
DSAC: Effective Static Analysis of

Sleep-in-Atomic-Context Bugs in Kernel Modules

Jia-Ju Bai1, Yu-Ping Wang1, Julia Lawall2, Shi-Min Hu1

1Tsinghua University, 2Sorbonne Université/Inria/LIP6

Background

Atomic context

 An OS kernel state

 A CPU core is occupied to execute the code without

interruption

 Protect resources from concurrent access

Common examples of atomic context

 Code is executed while holding a spinlock

 Code is executed in an interrupt handler

2

Motivation

SAC (Sleep in Atomic Context) bug

 Sleeping in atomic context is not allowed

 SAC bug can cause a system hang or crash at

runtime

 A kind of concurrency bugs

 3

Motivation

Why can a SAC bug cause a hang or crash?

4

Interrupt Handler

SLEEP

acquire lock

release lock

acquire lock

release lock

acquire lock

release lock

Thread A Thread B Thread C

CPU0 is
spinning

CPU1 is
spinning

No CPU is available

to release the lock

Lock is not available,

continue spinning

State1

State2

State3 State4

State5

State5

DEADLOCK!!!

Instruction N

State1

Instruction N+1

Current Running Thread

State2

SLEEP

State3

State4
How to wake up?

KERNEL PANIC!!!

Hardware

Interrupt

Sleeping while holding a spinlock Sleeping in an interrupt handler

Motivation

Example fixed SAC bug

5

Acquire a spinlock!

Can sleep!

Motivation

Why do SAC bugs still occur in kernel modules?

 Determining whether an operation can sleep requires

OS-specific knowledge

 SAC bugs are only occasionally triggered at runtime

 Multiple levels of function calls should be considered

=> Most SAC bugs are manually found by code review

6

Goal

Detect SAC bugs in kernel modules

 Automation

 Accuracy

 Efficiency

 Bug fixing

7

Approach

DSAC

 LLVM-based static analysis tool

 Detect SAC bugs and recommend bug-fixing patches

8

 Source Files

 +

 +
Global LLVM

Bytecode

OS Kernel

 DSACCode
Compiler

Function
Extractor

Bug
Detector

Patch
Generator

Preliminary
Patches

Preliminary
Patches

Intermediate
Results

Preliminary
Patches

Preliminary
Patches

Bug Reports Preliminary
Patches

Preliminary
Patches

Preliminary
Patches

Preliminary
Patches

Preliminary
Patches

Sleep-able
Functions

Bug
Filter

Kernel
Module(s)

Challenges

Code coverage, accuracy and time

 Static analysis? Runtime analysis?

Extract sleep-able functions

 Require OS-specific knowledge?

Filter out repeated and false bugs

 How to check?

Bug fixing recommendation

 Needs manual work?

9

Techniques

Code coverage, accuracy and time

 Hybrid flow (flow-sensitive and -insensitive) analysis

Extract sleep-able functions

 Heuristics-based extraction method

Filter out repeated and false bugs

 Path-check filtering method

Bug fixing recommendation

 Pattern-based method

10

Hybrid flow analysis

 Inter-procedural

Context-sensitive

 Lock stack

 Interrupt flag

 Executed code path (basic blocks)

Hybrid of flow-sensitive and -insensitive

 Flow-sensitive: contain spinlock related function calls

 in an interrupt handler

 Flow-insensitive: others

11

Hybrid flow analysis

Analysis start

 Each call to spinlock acquiring function

 Entry of each interrupt handler function

Analysis end

 Lock stack is empty and interrupt flag is FALSE

Unroll loops and recursive calls once

12

Hybrid flow analysis

Example

13

14

16

19

24

26

27

28

5

6

8

10

MyFunc:

FuncA:

FuncB:
Flow-sensitive

Flow-insensitive

Flow-sensitive

(FuncA)

(FuncB)

Hybrid flow analysis

Example

14

FuncB

FuncA

5MyFunc:

14

16

19

24

26

27

28

10

Hybrid flow analysis

Example

15

FuncB

FuncA

5MyFunc:

14

16

19

24

26

27

28

10

×

×

×

×

×

Two useless paths

are not analyzed

Heuristics-based extraction

 Identify whether a collected function can sleep

 Involves known sleep-able operation

 like msleep() call and GFP_KERNEL flag

 Contains comments suggesting sleep

 like “may block” and “can sleep”

 Call an already identified sleep-able function

16

Path-check filtering

Why may repeated and false bugs occur?

 Some code paths may be repeatedly analyzed

 Neglect variable information and path conditions

Check collected code path in hybrid flow analysis

17

Path-check filtering

Filter out repeated bugs

 Entry and terminal basic blocks

 Sleep-able function name

Filter out false bugs

 Check a function parameter whose name contains the

keyword indicating it can sleep (“can_sleep”)

 Check the return value of a function like in_interrupt

that is used to test atomic context

18

Pattern-based patch generation

Four common patterns of fixing SAC bugs

 P1: sleep-able function ⇒ non-sleep function

 msleep(…) ⇒ mdelay(…)

 P2: sleep-able flag ⇒ non-sleep flag

 GFP_KERNEL ⇒ GFP_ATOMIC

 P3: move sleep-able function out of spinlock protection

 P4: replace spinlock with sleep-able lock

Support

 DSAC supports P1 and P2

 Supporting P3 and P4 is future work

19

Evaluation

Linux drivers

 Run on a common PC

 Linux-3.17.2 (released in October 2014)

 Linux-4.11.1 (released in May 2017)

 Make allyesconfig of x86

 Manually check the detected bugs

20

Evaluation

Linux drivers

21

Description 3.17.2 4.11.1

Bug detection

Filtered bugs 479,912 630,354

Final bugs 215 340

Real bugs 200 320

Patch generation - 43

Time usage 67m53s 84m10s

Evaluation

Linux drivers

 Linux-3.17.2:

 Find 215 bugs, 200 are real

 => 50 have been fixed in Linux-4.11.1

 Linux-4.11.1:

 Find 340 bugs, 320 are real

 => 209 have been confirmed

 Recommend 43 patches to fix 82 bugs

 => 30 patches have been applied

 False positives: path condition is not checked

22

Evaluation

Linux drivers

 SCSI and network drivers have 58% of detected bugs

23

Evaluation

Other kernel modules

 Linux network and filesystem modules

 FreeBSD and NetBSD kernels

24

Description Linux net & fs FreeBSD-11.0 NetBSD-7.1

Bug detection

Filtered bugs 682,081 508 2,414

Final bugs 42 39 7

Real bugs 39 35 7

Patch generation 5 10 3

Time usage 32m45s 49m12s 43m38s

Evaluation

Other kernel modules

 Find 88 bugs, and 81 are real

 => 63 have been confirmed

 Recommend 18 patches to fix 59 bugs

 => 13 have been applied

25

Comparison

Coccinelle BlockLock checker [1, 2]

 Find 31 bugs for Linux-2.6.33 drivers that are in x86

config

 25 are real, and 6 are false

 Do not rely on configuration

DSAC

 Find 228 bugs for Linux-2.6.33 drivers of x86 config

 208 are real, and 20 are false

 53 bugs are equivalent to 23 bugs found by BlockLock

 Rely on configuration

26 1. N. Palix, etc. Faults in Linux: ten years later. In ASPLOS 2011.

2. N. Palix, etc. Faults in Linux 2.6. In TOCS, 2014.

Limitations

Function pointer

 Field-based analysis?

Repeated analysis

 Summary-based analysis?

Path condition

 Symbolic-execution-like analysis?

27

Conclusion

DSAC approach: effective and automated

 Hybrid flow analysis

 Heuristics-based extraction method

 Path-check filtering method

 Pattern-based method

Finds 401 new real bugs in Linux, FreeBSD and

NetBSD

Overall false positive rate is about 6%

28

