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Sparse Matrix
• Sparse Linear Systems 

- CG
- GMRES
- …

• Physics Based Simulations
- CFD

• Deep Learning Optimizations
- Pruned Neural Networks

• ……
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Sparse Matrix Operation
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Sparse Matrix
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Sparse Matrix Vector Multiplication (SpMV)
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Single Source Shortest Path (SSSP)
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Problem with Sparsity on GPUs
• Low data reuse is always a big problem

• e.g. SpMV

– The input vector and the output vector can be reused a lot

– They are usually too large to fit into GPU’s cache

– The sparsity of the matrix causes irregular accesses of the vectors

– This means low reuse of the data in the cache

!" = $%&{(",* ∗ ,*}



2018 USENIX Annual Technical Conference

Existing Methods to Improve Data Reuse on GPUs

• Warp Scheduling Policy
– Throttling concurrent threads
– Limits the number of active warps [Rogers+, MICRO’12]
– DYNCTA: controls the number of CTAs [Kayiran+,PACT’13]

• Computation and Data Layout Transformation
– Reduce irregular memory accesses
– Improve Memory Coalescing [Zhang+, ICS’10]

Need Hardware Modification!

Only focus on Spatial Data Reuse!
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Ø Is the First Software Throttling implementation

Ø Is focused on Temporal Data Reuse

Ø Exploits the Trade-off between throttling performance and 
GPU throughput
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SpMV with Software Throttling !"
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SpMV with Software Throttling !"
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SpMV with Software Throttling
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SpMV with Software Throttling
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SpMV with Software Throttling
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SpMV with Software Throttling
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SpMV with Software Throttling
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SpMV with Software Throttling
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What We Need for Software Throttling
• An effective partitioning algorithm

– All data items in one partition can fit into the cache
– The interaction between different partitions are minimized

• Applicable scheduling methods
– Handle the trade-off between throttling and throughput
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What We Need for Software Throttling
• An effective partitioning algorithm

– All data items in one partition can fit into the cache
– The interaction between different partitions are minimized

• Applicable scheduling methods
– Handle the trade-off between throttling and throughput
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Graph Representation
• Graph Edge Partition Model

– Places an emphasis on Data
– Node → Data object
– Edge → Interaction between data
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Why Edge Partition Model?
1. Better load balancing

– PowerGraph [OSDI’12], Streaming Edge Partition [KDD’14], SPAC
[SIGMETRICS’17]

• Balanced vertex partition is sometimes NOT equal to balanced workload

2. Quantifying the communication cost

3. Applies to a large class of parallel applications
– N-body, CFD, Sparse Linear Algebra, Graph Analytics, …

20
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Different Edge Partition Models
Load Balanced Partition Data Balanced Partition

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Partition 1 Partition 2

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Partition 1 Partition 2

# Nodes: 4 # Nodes: 4# Edges: 3 # Edges: 3 Cache-Fit 
Partition
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Data Balanced Partition
• Recursive Bisection Framework

– 2-way Load Balanced Edge Partition
• SPAC [Li+,SIGMETRICS’17]

– Minimize vertex replica (data copy)

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Cache Capacity: 4
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Data Balanced Partition
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Data Balanced Partition
• Recursive Bisection Framework

– 2-way Load Balanced Edge Partition
• SPAC [Li+,SIGMETRICS’17]

– Minimize vertex replica (data copy)

Cache Capacity: 4

X2 X3 X4

Y2 Y3 Y4

Partition B Partition C
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Data Balanced Partition
• Recursive Bisection Framework

– 2-way Load Balanced Edge Partition
• SPAC [Li+,SIGMETRICS’17]

– Minimize vertex replica (data copy)

Cache Capacity: 4

Partition B

Partition C

X1 X2 X3 X4

Y1 Y2 Y3 Y4

Partition A
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What We Need for Software Throttling
• A good partitioning algorithm

– All data items in one partition can fit into the cache
– The interaction between different partitions are minimized

• Applicable scheduling methods
– Handle the trade-off between throttling and throughput
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Effective scheduling methods
• Four different scheduling methods

– Cache-Fit (CF)
– Cache-Fit Queue (CF-Q)
– Split-Join (SJ)
– Split-Join Queue (SJ-Q)
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Effective scheduling methods
• Four different scheduling methods

– Cache-Fit (CF)
– Cache-Fit Queue (CF-Q)
– Split-Join (SJ)
– Split-Join Queue (SJ-Q)



2018 USENIX Annual Technical Conference

Cache-Fit (CF) Scheduling
• Isolate the computation of different Cache-Fit Partitions
• Run one Cache-Fit Partition at one time

TL: tuple list

N: # of tuples

TL’: new tuple list

Pi: # of tuples in TL[i]

Strict 
Barriers

CUDA Function
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Low Pipeline Utilization

Kernel 1 -- Partition ACache Capacity: 4

Partition A Partition B

Partition C

X1 X2 X3 X4

Y1 Y2 Y3 Y4

X1

Y1

X1

Y2

X2

Y1

4 Working Threads

X2

Y2
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Low Throughput

Cache Capacity: 4

Partition A Partition B

Partition C

X1 X2 X3 X4

Y1 Y2 Y3 Y4

X2

Y3

X3

Y3

4 Working Threads

Kernel 2 -- Partition B

IDLE
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Low Pipeline Utilization

Cache Capacity: 4

Partition A Partition B

Partition C

X1 X2 X3 X4

Y1 Y2 Y3 Y4

X4

Y3

X4

Y4

4 Working Threads

Kernel 3 -- Partition C

IDLE

low pipeline utilization
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Effective scheduling methods
• Four different scheduling methods

– Cache-Fit (CF)
– Cache-Fit Queue (CF-Q)
– Split-Join (SJ)
– Split-Join Queue (SJ-Q)
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Cache-Fit Queue (CF-Q) Scheduling
• Invoke a single kernel call but still 

enable throttling

• Set up a FIFO queue 
• Each entry corresponds to a chunk

– A chunk is part of a cache-fit partition
– Adjacent chunks are from the same 

Cache-Fit Partition
• Each warp fetches a chunk from the 

queue and processes it

Cache-Fit 
Partition 1

Chunk 1

…Chunk 2

Chunk N

Q
ue

ue

Cache-Fit 
Partition 2

Chunk 1

…Chunk 2

Chunk M

…
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Cache-Fit Queue (CF-Q) Scheduling cont.

Cache-Fit 
Partition 1

Chunk 1

…Chunk 2

Chunk N

Q
ue

ue

Cache-Fit 
Partition 2

Chunk 1

…Chunk 2

Chunk M

…

Ti
m

e

Warp 1 Warp 2

…

…

… …
Chunk 1

Chunk 4

Chunk 2

Chunk 3

Chunk N
Chunk 1

Chunk 2
Chunk 3

Relaxed 
Barrier

Chunk 3

Chunk 4
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Effective scheduling methods
• Four different scheduling methods

– Cache-Fit (CF)
– Cache-Fit Queue (CF-Q)
– Split-Join (SJ)
– Split-Join Queue (SJ-Q)
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Split-Join (SJ) Scheduling
• Dynamically merge Cache-Fit Partitions

• Perform an Online Profiling to decide which partitions should 
be merged

• Use the Tree Representation of the data balanced partition 
to help the Online Profiling
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Split-Join (SJ) Scheduling

Cache Capacity: 4

Partition A Partition B

Partition C

X1 X2 X3 X4

Y1 Y2 Y3 Y4
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Split-Join (SJ) Scheduling

A.stime: 0.5
A.btime: 0.5

stime: measured standalone running time
btime: optimal running time on this node

B.stime: 0.2
B.btime: 0.2

C.stime: 0.2
C.btime: 0.2

All Edges

Partition A Partition B, C

Partition B Partition C
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Split-Join (SJ) Scheduling
stime: measured standalone running time
btime: optimal running time on this node

B.stime: 0.2
B.btime: 0.2

C.stime: 0.2
C.btime: 0.2

BC.stime: 0.3
BC.btime: 0.3

All.stime: 1.2
All.btime: 0.8

BC.stime < B.btime + C.btime

All Edges

Partition A Partition B, C

Partition B Partition C

All.stime > A.btime + BC.btime

A.stime: 0.5
A.btime: 0.5
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Effective scheduling methods
• Four different scheduling methods

– Cache-Fit (CF)
– Cache-Fit Queue (CF-Q)
– Split-Join (SJ)
– Split-Join Queue (SJ-Q)
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Split-Join Queue (SJ-Q) Scheduling
• Provide strict barriers between different merged partitions

• No barriers inside a merged partition of SJ
– No guarantee of the execution order

• Set up one FIFO queue for each merged partition
– Provide relaxed barriers between cache-fit partitions from the same 

merged partition
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Four Scheduling Methods Summary

Methods Pipeline 
Utilization Profiling Barriers Queue Code 

Change
CF Low No Strict No No

CF-Q High No Relaxed Yes Yes
SJ High Yes Strict No No

SJ-Q High Yes Strict / Relaxed Yes Yes



2018 USENIX Annual Technical Conference

Software Throttling Performance
• Experiment Settings

GPU Model Titan X GTX 745
Architecture Pascal Maxwell

Core # 5376 576
L2 Cache 3MB 2MB

CUDA Version CUDA 8.0 CUDA 8.0

CPU Intel Xeon
E5-2620

Intel Core 
i7-4790
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Benchmarks
• Sparse Linear Algebra Workloads

– Sparse Matrix Vector Multiplication (SPMV)

• Graph Processing Workloads
– Bellman-Ford (BMF)
– Page Rank (PR)

• Neural Network Optimization
– Deep Compression: Pruned AlexNet
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Sparse Matrix Vector Multiplication
• Baseline: CUSP
• Matrices: Florida Sparse Matrix Collection

– Focus on large matrices: working set cannot fit into L2 cache
– 228 large matrices on GTX 745
– 192 large matrices on Titan X
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Overall SPMV Performance
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Effect of Cache Hit Rate
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Effect of Working Set Size
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Graph Application Performance
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Graph Application Performance cont.
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Deep Learning Benchmark
• Deep Compression [Han+,ICLR’16]

– Prune AlexNet to remove low weight elements in fully connected layers

– Deep Compression provide us sparse matrices
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Conclusion
• We proposed the first locality-aware Software 

Throttling framework for GPUs

• Our framework can increase data reuse by improving 
Temporal Locality

• We exploited the Trade-off between cache performance 
and pipeline utilization
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