TerseCades: Efficient Data Compression in Stream Processing

Gennady Pekhimenko

Chuanxiong Guo, Myeongjae Jeon, Peng Huang, Lidong Zhou

loT

Clouds

Big Data

Huge volumes of streaming data with real-time processing requirements Enormous pressure on the capacity and bandwidth of servers' main memory

Is Data Compression Useful for Streaming?

- Intuitively, streaming with simple operators should be bandwidthbottlenecked: either network or memory bandwidth
- Simple single node experiment with the state-of-the-art streaming engine, Trill, with the Where query over large one column 8-byte field:
 E.g., Where (e => e.errorCode != 0)
- Expectation: observe **memory bandwidth** as a major bottleneck

Compressibility *≠>* **Performance Gain**

Only 10%-15% performance improvement with 8X compression

What Went Wrong?

X Memory allocation overhead:

just-in-time copy of payloads to create a streameable event

Memory copying and reallocation:

enables flexible column-oriented data batches

- Inefficient bit-wise manipulation
- X Hash tables manipulations

Compressibility => Performance Gain

How the second of the second o

Prerequisites for Efficient Data Streaming

✓ Fixed Memory Allocation

✓ Efficient HashMap Primitives

✓ Efficient Filtering Operations (bit-wise manipulations)

Key Observations

 Memory bandwidth becomes the major bottleneck if streaming is properly optimized

- Dominant part of the data is *synthetic* in nature and hence has a lot of redundancy
 - Can be exploited through efficient data compression

TerseCades: Baseline System Overview

Compressed Data Store Operator Op₁ on compressed data

Operator Op_n on compressed data

Key Design Choices and Optimizations

✓ Lossless Compression

- ✓ Arithmetic vs. Dictionary-based Compression
- ✓ Decompression is on the critical path

✓ Lossy Compression without Output Quality Loss

- \checkmark Integers and floating points
- ✓ Reducing Compression/Decompression Cost
 - ✓ Hardware-based acceleration: vectorization, GPU, FPGA

✓ Direct Execution on Compressed Data

Lossless Compression: Base-Delta Encoding

Lossy Compression Without Output Quality Loss

- Base-Delta Encoding modification
 - Truncate deltas when full precision not required

- ZFP floating point compression engine
 - Equivalent of BD in floating point domain with controlled precision

Reducing Compression Overhead

SIMD/Vectorization

GPU

FPGA

Intel Xeon with 256-bit SIMD NVIDIA 1080Ti

Altera Stratix V

Execution on Compressed Data

- Incurs decompression and compression latency
- X High energy overhead

Can we leverage data being in a condensed form?

Execution on Compressed Data

Execution on Compressed Data

Evaluation: Methodology

• CPU: 24-core system based on Intel Xeon CPU E5-2673, 2.40GHz with SMT-enabled, and 128GB of memory

• GPU: NVIDIA GeForce GTX 1080 Ti with 11GB of GDDR5X memory

• FPGA: Altera Stratix V FPGA, 200MHz

STREAM Benchmark Results

Add benchmark from STREAM suite

Vectorization further reduces compression/decompression overhead, especially for smaller number of threads

STREAM Benchmark Results (2)

Search benchmark

When direct execution is applicable, it can significantly improve performance as it reduces the total computation

Monitoring and Troubleshooting: PingMesh

TimeStamp (8, BD)		SrcCluster (4, HS+BD)
DstCluster (4, HS+BD)	RoundTripTime (4, BD)	

- BD Base+Delta encoding
- HS String hashing
- **EN** Enumeration

Number in parenthesis – number of bytes before compression

PingMesh C2cProbeCount Results

Total of more that 15X improvement in throughput due to data compression with efficient optimizations

Performance of Individual Operators

Where GroupApply

The highest performance benefits are for operators where direct execution is applicable (e.g., Where)

IaaS VM Performance Counters

TimeStamp	Cluster	VmID	SampleCount	MinValue
(8, BD)	(11, HS)	(36, HS)	(4, BD)	(8, ZFP)
MaxValue	CounterName	NodeId	Datacenter	AverageValue
(8, <mark>ZFP</mark>)	(15, EN)	(10, HS)	(3, HS)	(8, <mark>ZFP</mark>)

BD – Base+Delta encoding; HS – String hashing; EN – Enumeration; ZFP – efficient floating point compression (lossy with controlled accuracy)

Number in parenthesis – number of bytes before compression

Upto 6X compression with ZFP lossy compression algorithm

IoT Datasets

- Geolocation data (GPS coordinates from GeoLife project):
 - 4.5X average compression ratio
 - Less than 10⁻⁶ loss in accuracy

TimeStamp (8, BD) Latitude (8, ZFP)

Longtitude (8, ZFP) Altitude (4, BD)

- Weather data (Hurricane Katrina in 2005)
 - 3X-4X compression ratios for 18 metrics used in the data set

Comparison to Prior Work

- Compression in databases
 - Succinct, NSDI'15: execution on compressed textual data, complete redesign of data storage in memory
 - Abadi, SIGMOD'06: compression in column-oriented data stores; uses conventional compression algorithms **not applicable to streaming**
- Generic memory compression
 - Execution on compressed data is **not** supported
 - Lower compression ratios due to generality of algorithms chosen

Summary

- Q: Can data compression be effective in stream processing?
- A: Yes, our TerseCades design is the proof-of-concept
 - Properly optimize the baseline system
 - Use light-weight data compression algorithms + HW acceleration
 - Directly execute on compressed data
- Results on troubleshooting workload used in production allowed to replace 16 servers with just one!

TerseCades: Efficient Data Compression in Stream Processing

Gennady Pekhimenko

Chuanxiong Guo, Myeongjae Jeon, Peng Huang, Lidong Zhou

