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Motivation
• Many wearables and IoT devices utilize ultra-low-

power MCUs to achieve long battery life
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Motivation

2



Our Proposal

Utilize MPU to relax language restrictions and 
achieve better runtime performance
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System Design: Platform
• Amulet Platform
– Open-source software & 

hardware
– Multi-application
– Low-power MSP430 MCU
– Memory isolation via 

language restrictions and 
runtime bounds checks
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System Design: MPU Capabilities
• No privilege levels
• 3 variable size memory 

segments
• Only protects memory 

addresses above
0x4400

5



System Design: Memory Layout
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System Design: Memory Violations
• Memory Accesses
– Application data
– Indirect function calls

• Context Switches
– Passing a pointer to the OS
– Changing return address
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System Design: Memory Layout
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System Design: MPU Model
• MPU prevents memory accesses and indirect calls 
above the current app’s memory space

• Runtime software checks handle accesses and 
indirect calls below the current app’s memory 
space

• Each application has its own stack
• Runtime software checks verify return addresses
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System Design: AFT
• Amulet Firmware Toolchain 

(AFT)
– Analyze,
– Transform
– Merge
– Compile
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Eval: Isolation Models
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Eval: Simulation
• Simulated 9 applications from the Amulet 

suite using the Amulet Resource Profiler (ARP)
• Each application was simulated using
– Amulet isolation
– MPU isolation
– Software-only isolation
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Eval: Simulation Results
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Eval: Amulet Deployment Results
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Summary
• MPU can provide performance benefits for 

applications with high frequency of memory 
accesses

• While our approach was not effective for apps 
with frequent context switches, our MPU 
approach had, for all applications, less than 
0.5% battery impact
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