Add latency to syscalls, signal handler,…

Not suitable for the cloud environment

5

KPTI

KPTI

Defend against Meltdown Yes

Patch without manual effort No

Independent on kernel version No

Without rebooting No

Performance overhead Moderate

5

KPTI vs. EPTI (Our Solution)

KPTI EPTI

Defend against Meltdown Yes Yes

Patch without manual effort No Yes

Independent on kernel version No Yes

Without rebooting No Yes

Performance overhead Moderate Low

6

Address Translation in Cloud VMs

gPT translates GVA to GPA
► Controlled by the guest

EPT translates GPA to HPA
► Controlled by the

hypervisor
Guest virtual address

(GVA)

kernel

user

guest physical address
(GPA)

host physical address
(HPA)

gPT
(guest page table)

EPT
(Extended page table)

7

EPT Switching
Switching EPT directly in the guest VM
► Hardware functionality provided by Intel (with VMFUNC

instruction)
► Select an EPT from a list (configured by the hypervisor)
► No trap to the hypervisor during the switching

Performance characteristics of EPT switching
► No TLB flush during switching
► Low latency

► About 160 cycles

7

EPT Switching
Switching EPT directly in the guest
► Hardware functionality provided by Intel (with VMFUNC

instruction)
► Select a EPT from a list (configured by the hypervisor)
► No trap to the hypervisor during switch

Performance characteristics of EPT switching
► No TLB flush during switching
► Low latency

► About 160 cycles

Use two EPTs to isolate the user and kernel space:
EPT-k for the kernel and EPT-u for the user

8

Challenges
How to construct the EPT-k and EPT-u to isolate
user and kernel space?
► Hypervisor knows limited semantics of the guest

How to achieve high performance?
► Getting guest semantics needs a lot of traps

How to provide seamless protection?
► Enable the protection without rebooting the guest

EPT-based kernel space isolation
► Two EPTs (EPT-k and EPT-u) to for guest kernel and user

mapping
► Three optimizations to reduce the traps and improve the

performance

Seamless protection
► Dynamically trampoline injection

► Trampoline using VMFUNC to switch the EPT in the guest

► Using live migration to enable the protection to the guest
9

EPTI

10

EPT-based Kernel Space Isolation

First try: directly remove kernel mapping in EPT-u

Naïve method
► Remove GPA-to-HPA

mapping for kernel in
EPT-u

✕ Cannot distinguish
kernel-used and user-
used GPA

11

EPT-based Kernel Space Isolation

Guest virtual address
(GVA)

kernel

user

guest physical address
(GPA)

host physical address
(HPA)

gPT
(guest page table)

EPT
Extended page table

Naïve method
► Remove GPA-to-HPA

mapping for kernel in
EPT-u

✕ Cannot distinguish
kernel-used and user-
used GPA

11

Guest virtual address
(GVA)

kernel

user

guest physical address
(GPA)

host physical address
(HPA)

gPT
(guest page table)

EPT
Extended page table

Direct
map

Direct map region in
kernel maps all GPAs

EPT-based Kernel Space Isolation

Remove all GPAs, not work

12

EPT-based Kernel Space Isolation

Second try: zero the guest page table for
kernel space in EPT-u

EPTI method
► Zero GVA-to-GPA

mapping for kernel

13

EPT-based Kernel Space Isolation

Guest virtual address
(GVA)

kernel

user

guest physical address
(GPA)

host physical address
(HPA)

gPT
(guest page table)

EPT
Extended page table

gPT page

EPTI method
► Zero GVA-to-GPA

mapping for kernel

► Remap gPT page which
controls kernel mapping
to a zeroed page in EPT-u

13

EPT-based Kernel Space Isolation

Guest virtual address
(GVA)

kernel

user

guest physical address
(GPA)

host physical address
(HPA)

gPT
(guest page table)

EPT
Extended page table

mapping

00000000

gPT page

In EPT-k

In EPT-u

Remap guest level-3
page table page (gL3)
► All processes share the

same level-3 page table
page for kernel mapping
(kernel gL3)

14

EPT-based Kernel Space Isolation

kernel

user

kernel

user

...

4-level guest page table (gPT)

Level-4 Level-3 Level-2 Level-1

14

EPT-based Kernel Space Isolation

Remap guest level-3
page table page (gL3)
► All processes share the

same level-3 page table
page for kernel mapping
(kernel gL3)

► Remap kernel gL3 to a
zeroed host physical page
in EPT-u

kernel

user

kernel

user

...

4-level guest page table (gPT)

Level-4 Level-3 Level-2 Level-1

00000000

00000000

Host physical page

In EPT-uIn EPT-k

14

EPT-based Kernel Space Isolation

Remap guest level-3
page table (gL3)
► All processes share the

same level-3 page table for
kernel mapping (kernel gL3)

► Remap kernel gL3 to a
zeroed host physical page
in EPT-u

kernel

user

kernel

user

...

4-level guest page table (gPT)

Level-4 Level-3 Level-2 Level-1

00000000

00000000

Host physical page

In EPT-uIn EPT-k

Need to trace all enabled kernel level-3 page
table pages (kernel gL3)

15

Tracing Kernel gL3
Use trap to get kernel gL3 in hypervisor
► Trap guest load-CR3 operation

► To get all guest level-4 page table pages

► Trap write operation of guest level-4 page table page
► To get all enabled kernel guest level-3 page table pages (kernel gL3)

Too many traps will hurt the performance

16

Tracing Kernel gL3
Three optimizations to reducing traps
► Write protection method for access/dirty bit updating
► Selectively trap load-CR3 operation
► Trap modification on gL3 only

17

Access/Dirty Bits Updating
CPU updates access/dirty bit
► Each page table entry has access/dirty bits (A/D bits)
► Update when the entry is used to perform address translation

Need to trap kernel modifications on guest
level-4 page table pages (gL4)
► Map gL4 as write protected in EPT
► All guest memory accesses update A/D bits in gL4 and cause

a trap

CPU and guest have different access paths
► CPU modifies guest page table (gPT) with GPA

► Map GPA of target gPT page as R.W. in EPT

► Guest kernel modifies gPT with GVA

18

EPTI Write-protection Method (Opt-1)

GVA GPA HPA
gPT EPT

gPT page

CPU access

Guest kernel
access

CPU and guest have different access paths
► CPU modifies guest page table (gPT) with GPA

► Map GPA of target gPT page as R.W. in EPT

► Guest kernel modifies gPT with GVA
► Map GVA of target gPT page to a new GPA and map it as R.O. in EPT

18

EPTI Write-protection Method (Opt-1)

GVA GPA HPA
gPT EPT

gPT page

CPU access

Guest kernel
access

R.W.

R.O.

CR3 contains the guest page table pointer
► Change during the process switching

EPTI needs to trace the new enabled guest
page table
► Trap load-CR3 operation
► Loading an old page table also causes a trap

19

Load-CR3 Operation in Guest VM

Hardware feature target_cr3_value
► loading CR3 value same as the target_cr3_value will not

cause trap
► Host can configure four target_cr3_values

Disable trap on loading frequently-used CR3
value
► Write the most frequently-used CR3 value into the

target_cr3_value field

20

Selectively Trap Load-CR3 (Opt-2)

Guest level-4 page table (gL4) contains both
user and kernel mapping
► Adding either kernel gL3 or user gL3 needs to modify the gL4

EPTI needs to trap “adding kernel gL3”
► Trap modification on gL4
► ”Adding user gL3” also writes gL4 and causes a trap

21

Modification on gL4

Kernel address space consists of different
regions
► E.g., direct_map region, text region, vmalloc region, …
► All the regions either have fixed length or increase

continuously

A new kernel gL3 is added until the last entry of
one existing kernel gL3 is used

22

Trap Modification on gL3 Only (Opt-3)

Trap gL3 only until detecting a new gL3 will be
added
► Step-1: trap modification on gL3
► Step-2: when the last entry of gL3 is used, start to trap

modification on gL4
► Go to step-1 when detect the new gL3

23

Trap Modification on gL3 Only (Opt-3)

kernel

user

Level-4 Level-3

Read-only

Writable

23

Trap Modification on gL3 Only (Opt-3)

kernel

user

Level-4 Level-3

Read-only

Writable

Trap gL3 only until detecting a new gL3 will be
added
► Step-1: trap modification on gL3
► Step-2: when the last entry of gL3 is used, start to trap

modification on gL4
► Go to step-1 when detect the new gL3

24

Malicious EPT Switching
Intel allows the EPT switching to be performed
in guest user mode
► Attacker can switch to EPT-k, which contains the kernel

mapping, and perform Meltdown attack

Make EPT-k to be useless in user mode
► All GPAs are mapped as non-executable in EPT-k except the

kernel code or kernel modules
► Switching to EPT-k in user mode causes trap

EPT-based kernel space isolation
► Two EPTs (EPT-k and EPT-u) to for guest kernel and user

mapping
► Three optimizations to reduce the traps and improve the

performance

Seamless protection

25

EPTI

26

Seamless Protection
Dynamically trampoline injecting
► Trampoline switches the EPT-k and EPT-u

Seamless protection method
► No need to reboot the guest by leveraging live migration

More details in the paper

27

Performance Evaluation
Hardware platform
► Intel Core i7-7700 (4 cores * 2 thread)
► 16GB memory

Software environments
► Linux 4.9.75 + KVM for host
► Linux 4.9.75 for guest

► Other Linux versions are also tested (more results in the paper)

Guest configurations
► 4 vCPUs (each is pinned on one physical thread)
► 8GB memory

28

LMBench

Operation(µs) Linux KPTI KPTI
(normalized)

EPTI EPTI
(normalized)

Null syscall 0.04 0.16 4x 0.12 3x
Null I/O 0.07 0.2 2.86x 0.16 2.28x
Open/Close 0.70 0.93 1.33x 0.83 1.19x
Signal Handle 0.68 0.81 1.19x 0.76 1.12x
Fork syscall 72.9 79 1.08x 75 1.03x
Exec syscall 212 243 1.15x 221 1.04x
Ctsw 16P/64K 6.07 7.37 1.21x 6.39 1.05x

EPTI has lower overhead of syscall latency, which is
the main overhead of KPTI

29

Redis
Test sets: get and set operations of redis-benchmark

KPTI has 12% overhead
on average

EPTI has 7% overhead
on average

30

Conclusion
EPTI provides a new Meltdown defense
method in cloud
► Use two EPTs (EPT-k and EPT-u) to isolate user/kernel space

High usability
► Protect unpatched guest
► No dependence on kernel version
► No need to reboot the guest

Low performance overhead

31

Thanks

Institute of Parallel And Distributed Systems (IPADS)
Shanghai Jiao Tong University

http://ipads.se.sjtu.edu.cn

