
Putting the “Micro” Back
in Microservices

Sol Boucher, Carnegie Mellon University

Joint work with:
Anuj Kalia

David G. Andersen
Michael Kaminsky, Intel Labs

Tech Target

Wall Street Journal

The Register

Hacker Noon

InfoWorld 2

The hope for serverless computing

3

Only have to manage code

Microservices invoked by triggers

Microservices are stateless

This makes the system scalable

Fine-grained billing that scales to zero

Median AWS Lambda warm-start latency 25 ms

Median cold-start latency >160 ms

Median AWS Lambda warm-start latency 25 ms

Median cold-start latency >160 ms

Goal: Reduce microservice invocation latency

4

[Yesterday, ATC‘18]

Latency between Azure VMs ~10 μs [AccelNet, NSDI‘18]

Commit ACID transactions in ~20 μs [FaRM, SOSP‘15]

Latency between Azure VMs ~10 μs [AccelNet, NSDI‘18]

Commit ACID transactions in ~20 μs [FaRM, SOSP‘15]

Speed begets generality

 Make it fast, rather than
general or powerful.

— Butler Lampson

“
”

5

Worker node

Current request path

6

μservice

μservice

Dispatcher
process μservice

Proposal: Reduce overhead...

Worker node

7

CPU core

CPU core

CPU core

CPU core

μsvc μsvc μsvc μsvc μsvc μsvc

μsvc μsvc μsvc μsvc μsvc μsvc

Proposal: ...by running code in shared workers...

Worker node

8

CPU core

CPU core

CPU core

CPU core

Worker process

μservice μservice

Worker process

μservice μservice

Worker process

μservice μservice

Proposal: ...and distributing work using polling

Worker node

9

CPU core

CPU core

CPU core

CPU core

Worker process

μservice μservice

Worker process

μservice μservice

Worker process

μservice μservice

Dispatcher process

Proposal: ...and distributing work using polling

Worker node

10

CPU core

CPU core

CPU core

CPU core

Worker process

μservice μservice

Worker process

μservice μservice

Worker process

μservice μservice

Dispatcher process

But...
How do we provide isolation?

We use Rust for this, inspired by NetBricks and
 [OSDI‘16] [SOSP‘17]

How do we achieve isolation similar to processes?

Language-based isolation: compile-time safety guarantees

Fine-grained preemption: intra-process task interruption

11

User submits Rust code; we verify it

Language-based isolation cuts invocation latency

12

Language-based isolation cuts invocation latency

13

Language-based isolation: Use Rust

Rust is…
● Strongly typed, compiled
● Specified safe subset
● No garbage collector

Memory safety guarantees:
● No dereferencing null/dangling pointers
● All variables initialized to valid values
● Enforced data immutability

14

Worker node

Language-based isolation: Defense in depth

15

Worker process

μservice μservice Blacklisted library functions

User

Kernel
seccomp() to permit only
whitelisted system calls

Worker node

Language-based isolation: Defense in depth

16

Worker process

μservice μservice Blacklisted library functions

User

Kernel
seccomp() to permit only
whitelisted system callsBut...

What if a microservice doesn’t yield?

CPU timesharing: Fine-grained preemption

Goal: Recover from microservice that doesn’t return quickly

1. Regain control of the CPU
2. Abort/clean up after microservice’s code

Implementation: POSIX timers, special cleanup logic

17

Fine-grained preemption

18

3-μs period is possible!

20-μs period is practical!

Preemption interval (μs)

Workload
throughput

(M ops/s)

Baseline
Preemption
90% of Baseline

Fine-grained preemption: Aborting and cleanup

SIGALRM handler:
missed deadline?

Worker’s main loop
catches exception

Handler returns,
microservice

continuesno

Handler throws
exception,

unwinding stack

yes

19

Trust model

Trusted computing base:

● Rust compiler, standard library
● Any allowed unsafe or native dependencies

Successful compilation indicates microservice is memory safe

Successful linking indicates all dependencies are trusted

20

✓ Consolidate microservices into shared processes
✓ Improved local invocation latency by orders of magnitude
✓ (Hopefully) better resource utilization

→ Current limitations and future work

21

Recap

Call to malloc()

Future work: Aborting/cleanup limitations

22

Worker process

μservice μservice

Call to malloc()

Future work: Aborting/cleanup limitations

23

Worker process

μservice μservice

Call to malloc()

Future work: Aborting/cleanup limitations

24

Worker process

μservice μserviceμservice

Call to malloc()

Future work: Aborting/cleanup limitations

25

Worker process

μservice μserviceμservice μservice

Upcoming: More general accounting/deallocation scheme

● Operates outside the Rust runtime
● Disables preemption during trusted library routines

Call to malloc()

Future work: Aborting/cleanup limitations

26

Worker process

μservice μserviceμservice μservice

Future work: Side-channel attacks

Heightened Spectre vulnerability requires hardware mitigation

Must consider microservices’ access to:

● Process’s proximity to resource limits
● Addresses and timings from the dynamic allocator
● File descriptor numbers

Shorter microservice durations make behavior less obscure

27

Conclusion

Improved performance by shifting isolation abstraction layer

Replaced traditional process-based isolation with:

● Language-based isolation
● Fine-grained preemption

28

Conclusion

Improved performance by shifting isolation abstraction layer

Replaced traditional process-based isolation with:

● Language-based isolation
● Fine-grained preemption

29

Questions?

Thank you!

30

