Putting the "Micro” Back
In Microservices

Sol Boucher, Carnegie Mellon University

Joint work with:
Anuj Kalia
David G. Andersen
Michael Kaminsky, Intel Labs

The Many Potential Benefits of
Serverless Computing

The emerging cloud service can reduce costs and speed deployment times
Wall Street Journal

Elliot Forbes
{ i Professional Software Developer.

Dec 31,2017 - 4 min read

How Serverless Computing will Change
the World in 2018 Hacker Noon

EVALUATE

Serverless computing is the next big thing --
and it's already here

By Tim Anderson 11 Jul 2016 at 09:38

14() SHARE v

Dr Werner Vogels, Amazon CTO, speaking in London

AWS Summit London Amazon CTO Dr Werner Vogels talked up the
value of serverless computing at the AWS (Amazon Web Services)

London Summit last week.

The Register

How AWS will own you through serverless

Tech Target

computing

Billions of dollars invested in servers and software for serverless computing

InfoWorld

2

The hope for serverless computing

Only have to manage code
Microservices invoked by triggers
Microservices are stateless

This makes the system scalable

Fine-grained billing that scales to zero

Goal: Reduce microservice invocation latency

Median AWS Lambda warm-start latency 25 ms

Median cold-start latency >160 ms [yesterday, ATC*18]

Latency between Azure VMs ~10 s [AccelNet, NSDI‘18]

Commit ACID transactions in ~20 gys [FaRM, SOSP*15]

Speed begets generality

“Make It faSt, rather than
2

general or powerful.

— Butler Lampson

Current request path

Worker node

Dispatcher

process \ __ i

Proposal: Reduce overhead...

Proposal: ...by running code in shared workers...

Worker node

CPU core CPU| Worker process
wservice | | pservice.

CPU| Worker process CPU| Worker process
service | | pservice service | | pservice

Proposal: ...and distributing work using polling

Worker node

CPU core CPU| wWorker process
= /// e | .
Dispatcher process Hservice | | pservice

\

\
CPU| Worker process ‘QQJ‘ Worker process
pservice | | pservice pservice | | pservice

Proposal: ...and distributing work using polling

Worker node

CPU core CPU| Worker process

Y

Dispatcher process ——

\

%

CPU| Worker process | SPU| Worker process

But...
How do we provide isolation?

How do we achieve isolation similar to processes?
Language-based isolation: compile-time safety guarantees

Fine-grained preemption: intra-process task interruption

We use Rust for this, inspired by NetBricks and
[0SDI*16] [SOSP*17]

User submits Rust code; we verify it

11

Language-based isolation cuts invocation latency

Invocation latency (us)
» Process-based isolation = Language-based isolation

Warm-start

12

Language-based isolation cuts invocation latency

Invocation latency (us)
» Process-based isolation ® Language-based isolation

8.7
5 sl
D
S
g 99% |l225

Cold-start

13

Language-based isolation: Use Rust

Rust is...

e Strongly typed, compiled
e Specified safe subset

e No garbage collector

Memory safety guarantees:

e No dereferencing null/dangling pointers
e All variables initialized to valid values

e Enforced data immutability

14

Language-based isolation: Defense in depth

Worker node

Worker process

——

/ Blacklisted library functions

. Kernel
seccomp () to permit only

whitelisted system calls

15

Language-based isolation: Defense in depth

Worker node

Worker process

——

uservice | uservice E/Blackllsted library functions

o . o
____________________ e —— .-
But...

What if a microservice doesn’t yield?

CPU timesharing: Fine-grained preemption

Goal: Recover from microservice that doesn’t return quickly

1. Regain control of the CPU
2. Abort/clean up after microservice’s code

Implementation: POSIX timers, special cleanup logic

17

Fine-grained preemption

Workload
throughput
(M ops/s)

— Baseline

— Preemption
90% of Baseline

2.5 1

2.0 A

1.5 1

1.0 1

0.5 -

0.0

™

3-us period is possible!
|
|

20-us period is practical!

1IO 20 3IO 4IO
Preemption interval (us)

50

18

Fine-grained preemption: Aborting and cleanup

SIGALRM handler:
missed deadline?

no

yes

Handler returns,
microservice
continues

Handler throws
exception,
unwinding stack

Worker’s main loop
catches exception

19

Trust model

Trusted computing base:

e Rust compiler, standard library
e Any allowed unsafe or native dependencies

Successful compilation indicates microservice is memory safe

Successful linking indicates all dependencies are trusted

20

Recap

v Consolidate microservices into shared processes
v’ Improved local invocation latency by orders of magnitude
v (Hopefully) better resource utilization

— Current limitations and future work

21

Future work: Aborting/cleanup limitations

Worker process

Call tomalloc() f

22

Future work: Aborting/cleanup limitations

Worker process

——

/ Call tomalloc()

23

Future work: Aborting/cleanup limitations

use

Worker process

...

/ Call tomalloc()

24

Future work: Aborting/cleanup limitations

--

Worker process

@ s i /Call to malloc() i

25

Future work: Aborting/cleanup limitations

Worker process

--

i P Call tomalloc() i

Upcoming: More general accounting/deallocation scheme

e Operates outside the Rust runtime
e Disables preemption during trusted library routines

26

Future work: Side-channel attacks
Heightened Spectre vulnerability requires hardware mitigation
Must consider microservices’ access to:

e Process’s proximity to resource limits
e Addresses and timings from the dynamic allocator
e File descriptor numbers

Shorter microservice durations make behavior less obscure

27

Conclusion

Improved performance by shifting isolation abstraction layer
Replaced traditional process-based isolation with:

e Language-based isolation
e Fine-grained preemption

28

Conclusion

Improved performance by shifting isolation abstraction layer

Replaced traditional process-based isolation with:

e Language-based isolation
e Fine-grained preemption

Thank you!

