
DSAC: Effective Static Analysis of

Sleep-in-Atomic-Context Bugs in Kernel Modules

Jia-Ju Bai1, Yu-Ping Wang1, Julia Lawall2, Shi-Min Hu1

1Tsinghua University, 2Sorbonne Université/Inria/LIP6

Background

Atomic context

 An OS kernel state

 A CPU core is occupied to execute the code without

interruption

 Protect resources from concurrent access

Common examples of atomic context

 Code is executed while holding a spinlock

 Code is executed in an interrupt handler

2

Motivation

SAC (Sleep in Atomic Context) bug

 Sleeping in atomic context is not allowed

 SAC bug can cause a system hang or crash at

runtime

 A kind of concurrency bugs

 3

Motivation

Why can a SAC bug cause a hang or crash?

4

Interrupt Handler

SLEEP

acquire lock

release lock

acquire lock

release lock

acquire lock

release lock

Thread A Thread B Thread C

CPU0 is
spinning

CPU1 is
spinning

No CPU is available

to release the lock

Lock is not available,

continue spinning

State1

State2

State3 State4

State5

State5

DEADLOCK!!!

Instruction N

State1

Instruction N+1

Current Running Thread

State2

SLEEP

State3

State4
How to wake up?

KERNEL PANIC!!!

Hardware

Interrupt

Sleeping while holding a spinlock Sleeping in an interrupt handler

Motivation

Example fixed SAC bug

5

Acquire a spinlock!

Can sleep!

Motivation

Why do SAC bugs still occur in kernel modules?

 Determining whether an operation can sleep requires

OS-specific knowledge

 SAC bugs are only occasionally triggered at runtime

 Multiple levels of function calls should be considered

=> Most SAC bugs are manually found by code review

6

Goal

Detect SAC bugs in kernel modules

 Automation

 Accuracy

 Efficiency

 Bug fixing

7

Approach

DSAC

 LLVM-based static analysis tool

 Detect SAC bugs and recommend bug-fixing patches

8

 Source Files

 +

 +
Global LLVM

Bytecode

OS Kernel

 DSACCode
Compiler

Function
Extractor

Bug
Detector

Patch
Generator

Preliminary
Patches

Preliminary
Patches

Intermediate
Results

Preliminary
Patches

Preliminary
Patches

Bug Reports Preliminary
Patches

Preliminary
Patches

Preliminary
Patches

Preliminary
Patches

Preliminary
Patches

Sleep-able
Functions

Bug
Filter

Kernel
Module(s)

Challenges

Code coverage, accuracy and time

 Static analysis? Runtime analysis?

Extract sleep-able functions

 Require OS-specific knowledge?

Filter out repeated and false bugs

 How to check?

Bug fixing recommendation

 Needs manual work?

9

Techniques

Code coverage, accuracy and time

 Hybrid flow (flow-sensitive and -insensitive) analysis

Extract sleep-able functions

 Heuristics-based extraction method

Filter out repeated and false bugs

 Path-check filtering method

Bug fixing recommendation

 Pattern-based method

10

Hybrid flow analysis

 Inter-procedural

Context-sensitive

 Lock stack

 Interrupt flag

 Executed code path (basic blocks)

Hybrid of flow-sensitive and -insensitive

 Flow-sensitive: contain spinlock related function calls

 in an interrupt handler

 Flow-insensitive: others

11

Hybrid flow analysis

Analysis start

 Each call to spinlock acquiring function

 Entry of each interrupt handler function

Analysis end

 Lock stack is empty and interrupt flag is FALSE

Unroll loops and recursive calls once

12

Hybrid flow analysis

Example

13

14

16

19

24

26

27

28

5

6

8

10

MyFunc:

FuncA:

FuncB:
Flow-sensitive

Flow-insensitive

Flow-sensitive

(FuncA)

(FuncB)

Hybrid flow analysis

Example

14

FuncB

FuncA

5MyFunc:

14

16

19

24

26

27

28

10

Hybrid flow analysis

Example

15

FuncB

FuncA

5MyFunc:

14

16

19

24

26

27

28

10

×

×

×

×

×

Two useless paths

are not analyzed

Heuristics-based extraction

 Identify whether a collected function can sleep

 Involves known sleep-able operation

 like msleep() call and GFP_KERNEL flag

 Contains comments suggesting sleep

 like “may block” and “can sleep”

 Call an already identified sleep-able function

16

Path-check filtering

Why may repeated and false bugs occur?

 Some code paths may be repeatedly analyzed

 Neglect variable information and path conditions

Check collected code path in hybrid flow analysis

17

Path-check filtering

Filter out repeated bugs

 Entry and terminal basic blocks

 Sleep-able function name

Filter out false bugs

 Check a function parameter whose name contains the

keyword indicating it can sleep (“can_sleep”)

 Check the return value of a function like in_interrupt

that is used to test atomic context

18

Pattern-based patch generation

Four common patterns of fixing SAC bugs

 P1: sleep-able function ⇒ non-sleep function

 msleep(…) ⇒ mdelay(…)

 P2: sleep-able flag ⇒ non-sleep flag

 GFP_KERNEL ⇒ GFP_ATOMIC

 P3: move sleep-able function out of spinlock protection

 P4: replace spinlock with sleep-able lock

Support

 DSAC supports P1 and P2

 Supporting P3 and P4 is future work

19

Evaluation

Linux drivers

 Run on a common PC

 Linux-3.17.2 (released in October 2014)

 Linux-4.11.1 (released in May 2017)

 Make allyesconfig of x86

 Manually check the detected bugs

20

Evaluation

Linux drivers

21

Description 3.17.2 4.11.1

Bug detection

Filtered bugs 479,912 630,354

Final bugs 215 340

Real bugs 200 320

Patch generation - 43

Time usage 67m53s 84m10s

Evaluation

Linux drivers

 Linux-3.17.2:

 Find 215 bugs, 200 are real

 => 50 have been fixed in Linux-4.11.1

 Linux-4.11.1:

 Find 340 bugs, 320 are real

 => 209 have been confirmed

 Recommend 43 patches to fix 82 bugs

 => 30 patches have been applied

 False positives: path condition is not checked

22

Evaluation

Linux drivers

 SCSI and network drivers have 58% of detected bugs

23

Evaluation

Other kernel modules

 Linux network and filesystem modules

 FreeBSD and NetBSD kernels

24

Description Linux net & fs FreeBSD-11.0 NetBSD-7.1

Bug detection

Filtered bugs 682,081 508 2,414

Final bugs 42 39 7

Real bugs 39 35 7

Patch generation 5 10 3

Time usage 32m45s 49m12s 43m38s

Evaluation

Other kernel modules

 Find 88 bugs, and 81 are real

 => 63 have been confirmed

 Recommend 18 patches to fix 59 bugs

 => 13 have been applied

25

Comparison

Coccinelle BlockLock checker [1, 2]

 Find 31 bugs for Linux-2.6.33 drivers that are in x86

config

 25 are real, and 6 are false

 Do not rely on configuration

DSAC

 Find 228 bugs for Linux-2.6.33 drivers of x86 config

 208 are real, and 20 are false

 53 bugs are equivalent to 23 bugs found by BlockLock

 Rely on configuration

26 1. N. Palix, etc. Faults in Linux: ten years later. In ASPLOS 2011.

2. N. Palix, etc. Faults in Linux 2.6. In TOCS, 2014.

Limitations

Function pointer

 Field-based analysis?

Repeated analysis

 Summary-based analysis?

Path condition

 Symbolic-execution-like analysis?

27

Conclusion

DSAC approach: effective and automated

 Hybrid flow analysis

 Heuristics-based extraction method

 Path-check filtering method

 Pattern-based method

Finds 401 new real bugs in Linux, FreeBSD and

NetBSD

Overall false positive rate is about 6%

28

