TerseCades: Efficient Data Compression
In Stream Processing

Gennady Pekhimenko
Chuanxiong Guo, Myeongjae Jeon, Peng Huang, Lidong Zhou

icrosoft”

esearch

l‘ UNIVERSITY OF mi.” JOHNS HOI)K[NS
J TO RO NTO 4 WHITING SCHOOL

of ENGINEERING

- INTERNET

. OF THINGS

loT Clouds Big Data

Huge volumes of streaming data with real-time processing requirements
Enormous pressure on the capacity and bandwidth of servers’ main memory

Is Data Compression Useful for Streaming?

* Intuitively, streaming with simple operators should be bandwidth-
bottlenecked: either network or memory bandwidth

e Simple single node experiment with the state-of-the-art streaming
engine, Trill, with the Where query over large one column 8-byte field:

E.g., Where (e => e.errorCode != 0)

e Expectation: observe memory bandwidth as a major bottleneck

Throughput (MT/s)

Compressibility #> Performance Gain

Ideal 8X Compression vs. No Compression on Where Query with Trill
H1byte W8byte

9000
8000

7000

6000

5000

4000

3000

2000 I I I
1000 I I

0 Hm
1T a1 8T 127 16T 20T 241 28T 32T 36T 40T 441 48T

Threads

Only 10%-15% performance improvement with 8X compression

4

What Went Wrong?

X Memory allocation overhead:
just-in-time copy of payloads to create a streameable event
X Memory copying and reallocation:
enables flexible column-oriented data batches
X |Inefficient bit-wise manipulation
X Hash tables manipulations

Compressibility => Performance Gain

8X Compression with Add benchmark from STREAM suite
—~-Char —CharCompr. Long

-
40000

30000 /

20000

10000

32 36 40 44 48

Throughput (MElems/sec)

H Threads

Him S0P tIACRPES St B ER S €546 FRINBE SR B WERRHIR ¢ ose to
BRI FnerflNg.6X speedup with 8X compression)

Prerequisites for Efficient Data Streaming

v Fixed Memory Allocation
v Efficient HashMap Primitives

v Efficient Filtering Operations (bit-wise manipulations)

Key Observations

* Memory bandwidth becomes the major bottleneck if
streaming is properly optimized

* Dominant part of the data is synthetic in nature and hence has
a lot of redundancy

— Can be exploited through efficient data compression

TerseCades: Baseline System Overview

Event
Stream Compressor Decompressor Decompressor
= L@l 2
B 7 11 T . | ~
clil g O ’
Compressed Operator Op, on Operator Op, on
Data Store compressed data compressed data

Key Design Choices and Optimizations

v'Lossless Compression
v’ Arithmetic vs. Dictionary-based Compression
v'Decompression is on the critical path

v’ Lossy Compression without Output Quality Loss
v Integers and floating points

v Reducing Compression/Decompression Cost
v'Hardware-based acceleration: vectorization, GPU, FPGA

v'Direct Execution on Compressed Data

Lossless Compression: Base-Delta Encoding

8 bytes

5/23/2016 12:00:01 AM 5/23/2016 12:00:03 AM 5/23/2016 12:00:07 AM

v’ Fast Decompression: v Simple SW/HW Implementations:
vector addition arithmetic and comparison
v’ Effective: good compression ratio
11

Lossy Compression Without Output Quality Loss

* Base-Delta Encoding modification

— Truncate deltas when full precision not required

e /FP floating point compression engine

— Equivalent of BD in floating point domain with controlled precision

Reducing Compression Overhead

-
. (a) Scalara Operation . (b) SIMD Operation Aﬂm
el - e ol " GStratix V

SIMD/Vectorization GPU FPGA

Intel Xeon with 256-bit SIMD NVIDIA 1080Ti Altera Stratix V

13

Execution on Compressed Data

7 ~

l \
Decompress |
'\
|
ﬁ : Processor
[
|
!

Compress 1 gl

Compressed

\
N e e e e e e 4

X Incurs decompression and compression latency
X High energy overhead

Can we leverage data being in a condensed form?

Execution on Compressed Data

Key 1 Value 1
Key 2 Value 2
Key 3 Value 3
Key N Value N
‘l’ Memory

[Value 1 I Value 2 I Value 3 I Value N]

<€— 8B > €— 8B —>€— 8B —m>€— 8B —>

Execution on Compressed Data

N 8-byte Comparisons

[Value 1

€— 8B —> €— 8B —>€—8B —> €— 8B —>

l Value] ‘ 1 or N/8 Comparisons
Meta | Value | Value | Value | Value
data 1 2 3 N

€< 1B>€ 1B>€ 1B><€< 1B>

v’ Low Latency
v'Single Comparison
v Narrower Operations

16

Evaluation: Methodology

 CPU: 24-core system based on Intel Xeon CPU E5-2673,
2.40GHz with SMT-enabled, and 128GB of memory

 GPU: NVIDIA GeForce GTX 1080 Ti with 11GB of GDDR5X
memory

 FPGA: Altera Stratix V FPGA, 200MHz

STREAM Benchmark Results

Add benchmark from STREAM suite
60000

50000
40000
30000
20000
10000

—~-Char —~CharCompr. CharCompr+V —Long

Throughput, MRec/s

1 4 8 12 16 20 24 28 32 36 40 44 48

Threads
Vectorization further reduces compression/decompression
overhead, especially for smaller number of threads

18

STREAM Benchmark Results (2)

Search benchmark
60000 —-Char —CharCompr. Long ——Compr.+Direct

50000 — —— * — N —

40000 /
30000 —

20000 /‘/\‘
10000 / ——

12 16 20 24 28 32 36 40 44 48
Threads

When direct execution is applicable, it can significantly
improve performance as it reduces the total computation

Throughput, MRec/sec

[BRY
S
0)

19

Monitoring and Troubleshooting: PingMesh

C2cProbeCount = stream _ TimeStamp | ErrorCode SrcCluster
.Hopwindow(windowSize, period)
.Where(e => e.errorCode =0 (8; BD) (41 EN"'BD) (41 HS"'BD)

&& e.rtt >= 100) A
.GroupApply((e.srcCluster, DstCluster RoundTripTime

e.dstCluster)) (4, HS+BD) (4, BD)

.Aggregate(c => c.Count())

T2tProbeCount = Stream BD — Base+Delta encoding

.Hopwindow(windowSize, period) HS — String hashing
.Where(e => e.errorCode !=0 EN — Enumeration

&& e.rtt >= 100)
.Join(m, e => e.srcIp, m => m.1pAddr,
(e,m) => {e, srcTor=m.torId}) Number in parenthesis — number of bytes
.Join(m, e => e.dstIp, m => m.1ipAddr, before Compression
(e,m)=> {e, dstTor=m.torId})
.GroupApply((srcTor, dstTor))
.Aggregate(c => c.Count())

20

PingMesh C2cProbeCount Results

(o))
o

49.1

U
o

40.8 43.2

37.5

w b
o O

(WY
o

Throughput, MRec/s
o &

Total of more that 15X improvement in throughput due to
data compression with efficient optimizations

Performance of Individual Operators

B Where M GroupApply
1000

00
o
o

600

400
al ol .
0 [

No Compression Lossless LosslessOptimized Lossy LossyOptimized

Time (ms)

The highest performance benefits are for operators where

direct execution is applicable (e.g., Where)
22

laaS VM Performance Counters

TimeStamp | Cluster VmID SampleCount MinValue
(8, BD) (11, HS) (36, HS) (4, BD) (8, ZFP)

MaxValue CounterName Nodeld Datacenter AverageValue
(8, ZFP) (15, EN) (10, HS) (3, HS) (8, ZFP)

BD — Base+Delta encoding; HS — String hashing; EN — Enumeration;
ZFP — efficient floating point compression (lossy with controlled accuracy)

Number in parenthesis — number of bytes before compression

Upto 6X compression with ZFP lossy compression algorithm

23

loT Datasets

* Geolocation data (GPS coordinates from Geolife project):

— 4.5X average compression ratio RpliES e ERED) R E T N A

— Less than 10° loss in accuracy Longtitude (8, ZFP) Altitude (4, BD)

 Weather data (Hurricane Katrina in 2005)

— 3X-4X compression ratios for 18 metrics used in the data set

24

Comparison to Prior Work

e Compression in databases

— Succinct, NSDI'15: execution on compressed textual data, complete
redesign of data storage in memory

— Abadi, SIGMOD’06: compression in column-oriented data stores; uses
conventional compression algorithms not applicable to streaming

* Generic memory compression
— Execution on compressed data is not supported
— Lower compression ratios due to generality of algorithms chosen

Summary

* Q: Can data compression be effective in stream processing?

* A:Yes, our TerseCades design is the proof-of-concept
— Properly optimize the baseline system
— Use light-weight data compression algorithms + HW acceleration
— Directly execute on compressed data

* Results on troubleshooting workload used in production
allowed to replace 16 servers with just one!

TerseCades: Efficient Data Compression
in Stream Processing

Gennady Pekhimenko

=
lcrosoft’ : i':r'
o IS OHNS HOPKINS
eseard‘ , TORONTO J UNIVERSITY

