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The hope for serverless computing
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Only have to manage code

Microservices invoked by triggers

Microservices are stateless

This makes the system scalable

Fine-grained billing that scales to zero



Median AWS Lambda warm-start latency 25 ms

Median cold-start latency >160 ms
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Goal: Reduce microservice invocation latency
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[Yesterday, ATC‘18]

Latency between Azure VMs ~10 μs  [AccelNet, NSDI‘18]

Commit ACID transactions in ~20 μs     [FaRM, SOSP‘15]
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Speed begets generality

 Make it fast, rather than 
general or powerful.

— Butler Lampson

“
”
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Worker node

Current request path
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Proposal: Reduce overhead...

Worker node
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Proposal: ...by running code in shared workers...

Worker node
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Proposal: ...and distributing work using polling

Worker node
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Proposal: ...and distributing work using polling

Worker node
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But...
How do we provide isolation?



We use Rust for this, inspired by NetBricks and
 [OSDI‘16]   [SOSP‘17]

How do we achieve isolation similar to processes?

Language-based isolation: compile-time safety guarantees

Fine-grained preemption: intra-process task interruption
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User submits Rust code; we verify it



Language-based isolation cuts invocation latency
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Language-based isolation cuts invocation latency
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Language-based isolation: Use Rust

Rust is…
● Strongly typed, compiled
● Specified safe subset
● No garbage collector

Memory safety guarantees:
● No dereferencing null/dangling pointers
● All variables initialized to valid values
● Enforced data immutability
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Worker node

Language-based isolation: Defense in depth
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Worker process

μservice μservice Blacklisted library functions

User

Kernel
seccomp() to permit only 
whitelisted system calls



Worker node

Language-based isolation: Defense in depth
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Worker process

μservice μservice Blacklisted library functions

User

Kernel
seccomp() to permit only 
whitelisted system callsBut...

What if a microservice doesn’t yield?



CPU timesharing: Fine-grained preemption

Goal: Recover from microservice that doesn’t return quickly

1. Regain control of the CPU
2. Abort/clean up after microservice’s code

Implementation: POSIX timers, special cleanup logic

17



Fine-grained preemption
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3-μs period is possible!

20-μs period is practical!

Preemption interval (μs)

Workload 
throughput 

(M ops/s)

Baseline
Preemption
90% of Baseline



Fine-grained preemption: Aborting and cleanup

SIGALRM handler: 
missed deadline?

Worker’s main loop 
catches exception

Handler returns, 
microservice 

continuesno

Handler throws 
exception, 

unwinding stack

yes
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Trust model

Trusted computing base:

● Rust compiler, standard library
● Any allowed unsafe or native dependencies

Successful compilation indicates microservice is memory safe

Successful linking indicates all dependencies are trusted
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✓ Consolidate microservices into shared processes
✓ Improved local invocation latency by orders of magnitude
✓ (Hopefully) better resource utilization

→  Current limitations and future work
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Recap



Call to malloc()

Future work: Aborting/cleanup limitations
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Call to malloc()
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Call to malloc()
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Call to malloc()

Future work: Aborting/cleanup limitations
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Upcoming: More general accounting/deallocation scheme

● Operates outside the Rust runtime
● Disables preemption during trusted library routines

Call to malloc()

Future work: Aborting/cleanup limitations
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Worker process

μservice μserviceμservice μservice



Future work: Side-channel attacks

Heightened Spectre vulnerability requires hardware mitigation

Must consider microservices’ access to:

● Process’s proximity to resource limits
● Addresses and timings from the dynamic allocator
● File descriptor numbers

Shorter microservice durations make behavior less obscure
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Conclusion

Improved performance by shifting isolation abstraction layer

Replaced traditional process-based isolation with:

● Language-based isolation
● Fine-grained preemption
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Questions?



Thank you!
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