STMS: Improving MPTCP
Throughput Under
Heterogenous Networks

Hang Shit, Yong Cuit, Xin Wang?, Yuming Hu?!, Minglong Dail,
Fanzhao Wang?, Kai Zheng?

1 Tsinghua University, 2Stony Brook University,
SHuawei Technologies

STONY I
BRQ\SK @'é

UNIVERSITY HUAWEI

Background

« Mutipath TCP Is widely adopted to aggregate bandwidth of
multiple interfaces of mobile devices

* Transparent to both application and middlebox

* However, mobile WiFi and LTE are heterogeneous:
« 20% of top 500 sites has RTT difference > 45ms, as high as 134ms?

IMobicom 16, Understand Multipath performance on Mobile devices

Big host buffer requirement

« Default scheduler: send packets through fastest available path

Sender T=1s Receiver

send_una ‘
Fast path: RTT = 0s, bandwidth = 1 . -

packet/s

Slow path: RTT = 4s, bandwidth = 1 .

nacket/s

unsent/received

Big host buffer requirement

« Default scheduler: send packets through fastest available path

Sender T=2s Receiver

send_una

Fast path: RTT = 0s, bandwidth = 1 .
packet/s

Slow path: RTT = 4s, bandwidth = 1 .
packet/s

unsent/received

Big host buffer requirement

« Default scheduler: send packets through fastest available path

» Packet sent from slow path arrive late. Can not submit to
application. Need more buffer.

Sender T =3s Receiver

send_una Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1
packet/s

unsent/received

Host buffer is not the only bottleneck

* TC running in OpenWrt router to regulate bandwidth and RTT

 |Perf to measure the throughput (send packets continuously)
« Bandwidth = 30Mbps, loss rate = 0.01%
* Host buffer big enough(6M)

RTT 20ms vs 200ms 20ms vs 20ms

Aggregated Throughput 33.1 56.5

Fast path Throughput 12.1 28.3 _ 0 -0

RTT (added by TC)

(Mbps)
Fast path Loss rate (%) 0.05 0.01

Burst sending pattern

« [Fast path sends packets in burst.

90

| —— fast send
————— slow receive

-

12.3
Time (s)

12.2

20ms vs 200ms

12.4

12.5

50
—— fast send
=404 slow receive
(V]
=
n 30 1
&
o
Ly
n 201
Q
Y4
@
a 10
N -~ "\ A n f\\
'I/ \\//’\\ /:.\\!, ~ \\ .~ II A / \\/, ‘\,’\\\/l VI \V: v
0 - . ;
11.8 11.9 12.0 12.1
Time (s)

20ms vs 20ms

Big in-network buffer requirement

* Bigger in-network buffer is needed to tolerant the burst.

* When in-network buffer is limited, MPTCP can not compete

against single path TCP. (More packet loss)

MPTCP
In-network MPTCP Fast overall TP SPTCP Utilization
buffer/K path /Mbps /Mbps fast/Mbps of fast path
30 12.1 31 28.4 42.61%
60 22 36 28.4 77.46%
90 24.9 40.2 28.4 87.68%

150 28.3 46.3 28.4 99.65%

20-20

20-100
rtt(ms)

B 30K
B 90K
s 150K

20-200

MPTCP 2 level sequence number

« Separate send window of MP level and subflow level
« 2 level sequence number and cumulative ACK.

Sender-MP Sender-FP Receiver

subflow: 201
Fast path: RTT = 0s, bandwidth =2

packet/s

Slow path: RTT = 4s, bandwidth = 1
packet/s

. unsent/received

bflow: 101

Burst sending of fast path

 When ACK of slow path returns, MP-level send window slides,
fill the CWND space of fast path.

Sender-MP Sender-FP Receiver

subflow: 201

Fast path: RTT = 0s, bandwidth = 2
packet/s

unsent/received

Slow path: RTT = 4s, bandwidth = 1
packet/s

bflow: 101

MPTCP-level window sliding

* the left edge of MP send window almost only slides after

receiving ACK from slow path.

20750
20500+

2 20250

AV

& 20000-

<

® 19750
a 19500
19250
19000 1

5.8

Data ACK

jump N

50 6.0 6.1 6.2

Time (s)
20ms vs 200ms

6.3

27000 1
26750+
26500 -
o
< 26250+

AV

Q 26000
£ 25750
2 25500
25250-
25000-
5.8

5.9

6.0 6.1

Time (s)

20ms vs 20ms

6.2

6.3

Send window space (MSS)

CWND free space of fast path

« Break the ACK clocking of single TCP.

1001

80 1

60 1

40 1

20

OI
5.8

5.9

6.0 6.1
Time (s)
20ms vs 200ms

6.2

6.3

N W g Ul (@)
o o o o o

Send window space (MSS)
=
o

5.9 6.0 6.1 6.2 6.3
Time (s)

o

w
[o°)

20ms vs 20ms

Solution space

« Retransmission and penalization! can alleviate host buffer
problem. Can not solve in-network buffer problem

* Pacing can solve in-network buffer problem.
« TC pacing, need set the pacing rate manually
 BBR congestion control, not fair with single path TCP

1 NSDI 12: How hard can it be? designing and implementing a deployable multipath tcp

Out-of-order sending

Sender T= Receive
1s r
send_una H
Fast path: RTT = 0s, bandwidth = 1
‘ \ packet/s

Slow path: RTT = 4s, bandwidth = 1
packet/s unsent/received

Out-of-order sending

Sender T= Receive
2S r

Fast path: RTT = 0s, bandwidth = 1 -

packet/s

send_una

Slow path: RTT = 4s, bandwidth = 1
packet/s unsent/received

Out-of-order sending

Sender T= Receive
3s r

Fast path: RTT = 0s, bandwidth = 1
packet/s

send_una

Slow path: RTT = 4s, bandwidth = 1
packet/s unsent/received

Out-of-order sending

Sender T= Receive
4s r

Fast path: RTT = 0s, bandwidth = 1
packet/s

Slow path: RTT = 4s, bandwidth = 1
packet/s

unsent/received

send_una

Out-of-order sending

Sender T= Receive
4s r

Fast path: RTT = 0s, bandwidth = 1
packet/s

Slow path: RTT = 4s, bandwidth = 1
packet/s

unsent/received

send_una

Out-of-order sending algorithm
e

P_next
* For fast path, send unsent/0] bufter

* For slow path, send unsent/Gap|
* Leave Gap packets for fast path to send
« Qut-of-order sending -> in-order arrival

Gap

) Bandwidth(fast) t Delay(faSt) — Delay(Slow)

Need more send buffer?

« Seems like moving Gap from receiver to sender?

 However, send window can slide faster. No duplicate ACK.
Each ACK can acknowledge some packets.

* Actually, out-of-order sending can always get optimal
throughput across all range of host buffer sizes.

How to get GAP value

* Nalve way: Calculate from path condition measurement.
* Gap = Bandwidth(fast) * (Delay(slow) — Delay(fast))

« Hard to measure. Need symmetric forward delay.

* No more options. Compatible with existing MPTCP
protocol. Get feedback from existing options.
« Deployable. Modify sender side only

Key Insight

« Out-of-order arrival generate burst MP-level ack
« Gap = Number of bursting MP-level ACKs

Sender-MP Sender-FP T=1s Receiver

subflow: 201
Fast path: RTT = 0s, bandwidth = 2

packet/s

Slow path: RTT = 4s, bandwidth = 1
packet/s

. unsent/received

bflow: 101

Key Insight

« Out-of-order arrival generate burst MP-level ack
« Gap = Number of burst MP-level ACKs

Sender-MP Sender-FP T=2s Receiver

subflow: 201

Fast path: RTT = 0s, bandwidth = 2
packet/s

unsent/received

Slow path: RTT = 4s, bandwidth = 1
packet/s

subflow: 101

Gap adjustment

« Burst MP-level ACK(data ACK)

* Packet[send una] sent from slow path, Gap += delta[data _ack] - 2
* Packet[send una] sent from fast path, Gap -= delta[data_ack] — 2

« Limit the frequency of adjustment to avoid repeated adjustment.

« EWMA of delta over adjustment interval.

Implementation and Evaluation

. (Early completion first.
Sending tail packets out-of-orderly.)

Controlled lab and real-world.
Varying static and dynamic network environment.
* Varying in-network buffer and host buffer.

Microbenchmarks

Default

- ECF
—— STMS-A

STMS-C

100

200 300
ooo-latency (ms)

400

ooo-latency (ms)

un
o

N
o

W
o

N
o

-
o

o

Reduce out-of-order latency: t(submitted) — t(arrival)

[Default
VA ECF

| 23 STMS-A

1 STMS-C

"N

20 50

100
RTT s (ms)

150

200

Microbenchmarks

* Varying receive buffer and send buffer size.

——- Default —— STMS-A
ECF -—-- STMS-C

0 1 2 3 4 5
Receive buffer (MB)

70
—-—-- Default — STMS-A

00 ECF - STMS-C

0 1 2 3 4 5
Sender buffer (MB)

Reduce burst on the fast path

« CWND freespace when
receiving ACK.

 Perf will fill the freespace.

* Big freespace -> burst
sending -> big in-network
buffer requirement.

| = Default

71 ECF

| & STMS-A
1 [—1 STMS-C

Z Z 71
| e e

S L 7 L L L L L 7 1
NN N N N N PN N NN N

L. L s L s 7 1

L L L L L L L L A
NN N N N N N N N N N]

XN

20 50

100
RTT s (ms)

=
Ul
o

N
o
o

Gap adjustment is dynamic

« Change the network condition suddenly.

500 900

--%-- STMS-C 800 - : -—x-- STMS-C

4001 —o— STMS-A 200 —e— STMS-A
— ~ 600
£ 300 g 5001
© 200 | & 09
100 : 200+
OO 0 s < e P 100
0 ' ‘ 0

20 22 24 26 28 30 20 22 24 26 28 30

Time (s) Time (s)

Throughput (Mbps)

Macrobenchmarks

« 25% improvement when in-network buffer is limited.

Ul
o

D
un

N
o

w
Ul

W
o

yi! —F- Default

' }/ ECF
T STMS-A

- STMS-C

20 40 60 80 100 120 140
In-network buffer (KB)

150.0
130.0
110.01
90.0+
70.0
50.01

In-network buffer (KB)

30.01

1.25
1.20
- 1.15
-1.10

- 1.05

20 50 100 150 200
RTT_s (ms)

STMS — A
Default

Host buffer

« 20% improvement when receive/send buffer is limited.

551
—~ 50+ T3 3 _’S, "."'
45 J AT
S i L/I b
*340 o
< =
3 35 i —[- Default
530 ‘%,} I ECF
—}— STMS-A
2511 ~J-- STMS-C
0 1 2 3 5 6

Receive buffer (MB)

Receive buffer (MB)

o
o

V1
o

P
o

w
o

N
o

=
o

RTT_s (ms)

1.20

1.15

-1.10

- 1.05

-1.00

STMS — A
Default

Ion

IC nhetwork condi

Dynam

« Change bandwidth(left) and latency(right) randomly

£ STMS-A

ST

NN)

[STMS-C

40

381 31 Default

£ STMS-A

3 Default

21 ECF

PN XXX NI XX XXA

40.0 A

Real-world evaluation

» Lab to Alibaba Cloud. 45
: : 40| B Default I STMS-A
* No bandwidth regulation. | 3 EcE —1 STMS-C - octer
* Varying latency. T 30. \
* Download 200MB file. 225
3 20-
-
= 151
BT S,
WiFi 40 50
5_
LTE 30 70
0

70 130 190 250 310
LTE latency(ms)

Conclusion

* Discover the in-network buffer problem of MPTCP.

* Leverage data ACK and subflow ACK for dynamically Out-of-
order sending.

* Improve the throughput of MPTCP when RTTs are asymmetric
and especially when the buffer is limited.

Thanks

