N\YFZANYIANYIANTVI ANV I ANTY I ANY S AN

% Qﬂ%ﬂ%ﬂ%ﬂ%ﬂ%ﬂ% /
NYZANYZANYZANYZANYZANYZANTZ4N
ZAN\YZANYZANVZANYZANYZANY/ZA\Y/
NYZANYZANYZANYZANYZANYZANTZAN

FJANVIANVIANVIANVIANVIANVIANYS

M Arbel-Raviv, Techni
BINARY SEARCH TREE TGYG BI‘ e olvsl;,Aectn'lon
ERFORMANCE revor Brown, ustria

Adam Morr ison, Tel Aviv U

MOTIVATION

Optimistic concurrent search trees are crucial in many applications

(e.g., in-memory databases, internet routers and operating systems)
We want to understand their performance

We study BSTs because there are many variants,
making comparisons easier

BST PROTECTED BY A GLOBAL LOCK

Synthetic experiment:
Insert 100,000 keys, then

n threads perform searches

operations per microsecond

N W B O

o B

==| ock

o

12 18 24
number of threads

30

36

HAND-OVER-HAND LOCKING (HOH)

Same experiment

operations per microsecond

O = N W B U

e==| ock ==HOH

o

12 18 24
number of threads

30

36

LOCKING AND CACHE COHERENCE

Evict this cache line for all
threads!
N . ©®

n e . > .
qﬂ' Evict this cache line for all
‘ threads!

Algorithm L2 misses / search L3 misses / search

Global lock 15.9 3.9
HOH 25.1 7.7

ACHIEVING HIGH PERFORMANCE

NO locking while searching! —Lock —HOH =TGT
- 50
Example: Unbalanced DGT BST S 40
)
*Standard BST search S 2o
)
*No synchronization! £
< 20
o
2 10
S
.E O e
s 0 6 12 18 24 30 36

number of threads

STATE OF THE ART BSTS

BCCO Internal® Read per-node
o)
g DVY Internal™®
<
o AA Internal Write per-search
)

DGT External
o HJ Internal Read per-node
q&_) RM Internal Read per-search
§ NM External
—

EFRB External

Not covered: lock-free balanced BSTs ...

| HOW DO THEY PERFORM?
EXPERIMENT: 100% SEARCHES WITH 64 THREADS

Balanced Internal External

\ \ \
70 [L | |

60

50 /\\)
40

30
S 20
10

s/sec

D

| BCCO1 | BCCO2 | HJ | DVY | RM | AA | NMI | NM2 | DGT | EFRB_
Read Read Read

Read Write

Search overhead per-node per-node per-node per-search per-search

BASIC IMPLEMENTATION ISSUES

Bloated nodes
Why does node size matter?
Larger nodes > fewer fit in cache = more cache misses

Scattered fields

Why does node layout matter?
Searches may only access a few fields
Scattered fields = more cache lines = more cache misses

Incorrect usage of C volatile
Missing volatiles = correctness issue
Unnecessary volatiles =2 performance issue

IMPACT OF FIXING THESE ISSUES

External

Internal

Balanced

\

\

\

|

1

36

36

D

64

R

after fix

32

O before fix

32

48
96 </
% .

__RM | _AA_| NMI | NM2 | DGT | EFRB_

N

—
—

oS O o o o O

O v <t cr Q) — !

29s/sdo A

Search overhead

Bloated nodes

X

Scattered fields
Incorrect C volatile

HOW A FAST ALLOCATOR WORKS

Jemalloc: threads allocate from private arenas

Each thread has an arena for each size class:
- 8,16, 32,48, 64, 80,96, 112, 128, 192, 256, 320, 384, 448, 512, ...

malloc(48)
malloc(36)
malloc(40)
malloc(44)
malloc(32)

)

)

malloc(17
malloc(40

malloc(33)

Arenas

Jemalloc per-thread allocation
<---- 4096 byte page ---->

CACHE LINE CROSSINGS

8 These nodes cross
cache lines!

Fixing bloated nodes can
worsen performance!

Cache line Cache line Cache line

Cache line

Not a big deal if the tree If the tree does not fit in cache,

fits in the cache double cache misses for half of your nodes!

CACHE SETS

Cache is sort of like a hash table
Maps addresses to buckets (4096 for us)
Buckets can only contain up to ¢ elements (64 for us)

If you load an address, and it maps to a full bucket

= A cache line is evicted from that bucket

“Mod 4096” is not a good hash function

* Patterns in allocation can lead to patterns in bucket occupancy

Hashing a cache line to a bucket:

physical address mod 4096

CACHE SET USAGE IN HJ BST

Insert creates a node and a descriptor (to facilitate lock-free helping)

Node size class: 64 Descriptor size class: 64

Cache line Cache line Cache line Cache line Cache line Cache line

Which cache sets will these nodes map to?
* Cache indexes used: 0, 2, 4, ... (only even numbered indexes)
* Taken modulo 4096, these can only map to even numbered cache sets!

* Only half of the cache can be used to store nodes!

SIMPLE FIX: RANDOM ALLOCATIONS

Hypothesis: problem is the rigid even/odd allocation behaviour

Fixes the problem!

* Reduces unused cache sets to 1.6%

* Improved search performance by 41%

“ ... on our first experimental system, which was an AMD machine.

* However, on an Intel system, this did not improve search performance!

THE DIFFERENCE BETWEEN SYSTEMS

Intel processors prefetch more aggressively

Adjacent line prefetcher: load one extra adjacent cache line

Not always the next cache line (can be the previous one)

Smallest unit of memory loaded is 128 bytes (two cache lines)

This is also the unit of memory contention

EFFECT OF PREFETCHING ON HJ BST

The occasional dummy allocations break up the even/odd pattern

But...

0 64 192 256 320

Whenever search loads a node, it also loads the adjacent cache line
* This is a descriptor or a dummy allocation!
* This is useless for the search

Fix: add padding
* Only half of the cache is used for nodes e @ ‘

to nodes or descriptors

so they are in
different size classes

SEGREGATING MEMORY FOR DIFFERENT OBJECT
TYPES

1. Previously described solution

Add padding so objects have different size classes

@ more principled solution

Use multiple instances of jemalloc
Each instance has its own arenas

Allocate different object types from different jemalloc instances

3. An even better solution

Use an allocator with support for segregating object types

| AA | NM1 | NM2 | DGT | EFRB |
Read
per-searc

MO

0000000
RORFAQ=

[

|

PERFORMANCE_AETER ALl EIXES

~——

OO0 OCOCOO
7654321_

sos/sdo]l <

Y

DV

head Read
per-node per-node per-node

Write
er-sed

J

\

J

\

APPLICATION BENCHMARKS

In-memory database DBx1000 [Yu et al., VLDB 2014]

Yahoo! Cloud Serving Benchmarks
TPC-C Database Benchmarks

Used each BST as a database index
Merges the memory spaces of DBx1000 and the BST!
Creates similar memory layout issues (e.g., underutilized cache sets)
And new ones (e.g., scattering of nodes across many pages)

Even accidentally fixes memory layout issues in DBx1000

See paper for details

RECOMMENDATIONS

When designing and testing a data structure
* Understand your memory layout!
* How are nodes laid out in cache lines? Pages?

* What types of objects are near one another?

When adding a data structure to a program
* You are merging two memory spaces

* Understand your new memory layout!

New tools needed?

http://tbrown.pro
Tutorials, code, benchmarks

Companion talk:
Good data structure experiments are R.A.R.E

