
On the diversity of cluster workloads and its impact on research results

George Amvrosiadis, Jun Woo Park, Greg Ganger, Garth Gibson, Elisabeth Baseman, Nathan DeBardeleben

Carnegie Mellon Parallel Data Laboratory

Sources for cluster traces today

- Parallel Workload Archive (1993 2015)
 - 38 HPC cluster traces

 (each: 1K+ cores, months long)
 - Publications: 250+
- Google cluster trace (2011)
 - 29 days of a 12,000-node cluster
 - Publications: 450+

26 LLNL Atlas	Nov 2006 Jun 2007
27 LLNL Thunder	Jan 2007 Jun 2007
28 ANL Intrepid	Jan 2009 Sep 2009
29 MetaCentrum	Dec 2008 Jun 2009
30 PIK IPLEX	Apr 2009 Jul 2012
31 <u>RICC</u>	May 2010 Sep 2010
32 CEA CURIE	Feb 2011 Oct 2012
33 Intel NetBatch pool A	Nov 2012 Dec 2012

Google cluster-usage traces: schema

Charles Reiss, John Wilkes, Joseph Hellerstein Version of 2013-05-06, for trace version 2. Revised 2014-11-17 Status: exported outside Google. Copyright © 2011 Google Inc. All rights reserved.

Google trace: exceedingly popular, but how representative of other clusters?

Project Atlas

- Mandate: use historical data to improve cluster efficiency
 - LANL: scheduler logs, sensor data, OS logs, ... \rightarrow TBs / day
 - Recently: data from Two Sigma, Pittsburgh Supercomputing Center

Current goals:

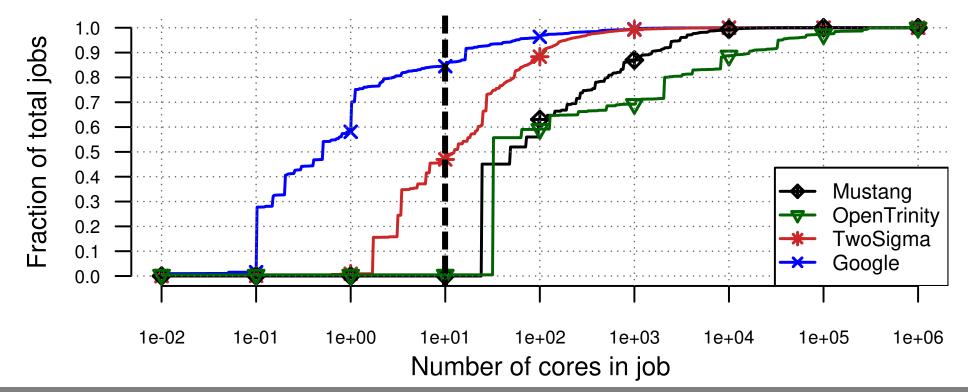
- Investigate overfitting to existing traces in systems literature
- Produce generalizable models of cluster workloads
- Create trace repository and make data publicly available

Atlas repository: current traces

- Two Sigma business analytics clusters: 9 months (2016-2017)
 - 1300 nodes, 31500 cores, 328TB RAM
- LANL Mustang general-purpose cluster: 5 years (2011-2016)
 - 1600 nodes, 38400 cores, 100TB RAM
- LANL OpenTrinity capability cluster: 3 months (2017)
 - Trinity phase 1: 9400 nodes, 300000 cores, 1.15PB RAM

Repository accessible thru project-atlas.org More traces coming soon! You can contribute! Entire cluster lifetime

Characteristic	Google	Two Sigma	Mustang	OpenTrinity
Short jobs		tok show		
Small jobs		JOD Char	acteristics	
Diurnal patterns				. ta
High job submission rate		Workload h	eterogene	eity
Resource over-commitment				
Sub-second interarrival periods		Resource	utilizatio	n
User request variability				
High failure rates				
Costly failures (wasted CPU hours)		Failure	analysis	
Longer/larger jobs fail more often				

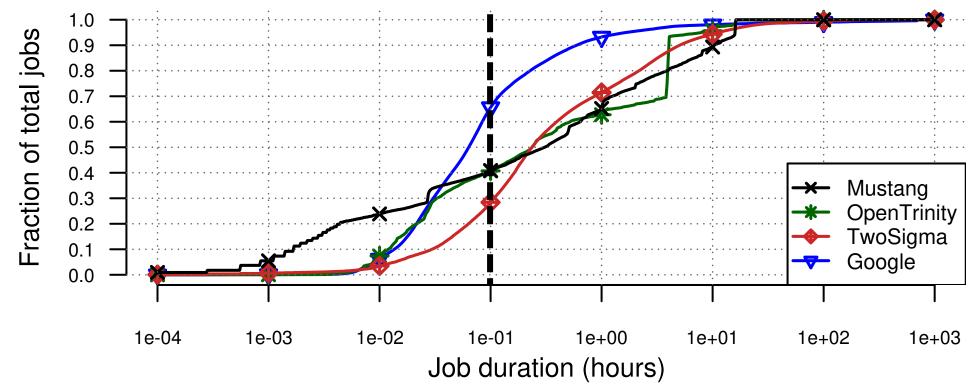

Job Sizes

• Google jobs request 3 - 406x fewer CPU cores

LANL

Two Sigma

• LANL request sizes more uniformly distributed



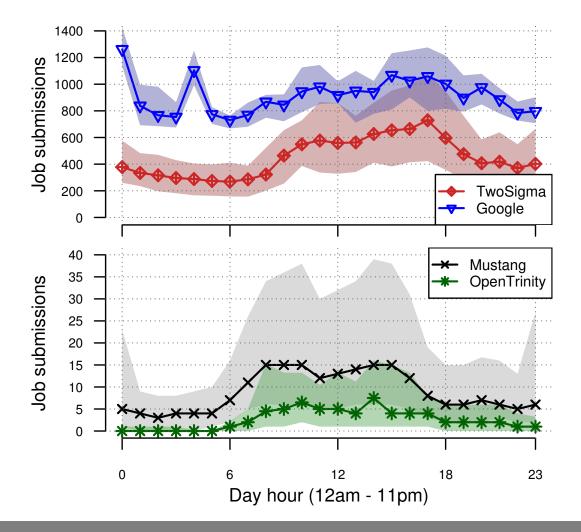
Solving head-of-line blocking by dedicating resources to small jobs becomes challenging [Delgado et al.]

Job Duration

- Median Google job is 4 5x shorter
- But: LANL jobs end at 16-32 hours, Google jobs don't

Two Sigma LANL

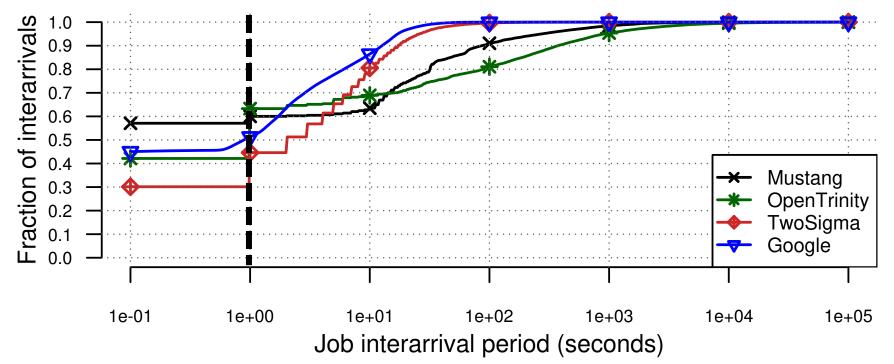
Mitigating straggler effect thru short task replication should be applied judiciously [Ananthanarayanan et al.]


Characteristic	Google	Two Sigma	Mustang	OpenTrinity
Short jobs	\checkmark	×	×	×
Small jobs	\checkmark	×	×	×
Diurnal patterns				· *#
High job submission rate		Workload h	eterogene	eity
Resource over-commitment				
Sub-second interarrival periods		Resource	utilizatio	n
User request variability				
High failure rates				
Costly failures (wasted CPU hours)		Failure	analysis	
Longer/larger jobs fail more often				

Workload Heterogeneity

- Reversed diurnal patterns
 - More/smaller Google jobs between midnight and 4AM
- Job submission rate
 - 10-1000x more scheduling requests in Two Sigma, Google

1K jobs/hour → 3.6 sec/job 70K tasks/hour → 51 msec/task


Task placement algorithms achieve subsecond latency today ^[Quincy, Firmament] but we should aim for msec latencies

Characteristic	Google	Two Sigma	Mustang	OpenTrinity
Short jobs	\checkmark	×	×	×
Small jobs	\checkmark	×	×	×
Diurnal patterns	×	\checkmark	\checkmark	\checkmark
High job submission rate	\checkmark	\checkmark	×	×
Resource over-commitment				
Sub-second interarrival periods		Resource	utilizatio	n
User request variability				
High failure rates				
Costly failures (wasted CPU hours)		Failure	analysis	
Longer/larger jobs fail more often				

Resource utilization: intensity

- Only Google overcommits resources (others at 65-90%)
- 43-64% of inter-arrivals <1sec long
 - 20% of inter-arrivals >100sec at LANL \rightarrow Maintenance

Systems should be tested with subsecond job interarrivals [Firmament, Quasar]

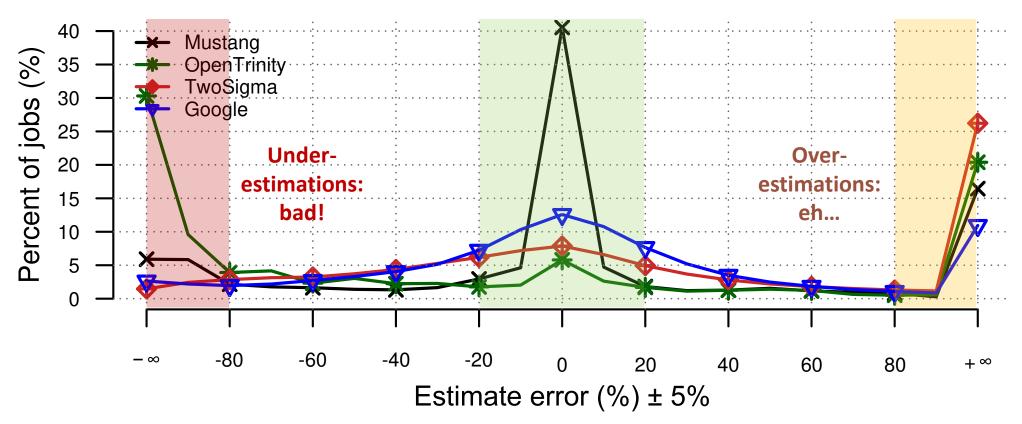
Characteristic	Google	Two Sigma	Mustang	OpenTrinity
Short jobs	\checkmark	×	×	×
Small jobs	\checkmark	×	×	×
Diurnal patterns	x	\checkmark	\checkmark	\checkmark
High job submission rate	\checkmark	\checkmark	×	×
Resource over-commitment	\checkmark	×	×	×
Sub-second interarrival periods	\checkmark	\checkmark	\checkmark	\checkmark
User request variability	×	\checkmark	\checkmark	\checkmark
High failure rates				
Costly failures (wasted CPU hours)		Failure	analysis	
Longer/larger jobs fail more often				

Unsuccessful jobs

- Unsuccessful job rates at Google are significant
- Highest efficiency: HPC clusters
 - 34-80% fewer CPU hours wasted* at LANL
 - Time wasted decreases with job runtime

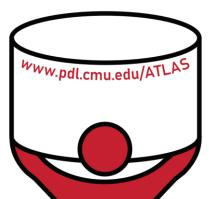
Defining *failure* is crucial: software errors may be benign

A case for dataset pluralism



Estimating job runtimes

- Runtime estimates: improve cluster efficiency
 - Adjust to heterogeneous hardware \rightarrow lower response times
 - Job packing \rightarrow increased utilization
- How do we come up with runtime estimates?
 - User-provided (Moab, Slurm @ LANL) \rightarrow mostly inaccurate
 - Leverage job repeats (Rayon in Hadoop) \rightarrow effectiveness depends on workload
- JVuPredict/3Sigma: generate estimates automatically [EuroSys 2018]
 - Step 1: Use past runtimes of jobs with similar *feature(s)*
 - Step 2: Select predictor with highest accuracy



JVuPredict: Accuracy across traces

- Reliance on: user ID, number of cores, job name (if present)
 - Logical job names matter!
 - Need busy (100K+ jobs) or long (3+ months) traces for training

Su	Imm	ary	Pr	Failure rates,
Characteristic	Google	Two Sigma	Mustang	OpenTrinity
Short jobs	\checkmark	×	×	×
Small jobs	✓	×	×	×
Diurnal patterns	×	\checkmark	\checkmark	\checkmark
High job submission rate	\checkmark	\checkmark	×	×
Resource over-commitment	\checkmark	×	×	×
Sub-second interarrival periods	✓	\checkmark	\checkmark	\checkmark
User request variability	×	\checkmark	\checkmark	\checkmark
High failure rates	\checkmark	\checkmark	×	\checkmark
Costly failures (wasted CPU hours)	\checkmark	\checkmark	x	×
Longer/larger jobs fail more often	\checkmark	×	×	×

