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loT Clouds Big Data

Huge volumes of streaming data with real-time processing requirements
Enormous pressure on the capacity and bandwidth of servers’ main memory



Is Data Compression Useful for Streaming?

* Intuitively, streaming with simple operators should be bandwidth-
bottlenecked: either network or memory bandwidth

e Simple single node experiment with the state-of-the-art streaming
engine, Trill, with the Where query over large one column 8-byte field:

E.g., Where (e => e.errorCode != 0)

e Expectation: observe memory bandwidth as a major bottleneck
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Only 10%-15% performance improvement with 8X compression
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What Went Wrong?

X Memory allocation overhead:
just-in-time copy of payloads to create a streameable event
X Memory copying and reallocation:
enables flexible column-oriented data batches
X |Inefficient bit-wise manipulation
X Hash tables manipulations



Compressibility => Performance Gain

8X Compression with Add benchmark from STREAM suite
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Prerequisites for Efficient Data Streaming

v Fixed Memory Allocation
v Efficient HashMap Primitives

v Efficient Filtering Operations (bit-wise manipulations)



Key Observations

* Memory bandwidth becomes the major bottleneck if
streaming is properly optimized

* Dominant part of the data is synthetic in nature and hence has
a lot of redundancy

— Can be exploited through efficient data compression




TerseCades: Baseline System Overview
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Key Design Choices and Optimizations

v'Lossless Compression
v’ Arithmetic vs. Dictionary-based Compression
v'Decompression is on the critical path

v’ Lossy Compression without Output Quality Loss
v Integers and floating points

v Reducing Compression/Decompression Cost
v'Hardware-based acceleration: vectorization, GPU, FPGA

v'Direct Execution on Compressed Data



Lossless Compression: Base-Delta Encoding

8 bytes

5/23/2016 12:00:01 AM 5/23/2016 12:00:03 AM 5/23/2016 12:00:07 AM

v’ Fast Decompression: v Simple SW/HW Implementations:
vector addition arithmetic and comparison
v’ Effective: good compression ratio
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Lossy Compression Without Output Quality Loss

* Base-Delta Encoding modification

— Truncate deltas when full precision not required

e /FP floating point compression engine

— Equivalent of BD in floating point domain with controlled precision



Reducing Compression Overhead
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SIMD/Vectorization GPU FPGA

Intel Xeon with 256-bit SIMD NVIDIA 1080Ti Altera Stratix V
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Execution on Compressed Data
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X Incurs decompression and compression latency
X High energy overhead

Can we leverage data being in a condensed form?



Execution on Compressed Data

Key 1 Value 1
Key 2 Value 2
Key 3 Value 3
Key N Value N
‘l’ Memory

[ Value 1 I Value 2 I Value 3 I Value N ]

<€— 8B > €— 8B —>€— 8B —m>€— 8B —>




Execution on Compressed Data

N 8-byte Comparisons
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v’ Low Latency
v'Single Comparison
v Narrower Operations
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Evaluation: Methodology

 CPU: 24-core system based on Intel Xeon CPU E5-2673,
2.40GHz with SMT-enabled, and 128GB of memory

 GPU: NVIDIA GeForce GTX 1080 Ti with 11GB of GDDR5X
memory

 FPGA: Altera Stratix V FPGA, 200MHz



STREAM Benchmark Results

Add benchmark from STREAM suite
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Vectorization further reduces compression/decompression
overhead, especially for smaller number of threads
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STREAM Benchmark Results (2)

Search benchmark
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When direct execution is applicable, it can significantly
improve performance as it reduces the total computation
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Monitoring and Troubleshooting: PingMesh

C2cProbeCount = stream _ TimeStamp | ErrorCode SrcCluster
.Hopwindow(windowSize, period)
.Where(e => e.errorCode =0 (8; BD) (41 EN"'BD) (41 HS"'BD)

&& e.rtt >= 100) A
.GroupApply((e.srcCluster, DstCluster RoundTripTime

e.dstCluster)) (4, HS+BD) (4, BD)

.Aggregate(c => c.Count())

T2tProbeCount = Stream BD — Base+Delta encoding

.Hopwindow(windowSize, period) HS — String hashing
.Where(e => e.errorCode !=0 EN — Enumeration

&& e.rtt >= 100)
.Join(m, e => e.srcIp, m => m.1pAddr,
(e,m) => {e, srcTor=m.torId}) Number in parenthesis — number of bytes
.Join(m, e => e.dstIp, m => m.1ipAddr, before Compression
(e,m)=> {e, dstTor=m.torId})
.GroupApply((srcTor, dstTor))
.Aggregate(c => c.Count())
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PingMesh C2cProbeCount Results
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Total of more that 15X improvement in throughput due to
data compression with efficient optimizations



Performance of Individual Operators
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The highest performance benefits are for operators where

direct execution is applicable (e.g., Where)
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laaS VM Performance Counters

TimeStamp | Cluster VmID SampleCount MinValue
(8, BD) (11, HS) (36, HS) (4, BD) (8, ZFP)

MaxValue CounterName Nodeld Datacenter AverageValue
(8, ZFP) (15, EN) (10, HS) (3, HS) (8, ZFP)

BD — Base+Delta encoding; HS — String hashing; EN — Enumeration;
ZFP — efficient floating point compression (lossy with controlled accuracy)

Number in parenthesis — number of bytes before compression

Upto 6X compression with ZFP lossy compression algorithm
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loT Datasets

* Geolocation data (GPS coordinates from Geolife project):

— 4.5X average compression ratio  RpliES e ERED) R E T N A

— Less than 10° loss in accuracy Longtitude (8, ZFP) Altitude (4, BD)

 Weather data (Hurricane Katrina in 2005)

— 3X-4X compression ratios for 18 metrics used in the data set
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Comparison to Prior Work

e Compression in databases

— Succinct, NSDI'15: execution on compressed textual data, complete
redesign of data storage in memory

— Abadi, SIGMOD’06: compression in column-oriented data stores; uses
conventional compression algorithms not applicable to streaming

* Generic memory compression
— Execution on compressed data is not supported
— Lower compression ratios due to generality of algorithms chosen



Summary

* Q: Can data compression be effective in stream processing?

* A:Yes, our TerseCades design is the proof-of-concept
— Properly optimize the baseline system
— Use light-weight data compression algorithms + HW acceleration
— Directly execute on compressed data

* Results on troubleshooting workload used in production
allowed to replace 16 servers with just one!
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