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Background

« Mutipath TCP Is widely adopted to aggregate bandwidth of
multiple interfaces of mobile devices

* Transparent to both application and middlebox

* However, mobile WiFi and LTE are heterogeneous:
« 20% of top 500 sites has RTT difference > 45ms, as high as 134ms?

IMobicom 16, Understand Multipath performance on Mobile devices



Big host buffer requirement

« Default scheduler: send packets through fastest available path

Sender T=1s Receiver
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Big host buffer requirement

« Default scheduler: send packets through fastest available path

Sender T=2s Receiver

send_una

Fast path: RTT = 0s, bandwidth = 1 .
packet/s

Slow path: RTT = 4s, bandwidth = 1 .
packet/s

unsent/received




Big host buffer requirement

« Default scheduler: send packets through fastest available path

» Packet sent from slow path arrive late. Can not submit to
application. Need more buffer.

Sender T =3s Receiver

send_una Fast path: RTT = 0s, bandwidth = 1

packet/s

Slow path: RTT = 4s, bandwidth = 1
packet/s

unsent/received




Host buffer is not the only bottleneck

* TC running in OpenWrt router to regulate bandwidth and RTT

 |Perf to measure the throughput (send packets continuously)
« Bandwidth = 30Mbps, loss rate = 0.01%
* Host buffer big enough(6M)

RTT 20ms vs 200ms 20ms vs 20ms

Aggregated Throughput 33.1 56.5

Fast path Throughput 12.1 28.3 _ 0 -0

RTT (added by TC)

(Mbps)
Fast path Loss rate (%) 0.05 0.01



Burst sending pattern

« [Fast path sends packets in burst.
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Big in-network buffer requirement

* Bigger in-network buffer is needed to tolerant the burst.

* When in-network buffer is limited, MPTCP can not compete

against single path TCP. (More packet loss)

MPTCP
In-network MPTCP Fast overall TP SPTCP Utilization
buffer/K path /Mbps /Mbps fast/Mbps  of fast path
30 12.1 31 28.4 42.61%
60 22 36 28.4 77.46%
90 24.9 40.2 28.4 87.68%

150 28.3 46.3 28.4 99.65%
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MPTCP 2 level sequence number

« Separate send window of MP level and subflow level
« 2 level sequence number and cumulative ACK.

Sender-MP Sender-FP Receiver

subflow: 201
Fast path: RTT = 0s, bandwidth =2

packet/s

Slow path: RTT = 4s, bandwidth = 1
packet/s

. unsent/received

bflow: 101




Burst sending of fast path

 When ACK of slow path returns, MP-level send window slides,
fill the CWND space of fast path.

Sender-MP Sender-FP Receiver

subflow: 201

Fast path: RTT = 0s, bandwidth = 2
packet/s

unsent/received

Slow path: RTT = 4s, bandwidth = 1
packet/s

bflow: 101




MPTCP-level window sliding

* the left edge of MP send window almost only slides after

receiving ACK from slow path.
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Send window space (MSS)

CWND free space of fast path

« Break the ACK clocking of single TCP.
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Solution space

« Retransmission and penalization! can alleviate host buffer
problem. Can not solve in-network buffer problem

* Pacing can solve in-network buffer problem.
« TC pacing, need set the pacing rate manually
 BBR congestion control, not fair with single path TCP

1 NSDI 12: How hard can it be? designing and implementing a deployable multipath tcp



Out-of-order sending

Sender T= Receive
1s r
send_una H
Fast path: RTT = 0s, bandwidth = 1
‘ \ packet/s

Slow path: RTT = 4s, bandwidth = 1
packet/s unsent/received




Out-of-order sending

Sender T= Receive
2S r

Fast path: RTT = 0s, bandwidth = 1 -

packet/s

send_una

Slow path: RTT = 4s, bandwidth = 1
packet/s unsent/received




Out-of-order sending

Sender T= Receive
3s r

Fast path: RTT = 0s, bandwidth = 1
packet/s

send_una

Slow path: RTT = 4s, bandwidth = 1
packet/s unsent/received




Out-of-order sending

Sender T= Receive
4s r

Fast path: RTT = 0s, bandwidth = 1
packet/s

Slow path: RTT = 4s, bandwidth = 1
packet/s

unsent/received

send_una




Out-of-order sending

Sender T= Receive
4s r

Fast path: RTT = 0s, bandwidth = 1
packet/s

Slow path: RTT = 4s, bandwidth = 1
packet/s

unsent/received

send_una




Out-of-order sending algorithm
e

P_next
* For fast path, send unsent/0] bufter

* For slow path, send unsent/Gap|
* Leave Gap packets for fast path to send
« Qut-of-order sending -> in-order arrival

Gap

) Bandwidth(fast) t Delay(faSt) — Delay(Slow)




Need more send buffer?

« Seems like moving Gap from receiver to sender?

 However, send window can slide faster. No duplicate ACK.
Each ACK can acknowledge some packets.

* Actually, out-of-order sending can always get optimal
throughput across all range of host buffer sizes.



How to get GAP value

* Nalve way: Calculate from path condition measurement.
* Gap = Bandwidth(fast) * (Delay(slow) — Delay(fast))

« Hard to measure. Need symmetric forward delay.

* No more options. Compatible with existing MPTCP
protocol. Get feedback from existing options.
« Deployable. Modify sender side only



Key Insight

« Out-of-order arrival generate burst MP-level ack
« Gap = Number of bursting MP-level ACKs

Sender-MP Sender-FP T=1s Receiver

subflow: 201
Fast path: RTT = 0s, bandwidth = 2

packet/s

Slow path: RTT = 4s, bandwidth = 1
packet/s

. unsent/received

bflow: 101




Key Insight

« Out-of-order arrival generate burst MP-level ack
« Gap = Number of burst MP-level ACKs

Sender-MP Sender-FP T=2s Receiver

subflow: 201

Fast path: RTT = 0s, bandwidth = 2
packet/s

unsent/received

Slow path: RTT = 4s, bandwidth = 1
packet/s

subflow: 101




Gap adjustment

« Burst MP-level ACK(data ACK)

* Packet[send una] sent from slow path, Gap += delta[data _ack] - 2
* Packet[send una] sent from fast path, Gap -= delta[data_ack] — 2

« Limit the frequency of adjustment to avoid repeated adjustment.

« EWMA of delta over adjustment interval.



Implementation and Evaluation

. (Early completion first.
Sending tail packets out-of-orderly.)

Controlled lab and real-world.
Varying static and dynamic network environment.
* Varying in-network buffer and host buffer.



Microbenchmarks
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Microbenchmarks

* Varying receive buffer and send buffer size.
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Reduce burst on the fast path

« CWND freespace when
receiving ACK.

 Perf will fill the freespace.

* Big freespace -> burst
sending -> big in-network
buffer requirement.
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Gap adjustment is dynamic

« Change the network condition suddenly.
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Throughput (Mbps)

Macrobenchmarks

« 25% improvement when in-network buffer is limited.
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Host buffer

« 20% improvement when receive/send buffer is limited.
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£ STMS-A

ST

NN )

[ STMS-C

40

381 31 Default

£ STMS-A

3 Default

21 ECF

PN XXX NI XX XXA

40.0 A




Real-world evaluation

» Lab to Alibaba Cloud. 45
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Conclusion

* Discover the in-network buffer problem of MPTCP.

* Leverage data ACK and subflow ACK for dynamically Out-of-
order sending.

* Improve the throughput of MPTCP when RTTs are asymmetric
and especially when the buffer is limited.
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