
Application Memory Isolation on 
Ultra-Low-Power MCUs

Taylor Hardin, Ryan Scott, Patrick 
Proctor, Josiah Hester, Jacob Sorber, 

David Kotz

0



Motivation
• Many wearables and IoT devices utilize ultra-low-

power MCUs to achieve long battery life

1



Motivation

2



Our Proposal

Utilize MPU to relax language restrictions and 
achieve better runtime performance

3



System Design: Platform
• Amulet Platform
– Open-source software & 

hardware
– Multi-application
– Low-power MSP430 MCU
– Memory isolation via 

language restrictions and 
runtime bounds checks

4



System Design: MPU Capabilities
• No privilege levels
• 3 variable size memory 

segments
• Only protects memory 

addresses above
0x4400

5



System Design: Memory Layout

6



System Design: Memory Violations
• Memory Accesses
– Application data
– Indirect function calls

• Context Switches
– Passing a pointer to the OS
– Changing return address

7



System Design: Memory Layout

8



System Design: MPU Model
• MPU prevents memory accesses and indirect calls 
above the current app’s memory space

• Runtime software checks handle accesses and 
indirect calls below the current app’s memory 
space

• Each application has its own stack
• Runtime software checks verify return addresses

9



Analyzer 
& Translator

Compiler

App 1 App N…

Linker

Installer

Analyzer 
& Translator

Resource
Profiler

Resource
Profiler

App
Merger

custom 
code

existing tool

QM File with
Amulet C

Step 1: Verify 
compliance with
Amulet C. Insert 
runtime checks
(array bounds,
access control)C code

C code

Step 2: Analyze
resource usage 

Step 3: Visualize 
usage; Merge 
apps

Step 4: Compile and
link with the runtime
system and libraries

Step 5: Install image
on device

C code

binary code

firmware image

AmuletOS

Libraries

ARP-View

Energy 
model

device profile

System Design: AFT
• Amulet Firmware Toolchain 

(AFT)
– Analyze,
– Transform
– Merge
– Compile

10



Eval: Isolation Models

11



Eval: Simulation
• Simulated 9 applications from the Amulet 

suite using the Amulet Resource Profiler (ARP)
• Each application was simulated using
– Amulet isolation
– MPU isolation
– Software-only isolation

12



Eval: Simulation Results

0

1

2

3

0.0

0.1

0.2

0.3

0.4

0.5

BatteryMeter Clock FallDetection HR HR Log Pedometer Rest Sun Temperature
Application

Memory_Models Feature Limited MPU Software Only

Bi
lli

on
s o

f c
yc

le
s

Battery life im
pact

13



Eval: Amulet Deployment Results

0

10

20

30

40

50

Activity Case 1 Activity Case 2 Quicksort
Application

Pe
rc

en
ta

ge
 S

lo
w

do
w

n

Memory_Models Feature Limited MPU Software Only

14



Summary
• MPU can provide performance benefits for 

applications with high frequency of memory 
accesses

• While our approach was not effective for apps 
with frequent context switches, our MPU 
approach had, for all applications, less than 
0.5% battery impact

15



Application Memory Isolation on 
Ultra-Low-Power MCUs

Contact: Taylor.A.Hardin.GR@dartmouth.edu
Amulet Platform: amulet-project.org

This research results from a research program at the Institute for Security, Technology, and Society, supported by the 
NSF under award numbers CNS-1314281, CNS-1314342, CNS-1619970, and CNS-1619950. The views and conclusions 

contained in this document are those of the authors and should not be interpreted as necessarily representing the 
official policies, either expressed or implied, of the sponsors.

16


