
Locality-Aware Software Throttling for 
Sparse Matrix Operation on GPUs

Yanhao Chen1, Ari B. Hayes1, Chi Zhang2, 
Timothy Salmon1, Eddy Z. Zhang1

1. Rutgers University
2. University of Pittsburgh



2018 USENIX Annual Technical Conference

Sparse Matrix
• Sparse Linear Systems 

- CG
- GMRES
- …

• Physics Based Simulations
- CFD

• Deep Learning Optimizations
- Pruned Neural Networks

• ……
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Sparse Matrix Operation

y		=			A x
Sparse Matrix
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Sparse Matrix Vector Multiplication (SpMV)

!"#$%" = sum
⨀ = ∗

,- = ./0{2-,4 ∗ 54}

78,8 78,9 78,: 78,;

< < < <

7:,8 < 7:,: <

< 7;,9 < 7;,;

=8
=9
=:
=;

>8
>9
>:
>;

* =

A x y

,- = !"#$%"{2-4⨀54}

,: = 2:,8 ∗ 58 + 2:,: ∗ 5:@ ∈ 1, … ,D , E ∈ [1, … , G]



2018 USENIX Annual Technical Conference

Single Source Shortest Path (SSSP)
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Problem with Sparsity on GPUs
• Low data reuse is always a big problem

• e.g. SpMV

– The input vector and the output vector can be reused a lot

– They are usually too large to fit into GPU’s cache

– The sparsity of the matrix causes irregular accesses of the vectors

– This means low reuse of the data in the cache

!" = $%&{(",* ∗ ,*}
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Existing Methods to Improve Data Reuse on GPUs

• Warp Scheduling Policy
– Throttling concurrent threads
– Limits the number of active warps [Rogers+, MICRO’12]
– DYNCTA: controls the number of CTAs [Kayiran+,PACT’13]

• Computation and Data Layout Transformation
– Reduce irregular memory accesses
– Improve Memory Coalescing [Zhang+, ICS’10]

Need Hardware Modification!

Only focus on Spatial Data Reuse!
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Ø Is the First Software Throttling implementation

Ø Is focused on Temporal Data Reuse

Ø Exploits the Trade-off between throttling performance and 
GPU throughput
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SpMV with Software Throttling !"
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SpMV with Software Throttling !"
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SpMV with Software Throttling
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SpMV with Software Throttling
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SpMV with Software Throttling
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SpMV with Software Throttling
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SpMV with Software Throttling

< !" #" > < !" #$ > < !$ #" > < !$ #$ >

Throttling 
Phase 2

< !% #" > < !% #& > < !& #" > < !& #& >

Cache Capacity: 4

Ti
m

e

!"
!#
!$
!%

&"
&#
&$
&%

X =

X Y

'"," '",# '",$ '",%

) ) ) )

'$," ) '$,$ )

) '%,# ) '%,%
A



2018 USENIX Annual Technical Conference

SpMV with Software Throttling
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What We Need for Software Throttling
• An effective partitioning algorithm

– All data items in one partition can fit into the cache
– The interaction between different partitions are minimized

• Applicable scheduling methods
– Handle the trade-off between throttling and throughput
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What We Need for Software Throttling
• An effective partitioning algorithm

– All data items in one partition can fit into the cache
– The interaction between different partitions are minimized

• Applicable scheduling methods
– Handle the trade-off between throttling and throughput
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Graph Representation
• Graph Edge Partition Model

– Places an emphasis on Data
– Node → Data object
– Edge → Interaction between data
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Why Edge Partition Model?
1. Better load balancing

– PowerGraph [OSDI’12], Streaming Edge Partition [KDD’14], SPAC
[SIGMETRICS’17]

• Balanced vertex partition is sometimes NOT equal to balanced workload

2. Quantifying the communication cost

3. Applies to a large class of parallel applications
– N-body, CFD, Sparse Linear Algebra, Graph Analytics, …

20
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Different Edge Partition Models
Load Balanced Partition Data Balanced Partition

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Partition 1 Partition 2

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Partition 1 Partition 2

# Nodes: 4 # Nodes: 4# Edges: 3 # Edges: 3 Cache-Fit 
Partition
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Data Balanced Partition
• Recursive Bisection Framework

– 2-way Load Balanced Edge Partition
• SPAC [Li+,SIGMETRICS’17]

– Minimize vertex replica (data copy)

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Cache Capacity: 4
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Data Balanced Partition
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Data Balanced Partition
• Recursive Bisection Framework
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Data Balanced Partition
• Recursive Bisection Framework

– 2-way Load Balanced Edge Partition
• SPAC [Li+,SIGMETRICS’17]

– Minimize vertex replica (data copy)

Cache Capacity: 4

X2 X3 X4

Y2 Y3 Y4

Partition B Partition C
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Data Balanced Partition
• Recursive Bisection Framework

– 2-way Load Balanced Edge Partition
• SPAC [Li+,SIGMETRICS’17]

– Minimize vertex replica (data copy)

Cache Capacity: 4

Partition B

Partition C

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Partition A
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What We Need for Software Throttling
• A good partitioning algorithm

– All data items in one partition can fit into the cache
– The interaction between different partitions are minimized

• Applicable scheduling methods
– Handle the trade-off between throttling and throughput



2018 USENIX Annual Technical Conference

Effective scheduling methods
• Four different scheduling methods

– Cache-Fit (CF)
– Cache-Fit Queue (CF-Q)
– Split-Join (SJ)
– Split-Join Queue (SJ-Q)
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Effective scheduling methods
• Four different scheduling methods

– Cache-Fit (CF)
– Cache-Fit Queue (CF-Q)
– Split-Join (SJ)
– Split-Join Queue (SJ-Q)
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Cache-Fit (CF) Scheduling
• Isolate the computation of different Cache-Fit Partitions
• Run one Cache-Fit Partition at one time

TL: tuple list

N: # of tuples

TL’: new tuple list

Pi: # of tuples in TL[i]

Strict 
Barriers

CUDA Function



2018 USENIX Annual Technical Conference

Low Pipeline Utilization

Kernel 1 -- Partition ACache Capacity: 4

Partition A Partition B

Partition C

X1 X2 X3 X4

Y1 Y2 Y3 Y4

X1

Y1

X1

Y2

X2

Y1

4 Working Threads

X2

Y2
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Low Throughput

Cache Capacity: 4

Partition A Partition B

Partition C

X1 X2 X3 X4

Y1 Y2 Y3 Y4

X2

Y3

X3

Y3

4 Working Threads

Kernel 2 -- Partition B

IDLE
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Low Pipeline Utilization

Cache Capacity: 4

Partition A Partition B

Partition C

X1 X2 X3 X4

Y1 Y2 Y3 Y4

X4

Y3

X4

Y4

4 Working Threads

Kernel 3 -- Partition C

IDLE

low pipeline utilization
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Effective scheduling methods
• Four different scheduling methods

– Cache-Fit (CF)
– Cache-Fit Queue (CF-Q)
– Split-Join (SJ)
– Split-Join Queue (SJ-Q)
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Cache-Fit Queue (CF-Q) Scheduling
• Invoke a single kernel call but still 

enable throttling

• Set up a FIFO queue 
• Each entry corresponds to a chunk

– A chunk is part of a cache-fit partition
– Adjacent chunks are from the same 

Cache-Fit Partition
• Each warp fetches a chunk from the 

queue and processes it

Cache-Fit 
Partition 1

Chunk 1

…Chunk 2

Chunk N

Q
ue

ue

Cache-Fit 
Partition 2

Chunk 1

…Chunk 2

Chunk M

…
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Cache-Fit Queue (CF-Q) Scheduling cont.

Cache-Fit 
Partition 1

Chunk 1

…Chunk 2

Chunk N

Q
ue

ue

Cache-Fit 
Partition 2

Chunk 1

…Chunk 2

Chunk M

…

Ti
m

e

Warp 1 Warp 2

…

…

… …
Chunk 1

Chunk 4

Chunk 2

Chunk 3

Chunk N
Chunk 1

Chunk 2
Chunk 3

Relaxed 
Barrier

Chunk 3

Chunk 4
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Effective scheduling methods
• Four different scheduling methods

– Cache-Fit (CF)
– Cache-Fit Queue (CF-Q)
– Split-Join (SJ)
– Split-Join Queue (SJ-Q)
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Split-Join (SJ) Scheduling
• Dynamically merge Cache-Fit Partitions

• Perform an Online Profiling to decide which partitions should 
be merged

• Use the Tree Representation of the data balanced partition 
to help the Online Profiling
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Split-Join (SJ) Scheduling

Cache Capacity: 4

Partition A Partition B

Partition C

X1 X2 X3 X4

Y1 Y2 Y3 Y4
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Split-Join (SJ) Scheduling

A.stime: 0.5
A.btime: 0.5

stime: measured standalone running time
btime: optimal running time on this node

B.stime: 0.2
B.btime: 0.2

C.stime: 0.2
C.btime: 0.2

All Edges

Partition A Partition B, C

Partition B Partition C
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Split-Join (SJ) Scheduling
stime: measured standalone running time
btime: optimal running time on this node

B.stime: 0.2
B.btime: 0.2

C.stime: 0.2
C.btime: 0.2

BC.stime: 0.3
BC.btime: 0.3

All.stime: 1.2
All.btime: 0.8

BC.stime < B.btime + C.btime

All Edges

Partition A Partition B, C

Partition B Partition C

All.stime > A.btime + BC.btime

A.stime: 0.5
A.btime: 0.5
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Effective scheduling methods
• Four different scheduling methods

– Cache-Fit (CF)
– Cache-Fit Queue (CF-Q)
– Split-Join (SJ)
– Split-Join Queue (SJ-Q)
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Split-Join Queue (SJ-Q) Scheduling
• Provide strict barriers between different merged partitions

• No barriers inside a merged partition of SJ
– No guarantee of the execution order

• Set up one FIFO queue for each merged partition
– Provide relaxed barriers between cache-fit partitions from the same 

merged partition
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Four Scheduling Methods Summary

Methods Pipeline 
Utilization Profiling Barriers Queue Code 

Change
CF Low No Strict No No

CF-Q High No Relaxed Yes Yes
SJ High Yes Strict No No

SJ-Q High Yes Strict / Relaxed Yes Yes
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Software Throttling Performance
• Experiment Settings

GPU Model Titan X GTX 745
Architecture Pascal Maxwell

Core # 5376 576
L2 Cache 3MB 2MB

CUDA Version CUDA 8.0 CUDA 8.0

CPU Intel Xeon
E5-2620

Intel Core 
i7-4790
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Benchmarks
• Sparse Linear Algebra Workloads

– Sparse Matrix Vector Multiplication (SPMV)

• Graph Processing Workloads
– Bellman-Ford (BMF)
– Page Rank (PR)

• Neural Network Optimization
– Deep Compression: Pruned AlexNet
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Sparse Matrix Vector Multiplication
• Baseline: CUSP
• Matrices: Florida Sparse Matrix Collection

– Focus on large matrices: working set cannot fit into L2 cache
– 228 large matrices on GTX 745
– 192 large matrices on Titan X
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Overall SPMV Performance
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Effect of Cache Hit Rate
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Effect of Working Set Size
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Graph Application Performance
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Graph Application Performance cont.
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Deep Learning Benchmark
• Deep Compression [Han+,ICLR’16]

– Prune AlexNet to remove low weight elements in fully connected layers

– Deep Compression provide us sparse matrices
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Conclusion
• We proposed the first locality-aware Software 

Throttling framework for GPUs

• Our framework can increase data reuse by improving 
Temporal Locality

• We exploited the Trade-off between cache performance 
and pipeline utilization
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