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Why Tributary?

 CSPs offer cheaper resources that come with
potential of being taken away

- GCE preemptible instances

- AWS EC2 spot instances

 Preemptions are bad for services w/ SLOs
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Transient resources much cheaper

o Often 75-85% cheaper to use Spot Instances
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Spot Market Details

* Many different spot markets

- each instance type, in each availability zone, in each
datacenter

- empirically, markets are uncorrelated
* |f pre-empted, Amazon issues refund
- during first hour only
* Aquire resource(machines) by specifying:

- <spot market, bid price, number of machines>
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Tributary Changes how we Aquire Resources

e Uses transient instead of reliable resources

- while addressing bulk preemptions

e Uses resource from multiple spot markets
- predicts allocation P[preemption]
- tracks inter-market correlations

- maintains diverse resource buffer
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Tributary Components

* Predicting resource reliability

e Constructing resource footprint
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Influencing P[preemption]

 User’s bids influence P[preemption] of spot instances

- bid delta = user bid price - spot market price

 Bigger Delta
- lower P[preemption] and higher cost
« Smaller Delta

- higher P[preemption] and lower cost
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Predicting P[preemption]

* Predict P[preemption] as a function of bid deltas

e Extract features
- calendrical

- temporal

* Plug features into LSTM Model

- models EC2 as a sequence of events

Carnegie Mellon

Parallel Data Laboratory
http://www.pdl.cmu.edu/ 10 Aaron Harlap © July 18


http://www.pdl.cmu.edu

Constructing the Resource Footprint

* Need to achieve capacity to satisfy SLO of
client workload

* Need sufficient diversity across markets

While expected request capacity < SLO:

Add resource that increases expected cost the least
and increases request capacity the most.

Carnegie Mellon

Parallel Data Laboratory
http://www.pdl.cmu.edu/ 11 Aaron Harlap © July 18


http://www.pdl.cmu.edu

Computing Expected Request Capacity

 Compute probability of exactly O - N resources not
pre-empted

 Accounts for spot market dependencies

 Encourages diversity
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Computing Expected Request Capacity
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So Why Does this Work?

 Creates a diversified, oversized footprint
- able to tolerate preemptions

- little or no extra cost

 Handles unexpected workload spikes

- handled via oversized natural resource buffers
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Time for an Example
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Rate of Requests

Tributary Serves More Requests
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Request Rate Decreases
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Tributary’'s Resources are Pre-empted

A A
Alloc D

g 82
2 2l r-----
5 5 i o
o 3 | Alloc C ! | Alloc D
Y Y
S S 2
() 9 Alloc C
© ©
Y Y

30 60 30
Time (min) Time (min)
AutoScale Tributary

Carnegie Mellon

Parallel Data Laboratory
http://www.pdl.cmu.edu/ 18 Aaron Harlap © July 18


http://www.pdl.cmu.edu

Experimental Setup

e 4 Traces Evaluated

O
- show Clarknet §367_
e 3 Scaling Policies
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Comparing to AutoScale
e AWS AutoScale

- AWS service that acquires cheapest spot instances
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Other Interesting Results

* Across 4 traces Tributary reduces cost by 47-62%

e Qutperformed recent research systems
- ExoSphere [Sharma 2017]
- Proteus [Harlap 2017]

 Only ~50% of cost saving come from preemptions
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Conclusion

 Provides reliable service using transient
resources

e Uses diversified buffers of resources

 Reduces cost by ~85% over on-demand
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