
GETTING TO THE ROOT OF CONCURRENT BINARY SEARCH TREE
PERFORMANCE

Maya Arbel-Raviv, Technion
Trevor Brown, IST Austria
Adam Morrison, Tel Aviv U

MOTIVATION

Optimistic concurrent search trees are crucial in many applications
 (e.g., in-memory databases, internet routers and operating systems)

We want to understand their performance

We study BSTs because there are many variants,
making comparisons easier

BST PROTECTED BY A GLOBAL LOCK

Synthetic experiment:

Insert 100,000 keys, then

n threads perform searches

HAND-OVER-HAND LOCKING (HOH)

Same experiment

LOCKING AND CACHE COHERENCE

Algorithm L2 misses / search L3 misses / search

Global lock 15.9 3.9

HOH 25.1 7.7

m

a

Evict this cache line for all
threads!

Evict this cache line for all
threads!

ACHIEVING HIGH PERFORMANCE

NO locking while searching!

Example: Unbalanced DGT BST
 Standard BST search
No synchronization!

STATE OF THE ART BSTS

Not covered: lock-free balanced BSTs …

BST Balanced? Tree type Search overhead

BCCO Y Internal* Read per-node

DVY Internal*

AA Internal Write per-search

DGT External

HJ Internal Read per-node

RM Internal Read per-search

NM External

EFRB External

Bl
oc

ki
ng

Lo
ck

-f
re

e

HOW DO THEY PERFORM?
EXPERIMENT: 100% SEARCHES WITH 64 THREADS

BCCO1 BCCO2 HJ DVY RM AA NM1 NM2 DGT EFRB
Read
per-node

Read
per-node

Read
per-node

Read
per-search

Write
per-searchSearch overhead

Balanced Internal External

BASIC IMPLEMENTATION ISSUES

Bloated nodes
 Why does node size matter?
 Larger nodes à fewer fit in cache à more cache misses

Scattered fields
 Why does node layout matter?
 Searches may only access a few fields
 Scattered fields à more cache lines à more cache misses

Incorrect usage of C volatile
 Missing volatiles à correctness issue
 Unnecessary volatiles à performance issue

IMPACT OF FIXING THESE ISSUES

BCCO1 BCCO2 HJ DVY RM AA NM1 NM2 DGT EFRB
Read
per-node

Read
per-node

Read
per-node

Read
per-search

Write
per-search

X X X X X X X

X X

X X X X X X X

Search overhead

Bloated nodes

Scattered fields
Incorrect C volatile

Balanced Internal External

HOW A FAST ALLOCATOR WORKS
Jemalloc: threads allocate from private arenas

Each thread has an arena for each size class:
 8, 16, 32, 48, 64, 80, 96, 112, 128, 192, 256, 320, 384, 448, 512, …

Jemalloc per-thread allocation
<---- 4096 byte page ---->

A
re

na
s

8

16

32

48

64

192 ... 40480 48 96 144

0 32

malloc(48)
malloc(36)
malloc(40)
malloc(44)
malloc(32)
malloc(17)
malloc(40)
…
malloc(33)

CACHE LINE CROSSINGS

8

16

32

48

64 0 64 128 192

Cache line Cache line Cache line Cache line

0 48 96 144

0 32 64 96

0 16 32 48

These nodes cross
cache lines!

If the tree does not fit in cache,
double cache misses for half of your nodes!

Not a big deal if the tree
fits in the cache

Fixing bloated nodes can
worsen performance!

CACHE SETS

Cache is sort of like a hash table

Maps addresses to buckets (4096 for us)

Buckets can only contain up to c elements (64 for us)

If you load an address, and it maps to a full bucket
 A cache line is evicted from that bucket

“Mod 4096” is not a good hash function
 Patterns in allocation can lead to patterns in bucket occupancy

Hashing a cache line to a bucket:
physical address mod 4096

Insert creates a node and a descriptor (to facilitate lock-free helping)

Node size class: 64 Descriptor size class: 64

Which cache sets will these nodes map to?
 Cache indexes used: 0, 2, 4, … (only even numbered indexes)
 Taken modulo 4096, these can only map to even numbered cache sets!
 Only half of the cache can be used to store nodes!

CACHE SET USAGE IN HJ BST

64

Cache line Cache line Cache line Cache line Cache line Cache line

0 64 128 192 256 320

SIMPLE FIX: RANDOM ALLOCATIONS

Hypothesis: problem is the rigid even/odd allocation behaviour

Idea: break the pattern with an occasional dummy 64 byte allocation

Fixes the problem!
 Reduces unused cache sets to 1.6%
 Improved search performance by 41%
 … on our first experimental system, which was an AMD machine.
 However, on an Intel system, this did not improve search performance!

0 64 192 256 320

0 64 128 192 256 320

dummy

THE DIFFERENCE BETWEEN SYSTEMS

Intel processors prefetch more aggressively
Adjacent line prefetcher: load one extra adjacent cache line
 Not always the next cache line (can be the previous one)

 Smallest unit of memory loaded is 128 bytes (two cache lines)
 This is also the unit of memory contention

EFFECT OF PREFETCHING ON HJ BST

The occasional dummy allocations break up the even/odd pattern

But…

Whenever search loads a node, it also loads the adjacent cache line
 This is a descriptor or a dummy allocation!
 This is useless for the search
 Only half of the cache is used for nodes

0 64 192 256 320dummy

Fix: add padding
to nodes or descriptors

so they are in
different size classes

SEGREGATING MEMORY FOR DIFFERENT OBJECT
TYPES

1. Previously described solution
 Add padding so objects have different size classes

2. A more principled solution
 Use multiple instances of jemalloc
 Each instance has its own arenas
 Allocate different object types from different jemalloc instances

3. An even better solution
 Use an allocator with support for segregating object types

PERFORMANCE AFTER ALL FIXES

BCCO1 BCCO2 HJ DVY RM AA NM1 NM2 DGT EFRB
Read
per-node

Read
per-node

Read
per-node

Read
per-search

Write
per-searchSearch overhead

Balanced Internal External

node size class
48 bytes

node size class
32 bytes

APPLICATION BENCHMARKS

In-memory database DBx1000 [Yu et al., VLDB 2014]
 Yahoo! Cloud Serving Benchmarks
 TPC-C Database Benchmarks

Used each BST as a database index
 Merges the memory spaces of DBx1000 and the BST!
 Creates similar memory layout issues (e.g., underutilized cache sets)
 And new ones (e.g., scattering of nodes across many pages)
 Even accidentally fixes memory layout issues in DBx1000

See paper for details

RECOMMENDATIONS

When designing and testing a data structure
 Understand your memory layout!
 How are nodes laid out in cache lines? Pages?
 What types of objects are near one another?

When adding a data structure to a program
 You are merging two memory spaces
 Understand your new memory layout!

New tools needed?

http://tbrown.pro
Tutorials, code, benchmarks

Companion talk:
Good data structure experiments are R.A.R.E

