Towards Better Understanding of Black-box Auto-Tuning: A Comparative Analysis for Storage Systems

2018 USENIX Annual Technical Conference

Zhen Cao¹, Vasily Tarasov², Sachin Tiwari¹, and Erez Zadok¹

¹Stony Brook University; ²IBM Research – Almaden;

- Introduction
- Background
- Experiment Settings
- Evaluations
- Related Work
- Conclusions & Future Work

Motivation

Why tuning storage systems?
 Slow storage impacts I/O bound workloads
 Default settings are sub-optimal

- Tuning can provide significant gains
 9× [FAST'10]
- Manual tuning is intractable
- Auto-tuning storage systems
 Black-box optimization is promising
 Lack of comparison of techniques
 Lack of understanding

Contributions

- First comparative study on auto-tuning storage systems
 - 5 techniques
- Various aspects
 - Cumulative & instantaneous throughput
 - Impacts of hyper-parameters
- Explanations on evaluation results
 - From storage perspective
- Future Goal: complete solution to tune storage systems

Introduction

Background

- Experiment Settings
- Evaluations
- Related Work
- Conclusions & Future Work

Concepts

- Storage system
 - File system, underlying storage hardware and any layers between them
- Parameters
 - Configurable options
 - E.g., file-system block size
- Parameter values
 - *E.g., 1K, 2K, 4K* (Ext4 block size)
- Configuration
 - Combination of parameter values
 - E.g., [Ext4, 4K, data=ordered]
- Parameter space
 - All possible configurations
- Hyper-parameter

Challenges

- Vast parameter space
 - Ext4: 59 parameters, 10³⁷ configs
 - Devices, Layers
 - Distributed, large-scale
- Discrete and non-numeric

Gradient

Manual Tuning

Inefficient

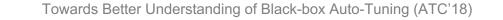
- Linux I/O scheduler: noop, cfq, deadline
- Non-linearity

07/13/2018

- Sensitivity to environment
 - Hardware & workloads

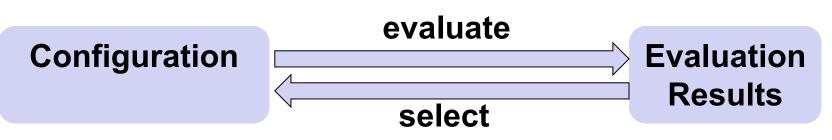
Inapplicable Methods

- Control Theory
 - Unstable in controlling non-linear systems
- Supervised Machine Learning
 - Long training phase
 - High-quality training data
- Inapplicable or inefficient to serve as the core auto-tuning algorithm
 - Could be helpful as a supplement



Black-box Optimization

- Successfully applied in auto-tuning system configurations
- Examples
 - Genetic Algorithms (GA)
 - Simulated Annealing (SA)
 - Bayesian Optimization (BO)
- Obliviousness to system's internals



Key Factors

- Fitness: optimization objective(s)
 - Throughput, latency, energy, …
 - Complex cost functions
- Exploration
 - Search the unvisited area (e.g., randomly)

Exploitation

Utilize neighborhood or history

History

 How much past data is kept and used for exploration/exploitation

Applied Methods

- Simulated Annealing (SA)
- Genetic Algorithms (GA)
- Deep Q-Network (DQN)
- Bayesian Optimization (BO)
- Random Search (RS)

Random selection without replacement

Genetic Algorithms

- Inspired by natural evolution
- Concepts
 - ◆ Gene: file system, block size, ...
 - ◆Allele: Ext4, XFS, Btrfs, …
 - Chromosome: configuration
- Selection
- Genetic operators
 Crossover
 Mutation

Exploitation vs. Exploration

- Introduction
- Background
- Experiment Settings
- Evaluations
- Related Work
- Conclusions & Future Work

Experimental Setup

Hardware

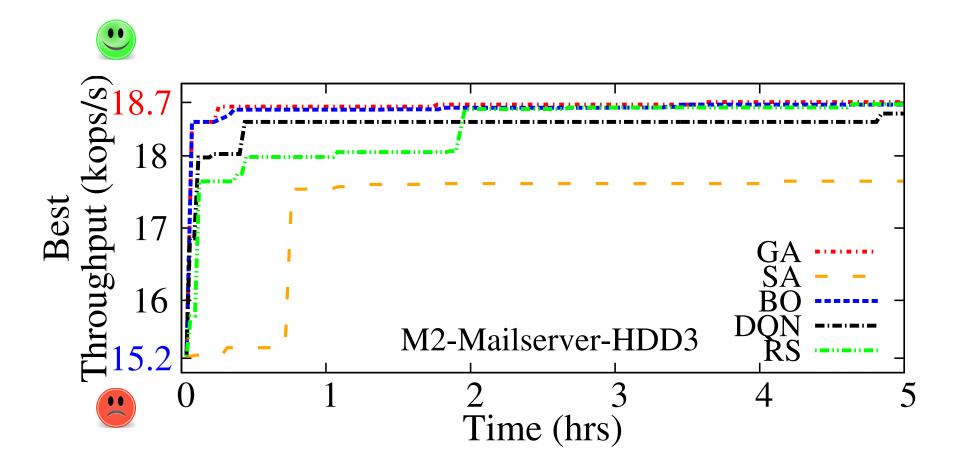
- M1: 2 Intel Xeon single-core 2.8GHz CPU, 2G RAM, 73GB Seagate SCSI drive
- M2: 1 Intel Xeon quad-core 2.4GHz CPU, 24G RAM, 4 drives (SAS-HDD 500GB, SAS-HDD 146GB, 1 SATA-HDD, SSD)
- Filebench
 - Macro-workloads: fileserver, mailserver, webserver, dbserver

Experiment Setup (cont.)

- Search spaces
 - ◆ Storage V1
 - File system, inode size, block size, block group, journal options, mount options, special options
 - ◆ Storage V2
 - V1 + I/O scheduler
 - 6,222 configurations
- Methodology
 - Exhaustive Search
 - Storage V2: 4 workloads × 4 devices
 - 3+ runs for each configuration
 - Collected over 2+ years
 - Simulate auto-tuning algorithms

- Introduction
- Background
- Experiment Settings
- Evaluations
- Related Work
- Conclusions & Future Work

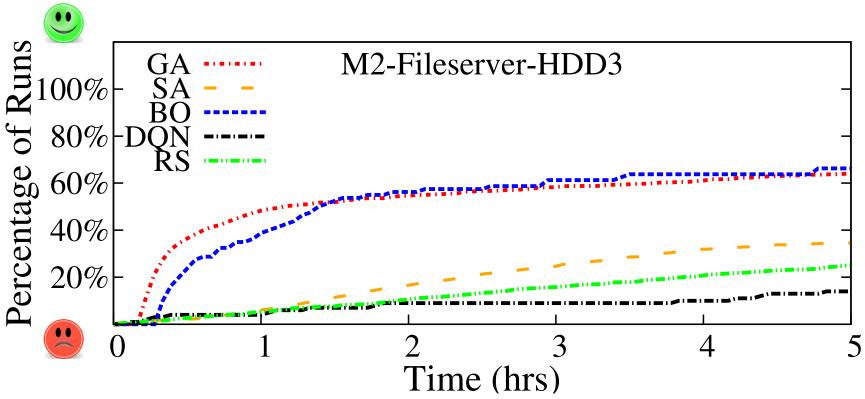
Best Throughput



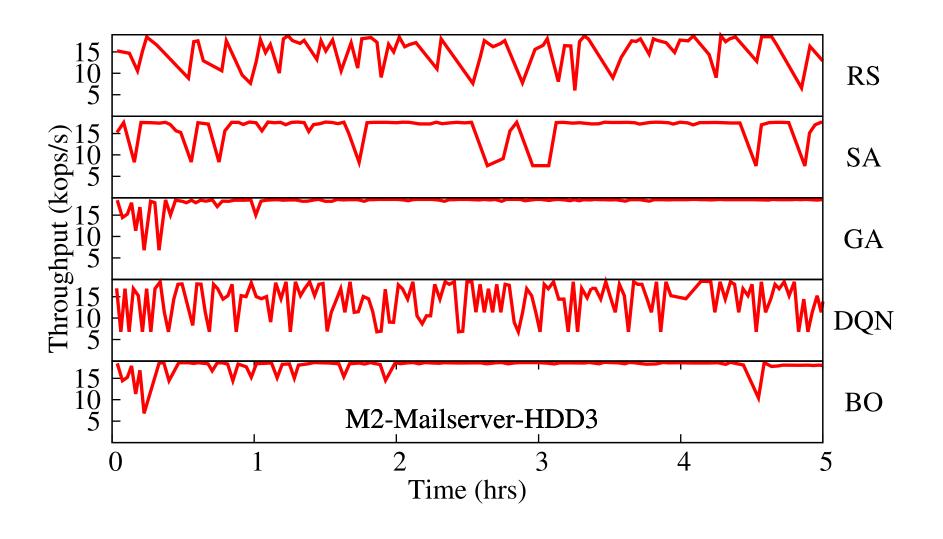
07/13/2018

Success rate for finding near-optimal configurations

Near-optimal configuration: one with throughput higher than 99% of the global optimal value.



Instant Throughput



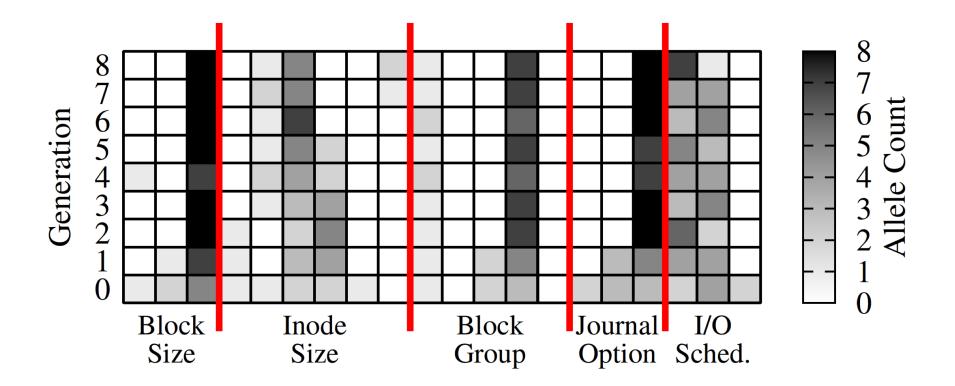
IBM

Research

Stony Brook

University

Genetic Algorithm (GA) Diversity



Correlation Analysis

- Correlation analysis
 - Ordinary Least Squares (OLS)
 - Example: block size and journal option are the most correlated Ext4 parameter (Fileserver, SSD)
- Explanations on evaluation results
 - GA and BO can identify important parameters through "history"
 - SA keeps no "history"; thus performs poorly
 - DQN spends too much time on exploration
 - Random Search
 - Near-optimal configurations take up 4.5% of the whole search space (M2, Mailserver, HDD).

- Introduction
- Background
- Experiment Settings
- Evaluations
- Related Work
- Conclusions & Future Work

Related Work

Auto-tuning storage

- Storage system design (bin-packing heuristics)
 [Alvarez et al.]
- Data recovery scheduling (GA) [Keeton et al.]
- ◆ HDF5 optimization (GA) [Behzad et al.]

Lustre optimization (DQN) [Li et al.]

- Auto-tuning other systems
 - Database [Alipourfard et al.]
 - Cloud VMs [Aken et al.]

- Introduction
- Background
- Experiment Settings
- Evaluations
- Related Work
- Conclusions & Future Work

Conclusions & Contributions

- First comparative analysis on 5 techniques on auto-tuning storage systems
 - Efficiency on finding near-optimal configurations
 - Instant throughput
- Provide insights from storage perspective

Importance of parameters

E.g., impact of mutation rates on convergence

- Valuable datasets
 - Will release to public

Future Work

- More complex workloads and search spaces
- Hyper-parameter tuning
- More sophisticated auto-tuning
 - E.g., penalty functions to cope with costly parameter changes

Towards Better Understanding of Black-box Auto-Tuning: A Comparative Analysis for Storage Systems

Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok

Thank You Q&A

