Towards Better Understanding of
Black-box Auto-Tuning: A Comparative
Analysis for Storage Systems

2018 USENIX Annual Technical Conference

Zhen Cao!, Vasily Tarasov?, Sachin Tiwari', and Erez Zadok’

'Stony Brook University; ?IBM Research — Almaden;

IBM q\\\w Stony Brook

07/13/2018 Towards Better Understanding of Black-box Auto-Tuning (ATC’18) 1 Research University



Outline

Introduction

Background

Experiment Settings
Evaluations

Related Work

Conclusions & Future Work

IBM ‘\\\‘ Stony Brook

07/13/2018 Towards Better Understanding of Black-box Auto-Tuning (ATC’18) 2 Research University



Motivation

e \Why tuning storage systems?
¢ Slow storage impacts /O bound workloads
¢ Default settings are sub-optimal
¢ Tuning can provide significant gains
=" Ox [FAST10]
e Manual tuning is intractable

e Auto-tuning storage systems
¢ Black-box optimization is promising
¢ Lack of comparison of techniques
¢ Lack of understanding
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Contributions

e First comparative study on auto-tuning storage
systems

¢ 5 techniques

e Various aspects
¢ Cumulative & instantaneous throughput
¢ Impacts of hyper-parameters

e Explanations on evaluation results
¢ From storage perspective

e Future Goal: complete solution to tune storage
systems
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Concepts

Storage system

¢ File system, underlying storage hardware and any

layers between them

Parameters
¢ Configurable options
¢ E.g., file-system block size

Parameter values
e E.g., 1K, 2K, 4K (Ext4 block size)

Configuration

¢ Combination of parameter values
¢ E.g., [Ext4, 4K, data=ordered]

Parameter space
¢ All possible configurations

Hyper-parameter
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Challenges
Manual Tuning
e \ast parameter space % Inefficient }

¢ Ext4: 59 parameters, 1037 configs
¢ Devices, Layers

Distributed, large-scale
¢ J Gradient
e Discrete and non-numeric Unavailable

¢ Linux |/O scheduler: noop, cfq, deadline

e Non-linearity

e Sensitivity to environment
¢ Hardware & workloads
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Inapplicable Methods

e Control Theory ¥
¢ Unstable in controlling non-linear systems

e Supervised Machine Learning
¢ Long training phase
¢ High-quality training data
e [napplicable or inefficient to serve as the
core auto-tuning algorithm
¢ Could be helpful as a supplement
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Black-box Optimization

e Successfully applied in auto-tuning system
configurations

e Examples
¢ Genetic Algorithms (GA)
¢ Simulated Annealing (SA)
¢ Bayesian Optimization (BO)

e Obliviousness to system’s internals

_ _ evaluate _
Configuration | > Evaluation
' Results
select
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Key Factors

e Fitness: optimization objective(s)
¢ Throughput, latency, energy, ...
¢ Complex cost functions

e Exploration
¢ Search the unvisited area (e.g., randomly)

e Exploitation
¢ Utilize neighborhood or history

e History

¢ How much past data is kept and used for
exploration/exploitation
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Applied Methods

e Simulated Annealing (SA)

e Genetic Algorithms (GA)

e Deep Q-Network (DQN)

e Bayesian Optimization (BO)
e Random Search (RS)

¢ Random selection without replacement
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Genetic Algorithms

e Inspired by natural evolution

e Concepts
¢ Gene: file system, block size, ...
¢ Allele: Ext4, XFS, Btrfs, ...
¢ Chromosome: configuration
¢ Population: set of configurations <= History

e Selection h
e Genetic operators | Exploitation vs. Exploration
¢ Crossover
¢ Mutation _
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Experimental Setup

e Hardware

¢ M1: 2 Intel Xeon single-core 2.8GHz CPU, 2G RAM,
/3GB Seagate SCSI drive

¢ M2: 1 Intel Xeon quad-core 2.4GHz CPU, 24G RAM,
4 drives (SAS-HDD 500GB, SAS-HDD 146GB, 1
SATA-HDD, SSD)

e Filebench

& Macro-workloads: fileserver, mailserver, webserver,
dbserver

¢ Default working set size
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Experiment Setup (cont.)

e Search spaces
¢ Storage V1

= File system, inode size, block size, block group,
journal options, mount options, special options

¢ Storage V2
= V1 + |/O scheduler
= 5,222 configurations

e Methodology

¢ Exhaustive Search
= Storage V2: 4 workloads X 4 devices
= 3+ runs for each configuration
= Collected over 2+ years

¢ Simulate auto-tuning algorithms
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Success rate for finding near-optimal
configurations

Near-optimal configuration: one with throughput higher than
99% of the global optimal value.
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Instant Throughput
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Genetic Algorithm (GA) Diversity
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Correlation Analysis

e Correlation analysis
¢ Ordinary Least Squares (OLS)

¢ Example: block size and journal option are the
most correlated Ext4 parameter (Fileserver, SSD)

e Explanations on evaluation results

¢ GA and BO can identify important parameters
through “history”

¢ SA keeps no ‘history”, thus performs poorly
¢ DQN spends too much time on exploration

¢ Random Search

= Near-optimal configurations take up 4.5% of the whole
search space (M2, Mailserver, HDD).
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Related Work

e Auto-tuning storage

¢ Storage system design (bin-packing heuristics)
[Alvarez et al.]

¢ Data recovery scheduling (GA) [Keeton et al.]
¢ HDF5 optimization (GA) [Behzad et al.]
¢ Lustre optimization (DQN) [Li et al.]

e Auto-tuning other systems
¢ Database [Alipourfard et al.]
¢ Cloud VMs [Aken et al.]
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Conclusions & Contributions

e First comparative analysis on 5 techniques on
auto-tuning storage systems

¢ Efficiency on finding near-optimal configurations
¢ Instant throughput

e Provide insights from storage perspective
¢ Importance of parameters
= E.g., impact of mutation rates on convergence

e Valuable datasets
¢ Will release to public
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Future Work

e More complex workloads and search
spaces

e Hyper-parameter tuning

e More sophisticated auto-tuning

¢ E.g., penalty functions to cope with costly parameter
changes
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