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Sources for cluster traces today 

• Parallel Workload Archive (1993 – 2015) 

• 38 HPC cluster traces 

(each: 1K+ cores, months long) 

• Publications: 250+ 

• Google cluster trace (2011) 

• 29 days of a 12,000-node cluster 

• Publications: 450+ 

1 www.pdl.cmu.edu/ATLAS Google trace: exceedingly popular, but how representative of other clusters? 



Project Atlas 

• Mandate: use historical data to improve cluster efficiency 

• LANL: scheduler logs, sensor data, OS logs, … → TBs / day 

• Recently: data from Two Sigma, Pittsburgh Supercomputing Center 
 
 

Current goals: 

• Investigate overfitting to existing traces in systems literature 

• Produce generalizable models of cluster workloads 

• Create trace repository and make data publicly available 

2 www.pdl.cmu.edu/ATLAS 



Atlas repository: current traces 

• Two Sigma business analytics clusters: 9 months (2016-2017) 

• 1300 nodes, 31500 cores, 328TB RAM 
 

• LANL Mustang general-purpose cluster: 5 years (2011-2016) 

• 1600 nodes, 38400 cores, 100TB RAM 
 

• LANL OpenTrinity capability cluster: 3 months (2017) 

• Trinity phase 1: 9400 nodes, 300000 cores, 1.15PB RAM 

3 www.pdl.cmu.edu/ATLAS 

Entire 

cluster lifetime 

Repository accessible thru project-atlas.org 

More traces coming soon! You can contribute! 



Overview 
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Characteristic Google Two Sigma Mustang OpenTrinity 

Short jobs      

Small jobs      

Diurnal patterns        

High job submission rate       

Resource over-commitment      

Sub-second interarrival periods         

User request variability        

High failure rates        

Costly failures (wasted CPU hours)       

Longer/larger jobs fail more often      

Failure analysis 

Resource utilization 

Workload heterogeneity 

Job characteristics 



Job Sizes 

• Google jobs request 3 - 406x fewer CPU cores 

• LANL request sizes more uniformly distributed 
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Two Sigma LANL 
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Solving head-of-line blocking by dedicating resources to small jobs becomes challenging [Delgado et al.] 
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Job Duration 

• Median Google job is 4 - 5x shorter 

• But: LANL jobs end at 16-ϯϮ hours, Google jobs don’t 
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Two Sigma LANL 

www.pdl.cmu.edu/ATLAS Mitigating straggler effect thru short task replication should be applied judiciously [Ananthanarayanan et al.] 
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Workload Heterogeneity 

• Reversed diurnal patterns 

• More/smaller Google jobs 

between midnight and 4AM 

• Job submission rate 

• 10-1000x more scheduling 

requests in Two Sigma, Google 
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1K jobs/hour ➞ 3.6 sec/job 

70K tasks/hour ➞ 51 msec/task 
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Task placement algorithms achieve subsecond latency today [Quincy, Firmament] 

but we should aim for msec latencies 
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Resource utilization: intensity 

• Only Google overcommits resources (others at 65-90%) 

• 43-64% of inter-arrivals <1sec long 

• 20% of inter-arrivals >100sec at LANL → Maintenance 

10 www.pdl.cmu.edu/ATLAS Systems should be tested with subsecond job interarrivals [Firmament, Quasar] 
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• Unsuccessful job rates at Google are significant 

• 1.4-6.8x higher than other traces 
  

 

 

• Highest efficiency: HPC clusters 

• 34-80% fewer CPU hours wasted* at LANL 

• Time wasted decreases with job runtime 
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Failed or 

Aborted 

Two Sigma LANL 
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Defining failure is crucial: software errors may be benign 
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A case for 

dataset pluralism 



Estimating job runtimes 

• Runtime estimates: improve cluster efficiency 
• Adjust to heterogeneous hardware → lower response times 

• Job packing → increased utilization 
 

• How do we come up with runtime estimates? 
• User-provided (Moab, Slurm @ LANL) → mostly inaccurate  

• Leverage job repeats (Rayon in Hadoop) → effectiveness depends on workload 
  

• JVuPredict/3Sigma: generate estimates automatically 

• Step 1: Use past runtimes of jobs with similar feature(s) 

• Step 2: Select predictor with highest accuracy 
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[EuroSys 2018] 
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JVuPredict: Accuracy across traces 

• Reliance on: user ID, number of cores, job name (if present) 

• Logical job names matter! 

• Need busy (100K+ jobs) or long (3+ months) traces for training 
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Under-

estimations: 

bad! 

Over-

estimations: 

eh… 

www.pdl.cmu.edu/ATLAS 



Summary 
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Characteristic Google Two Sigma Mustang OpenTrinity 

Short jobs      

Small jobs      

Diurnal patterns        

High job submission rate       

Resource over-commitment      

Sub-second interarrival periods         

User request variability        

High failure rates        

Costly failures (wasted CPU hours)       

Longer/larger jobs fail more often      

Private more similar to HPC, except: 
Failure rates, Job submission rate 


