

Locality-Aware Software Throttling for Sparse Matrix Operation on GPUs

Yanhao Chen¹, Ari B. Hayes¹, Chi Zhang², Timothy Salmon¹, Eddy Z. Zhang¹

Rutgers University
University of Pittsburgh

Sparse Matrix

- Sparse Linear Systems
 - CG - GMRES
- Physics Based Simulations
 - CFD
- Deep Learning Optimizations
 - Pruned Neural Networks

.

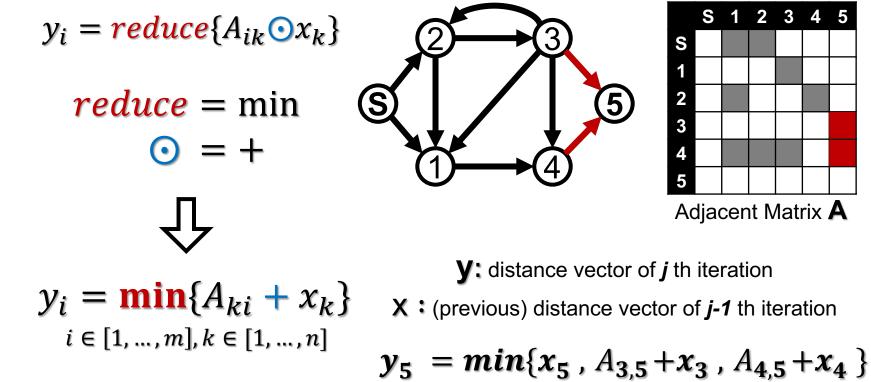
Sparse Matrix Operation $\mathbf{y} = \mathbf{A} \times \mathbf{y}$ Input Vector **Output Vector Sparse Matrix** $y_i = reduce \{ A_{ik} \odot x_k \}$ $i \in [1, ..., m], k \in [1, ..., n] \uparrow$ **Binary Operator**

Sparse Matrix Vector Multiplication (SpMV)

 $y_i = reduce\{A_{ik} \odot x_k\}$

 $\boldsymbol{x_1}$ $A_{1,1} | A_{1,2} | A_{1,3} | A_{1,4}$ y_1 *reduce* = sum $\boldsymbol{x_2}$ y_2 0 0 0 0 * | A_{3,3} | $\boldsymbol{x_3}$ y_3 *A*_{3,1} 0 0 x_4 *y*₄ $A_{4,2}$ 0 0 *A*_{4.4} $y_i = \mathbf{sum}\{A_{i,k} * x_k\}$ X Α У $i \in [1, ..., m], k \in [1, ..., n]$ $y_3 = A_{3,1} * x_1 + A_{3,3} * x_3$

Single Source Shortest Path (SSSP)



2018 USENIX Annual Technical Conference

JTGERS

Problem with Sparsity on GPUs

• Low data reuse is always a big problem

$$y_i = \mathbf{sum}\{A_{i,k} * x_k\}$$

- e.g. SpMV
 - The input vector and the output vector can be reused a lot
 - They are usually too large to fit into GPU's cache
 - The **sparsity** of the matrix causes irregular accesses of the vectors
 - This means low reuse of the data in the cache

Existing Methods to Improve Data Reuse on GPUs

Warp Scheduling Policy

- Throttling concurrent threads
- Limits the number of active warps [Rogers+, MICRO'12]
- DYNCTA: controls the number of CTAs [Kayiran+,PACT'13]

Need Hardware Modification!

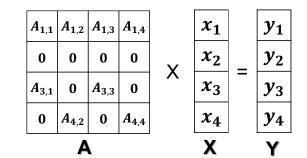
Computation and Data Layout Transformation

- Reduce irregular memory accesses
- Improve Memory Coalescing [Zhang+, ICS'10]

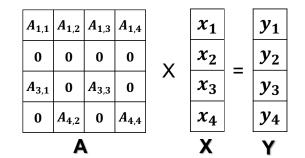
Only focus on Spatial Data Reuse!

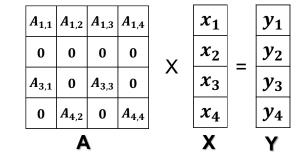
Our Throttling framework for GPUs...

- Is the First Software Throttling implementation
- Is focused on Temporal Data Reuse
- Exploits the Trade-off between throttling performance and GPU throughput



Matrix A is bypassing the cache



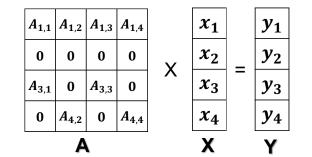


Matrix A is bypassing the cache

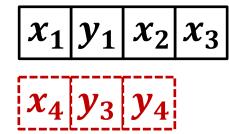
$$\{ < x_1 \ y_1 > < x_2 \ y_1 > < x_3 \ y_1 > < x_4 \ y_1 > \\ < x_1 \ y_3 > < x_3 \ y_3 > < x_2 \ y_4 > < x_4 \ y_4 > \}$$

Running at one time

Matrix A is bypassing the cache



Cache Capacity: 4



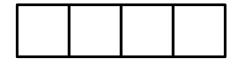
$$\{ < x_1 \ y_1 > < x_2 \ y_1 > < x_3 \ y_1 > < x_4 \ y_1 > \\ < x_1 \ y_3 > < x_3 \ y_3 > < x_2 \ y_4 > < x_4 \ y_4 > \}$$

Running at one time

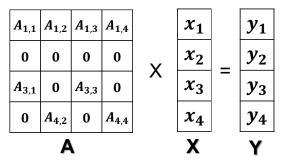
Time

SpMV with Software Throttling

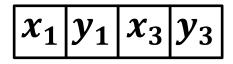
Cache Capacity: 4



$< x_1 y_1 > < x_1 y_3 > < x_3 y_1 >$	
$< x_2 y_1 > < x_2 y_4 > < x_4 y_1 >$	



Cache Capacity: 4



 $< x_1 y_1 > < x_1 y_3 > < x_3 y_1 > < x_3 y_3 >$ $< x_2 y_1 > < x_2 y_4 > < x_4 y_1 > < x_4 y_4 >$

0

 $A_{3.1}$

0

$A_{1.1} | A_{1.2} | A_{1.3} | A_{1.4}$ x_1 *y*₁ *y*₂ x_2 0 0 0 Х = 0 |A_{3,3}| x_3 y_3 0 0 | A_{4,4} | **y**₄ x_4 A_{4.2} Х Υ Α

Time

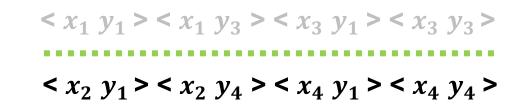
All Data Can Fit into the Cache

Time

SpMV with Software Throttling

Cache Capacity: 4

2018 USENIX Annual Technical Conference



0

 $A_{3.1}$

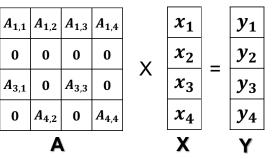
0

0

0

 $A_{4.2}$

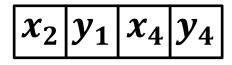
Α



Time

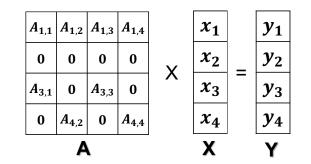
SpMV with Software Throttling

Cache Capacity: 4



 $< x_1 y_1 > < x_1 y_3 > < x_3 y_1 > < x_3 y_3 >$ $< x_2 y_1 > < x_2 y_4 > < x_4 y_1 > < x_4 y_4 >$

All Data Can Fit into the Cache



- An effective partitioning algorithm
 - All data items in one partition can fit into the cache
 - The interaction between different partitions are minimized
- Applicable scheduling methods
 - Handle the trade-off between throttling and throughput

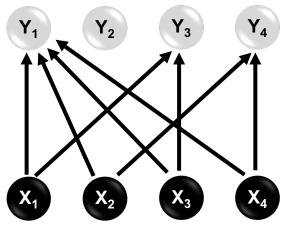
FGERS

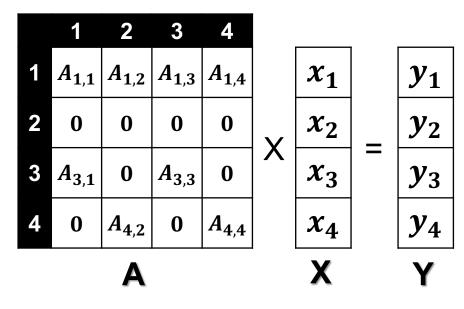
- An effective partitioning algorithm
 - All data items in one partition can fit into the cache
 - The interaction between different partitions are minimized
- Applicable scheduling methods
 - Handle the trade-off between throttling and throughput

TGERS

Graph Representation

- Graph Edge Partition Model
 - Places an emphasis on Data
 - Node \rightarrow Data object
 - Edge \rightarrow Interaction between data





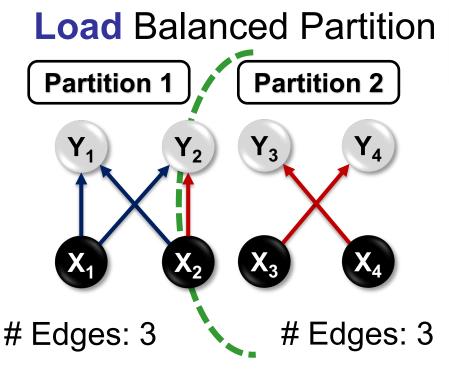
Why Edge Partition Model?

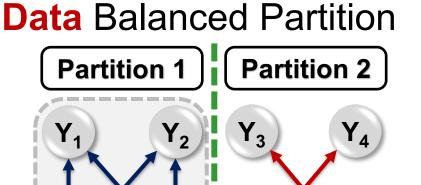
- 1. Better load balancing
 - PowerGraph [OSDI'12], Streaming Edge Partition [KDD'14], SPAC [SIGMETRICS'17]
 - Balanced vertex partition is sometimes **NOT equal** to balanced workload
- 2. **Quantifying** the communication cost
- 3. Applies to a large class of parallel applications
 - N-body, CFD, Sparse Linear Algebra, Graph Analytics, ...

X

Nodes: 4

Different Edge Partition Models



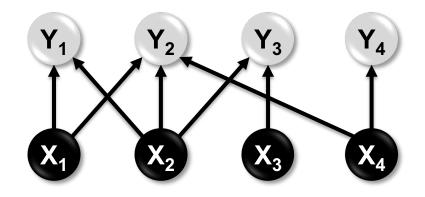


Cache-Fit

Partition

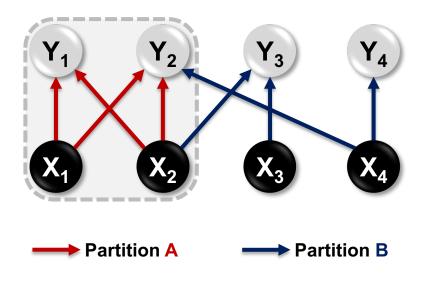
TGERS

- Recursive **Bisection** Framework
 - 2-way Load Balanced Edge Partition
 - **SPAC** [Li+,SIGMETRICS'17]
 - Minimize vertex replica (data copy)

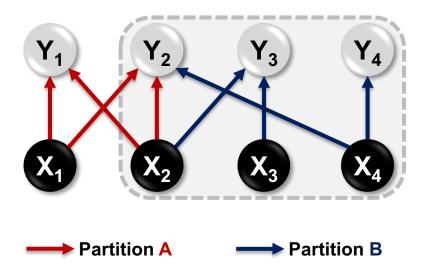


TGERS

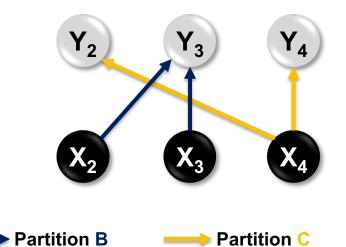
- Recursive **Bisection** Framework
 - 2-way Load Balanced Edge Partition
 - **SPAC** [Li+,SIGMETRICS'17]
 - Minimize vertex replica (data copy)



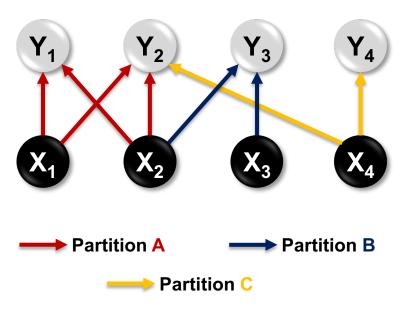
- Recursive **Bisection** Framework
 - 2-way Load Balanced Edge Partition
 - **SPAC** [Li+,SIGMETRICS'17]
 - Minimize vertex replica (data copy)



- Recursive **Bisection** Framework
 - 2-way Load Balanced Edge Partition
 - **SPAC** [Li+,SIGMETRICS'17]
 - Minimize vertex replica (data copy)



- Recursive **Bisection** Framework
 - 2-way Load Balanced Edge Partition
 - **SPAC** [Li+,SIGMETRICS'17]
 - Minimize vertex replica (data copy)



What We Need for Software Throttling

- A good partitioning algorithm
 - All data items in one partition can fit into the cache
 - The interaction between different partitions are minimized
- Applicable scheduling methods
 - Handle the trade-off between throttling and throughput

Effective scheduling methods

- Four different scheduling methods
 - Cache-Fit (CF)
 - Cache-Fit Queue (CF-Q)
 - Split-Join (SJ)
 - Split-Join Queue (SJ-Q)

Effective scheduling methods

- Four different scheduling methods
 - Cache-Fit (CF)
 - Cache-Fit Queue (CF-Q)
 - Split-Join (SJ)
 - Split-Join Queue (SJ-Q)

Cache-Fit (CF) Scheduling

- Isolate the computation of different Cache-Fit Partitions
- Run one Cache-Fit Partition at one time

CUDA Function

Original: Kernel<<<blocknum, blockdim>>(**TL**, **N**);

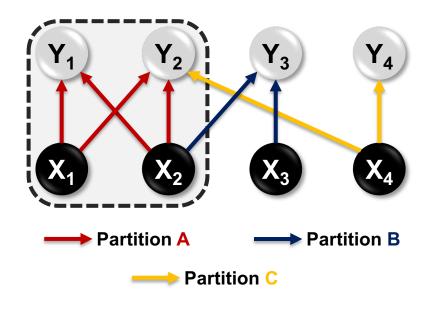
- *Phase 1:* Kernel<<<blocknum, blockdim>>(**TL'**[0], **P**₀);
- Phase 2: Kernel<<<blocknum, blockdim>>(TL'[1], P1);
- *Phase k:* Kernel<<<blocknum, blockdim>>(**TL'**[k], **P**_k);

TL: tuple list N: # of tuples TL': new tuple list P_i: # of tuples in TL[i]

Strict

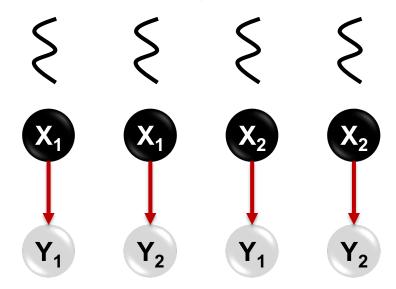
Barriers

Low Pipeline Utilization



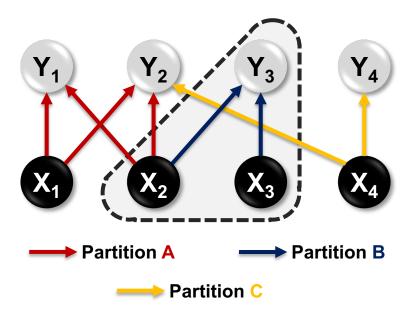
Cache Capacity: 4

4 Working Threads

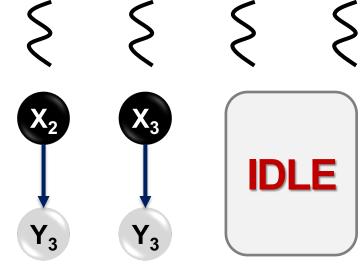


Kernel 1 -- Partition A

Low Throughput



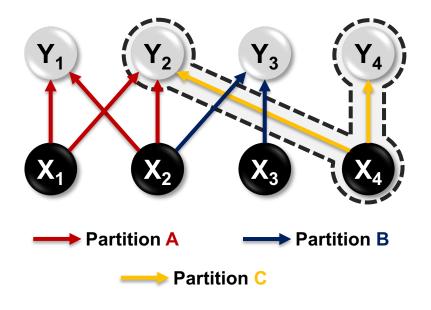
4 Working Threads



Cache Capacity: 4

Kernel 2 -- Partition B

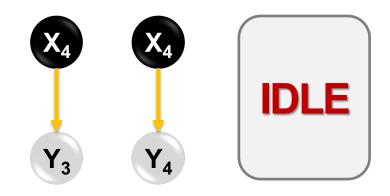
Low Pipeline Utilization



Cache Capacity: 4

4 Working Threads

low pipeline utilization



Kernel 3 -- Partition C

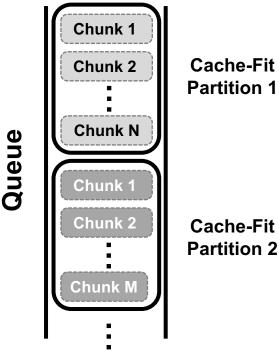
Effective scheduling methods

- Four different scheduling methods
 - Cache-Fit (CF)
 - Cache-Fit Queue (CF-Q)
 - Split-Join (SJ)
 - Split-Join Queue (SJ-Q)

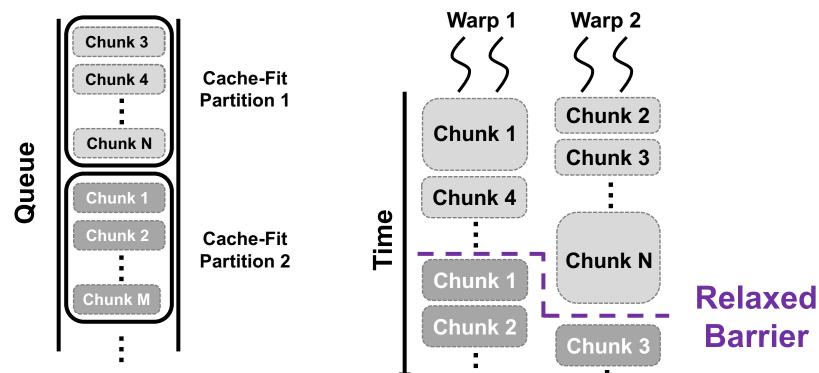
- Invoke a single kernel call but still enable throttling
- Set up a FIFO queue

TGERS

- Each entry corresponds to a **chunk**
 - A chunk is part of a cache-fit partition
 - Adjacent chunks are from the same Cache-Fit Partition
- Each warp fetches a chunk from the queue and processes it



Cache-Fit Queue (CF-Q) Scheduling cont.



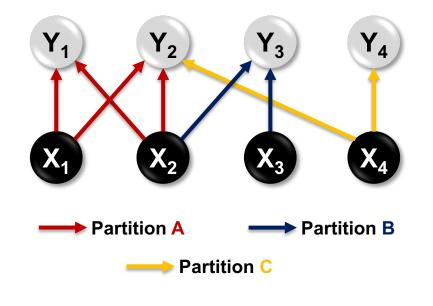
Effective scheduling methods

- Four different scheduling methods
 - Cache-Fit (CF)
 - Cache-Fit Queue (CF-Q)
 - Split-Join (SJ)
 - Split-Join Queue (SJ-Q)

Split-Join (SJ) Scheduling

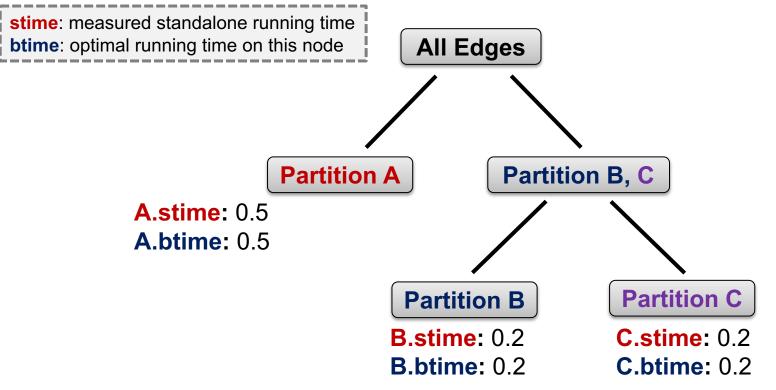
- Dynamically merge Cache-Fit Partitions
- Perform an Online Profiling to decide which partitions should be merged
- Use the Tree Representation of the data balanced partition to help the Online Profiling

Split-Join (SJ) Scheduling

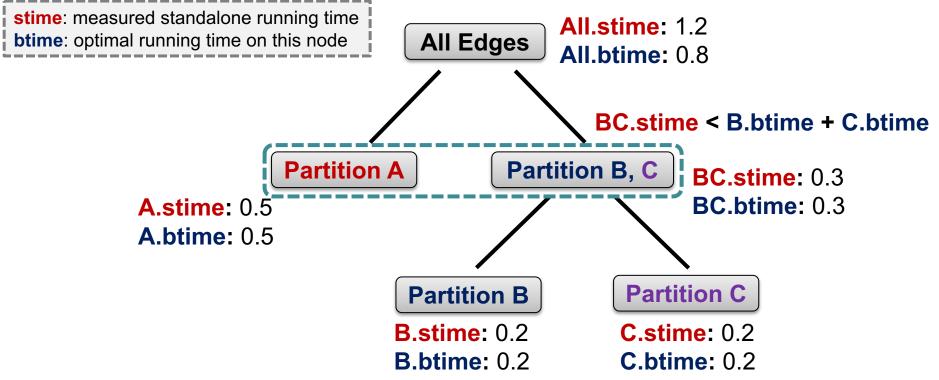


Cache Capacity: 4

Split-Join (SJ) Scheduling



Split-Join (SJ) Scheduling All.stime > A.btime + BC.btime



- Four different scheduling methods
 - Cache-Fit (CF)

JTGERS

- Cache-Fit Queue (CF-Q)
- Split-Join (SJ)
- Split-Join Queue (SJ-Q)

- Provide strict barriers between different merged partitions
- No barriers inside a merged partition of SJ
 - No guarantee of the execution order
- Set up one FIFO queue for each merged partition
 - Provide relaxed barriers between cache-fit partitions from the same merged partition

TGERS

Four Scheduling Methods Summary

Methods	Pipeline Utilization	Profiling	Barriers	Queue	Code Change
CF	Low	No	Strict	No	No
CF-Q	High	No	Relaxed	Yes	Yes
SJ	High	Yes	Strict	No	No
SJ-Q	High	Yes	Strict / Relaxed	Yes	Yes

Software Throttling Performance

• Experiment Settings

GPU Model	Titan X	GTX 745	
Architecture	Pascal	Maxwell	
Core #	5376	576	
L2 Cache	3MB	2MB	
CUDA Version	CUDA 8.0	CUDA 8.0	
CPU	Intel Xeon E5-2620	Intel Core i7-4790	

Benchmarks

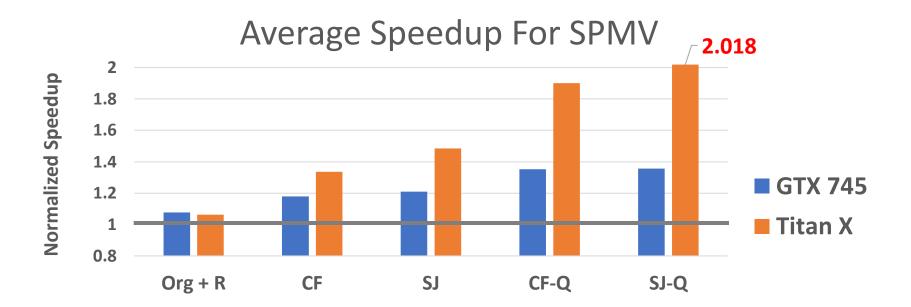
- Sparse Linear Algebra Workloads
 - Sparse Matrix Vector Multiplication (SPMV)
- Graph Processing Workloads
 - Bellman-Ford (BMF)
 - Page Rank (PR)
- Neural Network Optimization
 - Deep Compression: Pruned AlexNet

Baseline: CUSP

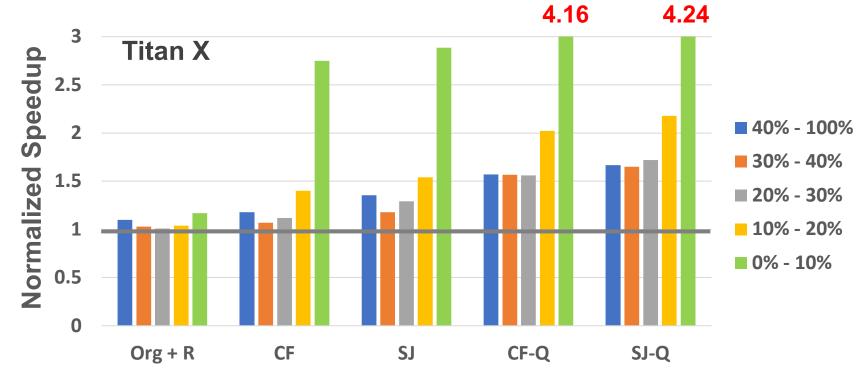
TGERS

- Matrices: Florida Sparse Matrix Collection
 - Focus on large matrices: working set cannot fit into L2 cache
 - 228 large matrices on GTX 745
 - 192 large matrices on Titan X

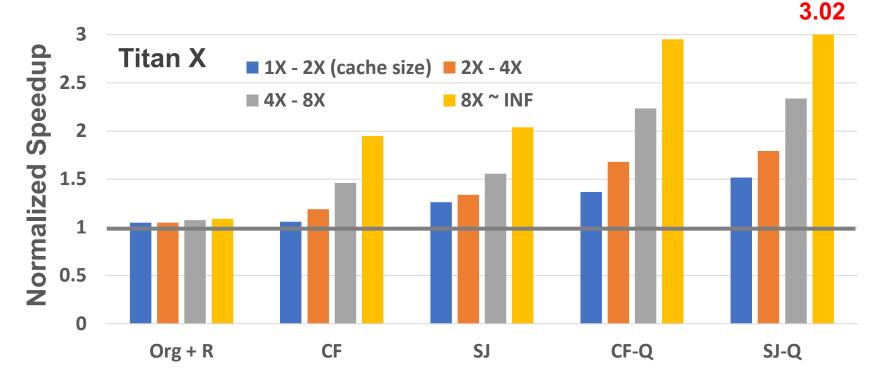
Overall SPMV Performance



Effect of Cache Hit Rate

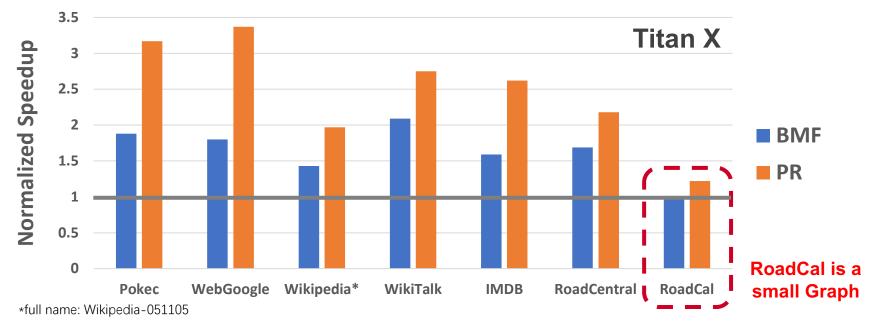


Effect of Working Set Size



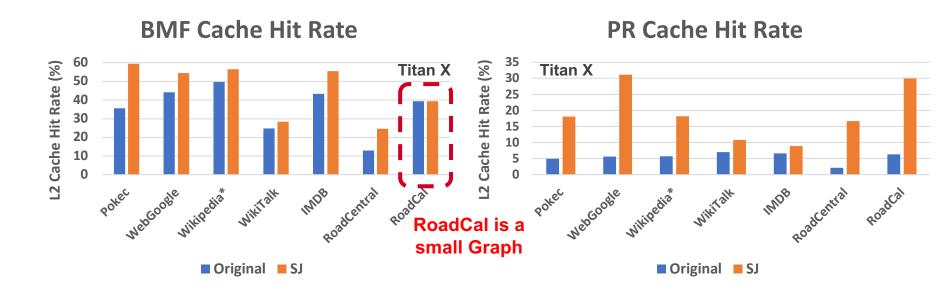
Graph Application Performance

BMF & PR Performance using SJ w/ overhead



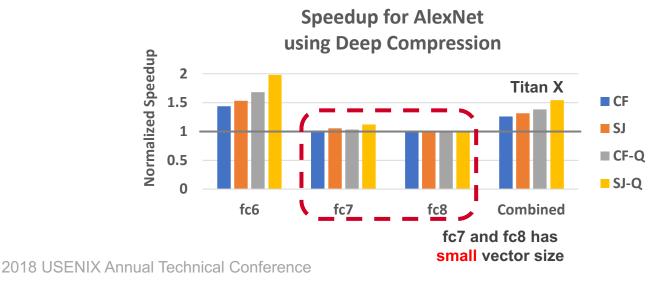
²⁰¹⁸ USENIX Annual Technical Conference

Graph Application Performance cont.



Deep Learning Benchmark

- Deep Compression [Han+,ICLR'16]
 - Prune AlexNet to remove low weight elements in fully connected layers
 - Deep Compression provide us sparse matrices



Conclusion

- We proposed the first locality-aware Software Throttling framework for GPUs
- Our framework can increase data reuse by improving Temporal Locality
- We exploited the **Trade-off** between cache performance and pipeline utilization

Questions?