
GETTING TO THE ROOT OF CONCURRENT BINARY SEARCH TREE
PERFORMANCE

Maya Arbel-Raviv, Technion
Trevor Brown, IST Austria
Adam Morrison, Tel Aviv U

MOTIVATION

Optimistic concurrent search trees are crucial in many applications
­ (e.g., in-memory databases, internet routers and operating systems)

We want to understand their performance

We study BSTs because there are many variants,
making comparisons easier

BST PROTECTED BY A GLOBAL LOCK

Synthetic experiment:

Insert 100,000 keys, then

n threads perform searches

HAND-OVER-HAND LOCKING (HOH)

Same experiment

LOCKING AND CACHE COHERENCE

Algorithm L2 misses / search L3 misses / search

Global lock 15.9 3.9

HOH 25.1 7.7

m

a

Evict this cache line for all
threads!

Evict this cache line for all
threads!

ACHIEVING HIGH PERFORMANCE

NO locking while searching!

Example: Unbalanced DGT BST
­ Standard BST search
­No synchronization!

STATE OF THE ART BSTS

Not covered: lock-free balanced BSTs …

BST Balanced? Tree type Search overhead

BCCO Y Internal* Read per-node

DVY Internal*

AA Internal Write per-search

DGT External

HJ Internal Read per-node

RM Internal Read per-search

NM External

EFRB External

Bl
oc

ki
ng

Lo
ck

-f
re

e

HOW DO THEY PERFORM?
EXPERIMENT: 100% SEARCHES WITH 64 THREADS

BCCO1 BCCO2 HJ DVY RM AA NM1 NM2 DGT EFRB
Read
per-node

Read
per-node

Read
per-node

Read
per-search

Write
per-searchSearch overhead

Balanced Internal External

BASIC IMPLEMENTATION ISSUES

Bloated nodes
­ Why does node size matter?
­ Larger nodes à fewer fit in cache à more cache misses

Scattered fields
­ Why does node layout matter?
­ Searches may only access a few fields
­ Scattered fields à more cache lines à more cache misses

Incorrect usage of C volatile
­ Missing volatiles à correctness issue
­ Unnecessary volatiles à performance issue

IMPACT OF FIXING THESE ISSUES

BCCO1 BCCO2 HJ DVY RM AA NM1 NM2 DGT EFRB
Read
per-node

Read
per-node

Read
per-node

Read
per-search

Write
per-search

X X X X X X X

X X

X X X X X X X

Search overhead

Bloated nodes

Scattered fields
Incorrect C volatile

Balanced Internal External

HOW A FAST ALLOCATOR WORKS
Jemalloc: threads allocate from private arenas

Each thread has an arena for each size class:
­ 8, 16, 32, 48, 64, 80, 96, 112, 128, 192, 256, 320, 384, 448, 512, …

Jemalloc per-thread allocation
<---- 4096 byte page ---->

A
re

na
s

8

16

32

48

64

192 ... 40480 48 96 144

0 32

malloc(48)
malloc(36)
malloc(40)
malloc(44)
malloc(32)
malloc(17)
malloc(40)
…
malloc(33)

CACHE LINE CROSSINGS

8

16

32

48

64 0 64 128 192

Cache line Cache line Cache line Cache line

0 48 96 144

0 32 64 96

0 16 32 48

These nodes cross
cache lines!

If the tree does not fit in cache,
double cache misses for half of your nodes!

Not a big deal if the tree
fits in the cache

Fixing bloated nodes can
worsen performance!

CACHE SETS

Cache is sort of like a hash table

Maps addresses to buckets (4096 for us)

Buckets can only contain up to c elements (64 for us)

If you load an address, and it maps to a full bucket
­ A cache line is evicted from that bucket

“Mod 4096” is not a good hash function
­ Patterns in allocation can lead to patterns in bucket occupancy

Hashing a cache line to a bucket:
physical address mod 4096

Insert creates a node and a descriptor (to facilitate lock-free helping)

Node size class: 64 Descriptor size class: 64

Which cache sets will these nodes map to?
­ Cache indexes used: 0, 2, 4, … (only even numbered indexes)
­ Taken modulo 4096, these can only map to even numbered cache sets!
­ Only half of the cache can be used to store nodes!

CACHE SET USAGE IN HJ BST

64

Cache line Cache line Cache line Cache line Cache line Cache line

0 64 128 192 256 320

SIMPLE FIX: RANDOM ALLOCATIONS

Hypothesis: problem is the rigid even/odd allocation behaviour

Idea: break the pattern with an occasional dummy 64 byte allocation

Fixes the problem!
­ Reduces unused cache sets to 1.6%
­ Improved search performance by 41%
­ … on our first experimental system, which was an AMD machine.
­ However, on an Intel system, this did not improve search performance!

0 64 192 256 320

0 64 128 192 256 320

dummy

THE DIFFERENCE BETWEEN SYSTEMS

Intel processors prefetch more aggressively
­Adjacent line prefetcher: load one extra adjacent cache line
­ Not always the next cache line (can be the previous one)

­ Smallest unit of memory loaded is 128 bytes (two cache lines)
­ This is also the unit of memory contention

EFFECT OF PREFETCHING ON HJ BST

The occasional dummy allocations break up the even/odd pattern

But…

Whenever search loads a node, it also loads the adjacent cache line
­ This is a descriptor or a dummy allocation!
­ This is useless for the search
­ Only half of the cache is used for nodes

0 64 192 256 320dummy

Fix: add padding
to nodes or descriptors

so they are in
different size classes

SEGREGATING MEMORY FOR DIFFERENT OBJECT
TYPES

1. Previously described solution
­ Add padding so objects have different size classes

2. A more principled solution
­ Use multiple instances of jemalloc
­ Each instance has its own arenas
­ Allocate different object types from different jemalloc instances

3. An even better solution
­ Use an allocator with support for segregating object types

PERFORMANCE AFTER ALL FIXES

BCCO1 BCCO2 HJ DVY RM AA NM1 NM2 DGT EFRB
Read
per-node

Read
per-node

Read
per-node

Read
per-search

Write
per-searchSearch overhead

Balanced Internal External

node size class
48 bytes

node size class
32 bytes

APPLICATION BENCHMARKS

In-memory database DBx1000 [Yu et al., VLDB 2014]
­ Yahoo! Cloud Serving Benchmarks
­ TPC-C Database Benchmarks

Used each BST as a database index
­ Merges the memory spaces of DBx1000 and the BST!
­ Creates similar memory layout issues (e.g., underutilized cache sets)
­ And new ones (e.g., scattering of nodes across many pages)
­ Even accidentally fixes memory layout issues in DBx1000

See paper for details

RECOMMENDATIONS

When designing and testing a data structure
­ Understand your memory layout!
­ How are nodes laid out in cache lines? Pages?
­ What types of objects are near one another?

When adding a data structure to a program
­ You are merging two memory spaces
­ Understand your new memory layout!

New tools needed?

http://tbrown.pro
Tutorials, code, benchmarks

Companion talk:
Good data structure experiments are R.A.R.E

