
Redesigning Protection Storage for
Modern Workloads

Can’t we all get along?

Yamini Allu
Fred Douglis*
Mahesh Kamat
Ramya Prabhakar
Philip Shilane
Rahul Ugale

* Perspecta Labs

Data	Domain	File	System
• Purpose-built backup appliance

– Designed to identify duplicate regions of files
and replace with references

– Designed around backup workloads which is
typically data written and read sequentially.

• De-duplication
– Content-defined chunks, fingerprinted with

secure hash
– Generally claim 10-40x data reduction

• Avoiding disk bottlenecks in Data Domain[Zhu
08]
- SISL: Stream informed segment layout
- Locality preserved caching for segments

NFS, CIFS, VTL, DDBOOST

Partition data into chunks

Fingerprint chunks uniquely

Filter duplicates

Locally compress

Store to disk

De-duplication	storage	pipeline

Traditional	
Backup/Restore	
Workloads

Sequential	
Workload

Few	Large	
Files

Offline	Backup	
Image	Transfer	
for	Recovery

Backup	Data	
Format

Throughput	
Oriented

Weekly	Full,	
Daily	

Incremental

Modern	Backup/Restore	
Workloads

Non	
Sequential	
I/O	(NSIO)	

+	
Sequential

Many	
Small	Files

Native	Data	
Format

Throughput	
and	Latency		
Sensitive

Shift	in	Data	Protection	Workloads

Instant	Data	
Access	/	
Recovery

Incremental	
Forever/Virtua

l	full

Challenge	was	to	enhance	our	filesystem	stack	to	support	BOTH	traditional	and	modern	workloads	

HD
DFPI Containers

0 1…. n
Fingerprint	

Index

A
B
C

D
E
…

…
…
…

…
…
Z

ALfp 0
Maps	fingerprint	
of	data	chunks	to	

containers

BLfp 0
DLfp 1

…
…

File represented as
Merkle Tree

Afp Bfp Cfp

VM1

Xfp Yfp Zfp

Primary Storage/Backup
Applications

Access Protocols

Directory Manager
VM-

1

User2

/

User1
VM-

2
VM-

3

Traditional	Workloads:
• Large	files	amortize	Directory	Manager	lookup	cost	

• File	Metadata	(FMD)	can	be	pre-fetched	into	
memory	for	sequential	I/O

• Good	data	locality	–Only	one	FPI	lookup	for	1	MB

• Good	data	locality	– fewer	I/Os to	fetch	data	chunks	
number	of	data	can	be	Pre-fetched	to	memory

Modern	Workloads:

• Increased	Directory	Manager	lookups	for	native	
format	backups	(small	files)

• FMD	pre-fetch	into	memory	is	not	efficient	for	NSIO

• Increased	index	lookups	due	to	random	locality	
(once	every	I/O)

• Random	I/O	to	HDD	for	every	request

IO	Profile	for	Traditional	vs Modern

p1 p2

1	MB	Sequential	I/O

I/O	for	DM	
lookup	

I/O	for	FMD	
chunk	load

I/O	for	FPI

I/O	for	
Chunk	Access

0.001

2

1	+	1

Total	number	of	HDD	I/Os =	~8	I/Os per	1MB

Example

1

HD
DFPI Containers

0 1…. n
Fingerprint	

Index

A
B
C

D
E
…

…
…
…

…
…
Z

ALfp 0
Maps	fingerprint	
of	data	chunks	to	

containers

BLfp 0
DLfp 1

…
…

File represented as
Merkle Tree

Afp Bfp Cfp

VM1

Xfp Yfp Zfp

Primary Storage/Backup
Applications

Access Protocols

Directory Manager
VM-

1

User2

/

User1
VM-

2
VM-

3

p1 p2

I/O	for	data	
chunk	load

2

1	+	4

7

8KB	NSIO	

I/O	for	DM	
lookup	

I/O	for	FMD	
chunk	load

I/O	for	FPI

I/O	for	
Chunk	Access

0.001

2

1	+	1

Total	number	of	HDD	I/Os =	~8	I/Os per	8KB
~1024	per	1MB

Example

4

HD
DFPI Containers

0 1…. n
Fingerprint	

Index

A
B
C

D
E
…

…
…
…

…
…
Z

ALfp 0
Maps	fingerprint	
of	data	chunks	to	

containers

BLfp 0
DLfp 1

…
…

File represented as
Merkle Tree

Afp Bfp Cfp

VM1

Xfp Yfp Zfp

Primary Storage/Backup
Applications

Access Protocols

Directory Manager
VM-

1

User2

/

User1
VM-

2
VM-

3

p1 p2
I/O	for	data	
chunk	load

2

1	+	1

4

Fingerprint	Index	(FPI)	Cache
• Two	level	index	requires	2	HDD	I/Os per	chunk	

read	
• For	sequential	restores,	index	I/Os are	25%	of	

total	I/Os,	for	NSIO,	it	is	50%
• Index	metadata	is	1.5%	of	total	physical	space
• Caching	short	fingerprints	(4	bytes)	in	SSD		

reduces	SSD	space	requirement	to	0.4%,	with	a	
collision	rate	<	0.01%.

• Collisions	resolved	by	comparing	full	FP	on	disk
• FPI	cache	improves	sequential	restore	

performance	by	up	to	32%	on	I/O	bound	
configurations

FPI on
SSD ALfp 0

BLfp 0
CLfp 1
DLfp 1

…

FPI on HDD

0

500

1000

1500

2000

2500

3000

3500

96	Stream	Read

IO
PS

Disk	Only

Disk	+	SSD	for	Fingerprint	
cache

1	MB	Sequential	I/O

SSD	I/O	for	
DM	lookup	

Tr
an
sla

te
s	

HDD	I/O	for	
FMD	lookup	

SSD	I/O	for	
FPI	lookup	

HDD	I/O	for	
Data	Access

0.001

1

1	+	4

Total	number	of	HDD	I/Os = ~6	I/Os per	1MB

Addition	of	SSD	Cache	for	PBBA	(dense	drive	support)

1

HD
DFPI Containers

0 1…. n
Fingerprint	

Index

A
B
C

D
E
…

…
…
…

…
…
Z

ALfp 0
Maps	fingerprint	
of	data	chunks	to	

containers

BLfp 0
DLfp 1

…
…

File represented as
Merkle Tree

Afp Bfp Cfp

VM1

Xfp Yfp Zfp

Primary Storage/Backup
Applications

Access Protocols

Directory Manager
VM-

1

User2
/

User1
VM-

2
VM-

3

p1 p2

ASfp DM FMD A
B
C
D
E
…

……
…
……
Z

ASfp

BSfp

File	Metadata	(FMD)	Cache
• IOs	for	file	metadata	account	to	50%	of	total	I/Os for	

NSIO,	FMD	is	cached	only	on	NSIO	accesses
• File	metadata	is	variable	sized	(Average	16kb)

– Accounts	to	0.05%	of	logical	backup	size
• 10%	of	available	SSD	is	reserved	as	FMD	Cache	to	

account	for	high	metadata	churn	during	NSIO
• FMD	is	packed	into	1MB	Write	eviction	units	to	SSD	

cache
• It	is	a	write	through	cache,	populated	on	FMD	

updates	and	read	misses
• Eviction	is	LRU	based,	this	keeps	most	relevant	data	

in	cache Just	FMD	Cache	reduces	HDD	I/Os required	
for	8KB	NSIO	from8	I/Os to	4	I/Os

Data	Cache	on	SSD
• Cache	chunks	of	data	that	are	randomly	accessed	within	a	file
• Data	is	cached	on	a	read	miss	and	on	write
• Chunks	are	gathered	and	written	to	cache	as	1MB	Eviction	unit.	Eviction	

algorithm	is	LRU
• Larger	chunks	are	read-ahead	and	cached	until	the	cache	is	sufficiently	

warm
• 40%	of	SSD	cache	is	allocated	for	Data,	sufficient	to	instantly	access	up	to	

32	VMDKs	and	support	up to	50k	IOPs	on	our	larger	systems
• Data	is	not	compressed	on	SSD	to	reduce	CPU	utilization

• Data	Cache	reduces	NSIO	I/Os to	HDD	to	0

8KB	NSIO

SSD	I/O	for	
DM	lookup	

Tr
an
sla

te
s	

SSD	I/O	for	
FMD	lookup	

SSD	I/O	for	
Index	lookup	

SSD	I/O	for	
Data	Access

0.001

1

1

Total	number	of	HDD	I/Os = 0*	I/Os

Addition	of	SSD	Cache	for	NSIO

1

HD
DFPI Containers

0 1…. n
Fingerprint	

Index

A
B
C

D
E
…

…
…
…

…
…
Z

ALfp 0
Maps	fingerprint	
of	data	chunks	to	

containers

BLfp 0
DLfp 1

…
…

File represented as
Merkle Tree

Afp Bfp Cfp

VM1

Xfp Yfp Zfp

Primary Storage/Backup
Applications

Access Protocols

Directory Manager
VM-

1

User2
/

User
1 VM-

2
VM-

3

p1 p2

ASfp DM FMD A
B
C
D
E
…

……
…
……
Z

ASfp

BSfp

*Assumes	100%	cache	hit,	typical	read/write	
workload	sees	>95%	cache	hits

Cache	
warmup

File-system	Modifications	For	NSIO	Support

Access	pattern	detection
• Detect	Sequential,	NSIO	Monotonic	and	NSIO	

patterns
• Detect	multiple	access	patterns	across	different	

regions	of	a	file
• Based	on	a	sufficient	history	of	past	I/Os within	a	

region	of	a	file

Disable	simple	prefetch for	NSIO Enable	parallel	FMD	and	FPI	
lookups	for	NSIO

Fixed	size	chunking	for	image	
backups

Disable	container	metadata	read	
for	NSIO Disable	dedup for	small	NSIO Delayed	FMD	updates	for	NSIO

0MB-1MB
1MB-2MB
2MB-3MB

2GB-2.1GB
2.8GB-3GB
3.1GB-3.2GB

4.2GB-4.3GB
4.0GB-4.1GB
4.9GB-5.0GB

Span:	 							0GB	-2GB										2GB-4GB 4GB-6GB
label:								Sequential NSIO-Monotonic	 				NSIO

Access	history	per	region

QoS For	Mixed	Workloads
• Tunable	shares	for	non	sequential	workloads,	

default	is	20%	
• CPU	scheduling	based	on	least	loaded	CPU,	

previously	round	robin
• Higher	priority	for	random	reads	compared	to	

writes
• Edge	throttling	based	on	feedback	from	

different	modules	and	subsystem	health
• Increasing	QoS share	for	NSIO	workloads	

increased	NSIO	performance	in	our	mixed	
workload	experiments

PBBA	
Shares
80

NSIO	
Shares
20

Root

External
(50)

Internal
(50)

Backup
(25)

Restore
(30)

Repl
(25)

NSIO
(20)

Mixed	Workload	Performance	
NSIO	performance	was	
capped	at	10K	IOPs

QOS	throttle	for	NSIO	set	at	
10%,	Backup/Restore	
impacted	by	at-most	10%

*DDBOOST	– Bandwidth	Optimized	Open	
Storage	Protocol 0

2000

4000

6000

8000

10000

12000

14000

NFS	Write DDBOOST	
Write

DDBOOST	
Read

NFS	
Read/Write

DDBOOST	
Read/Write

Th
ro
ug

hp
ut
	in
	M
B/
s

Backup	Workload	

Backup	and	NSIO	workload	with	100%	read

Backup	and	NSIO	workload	with	70%	read

NSIO	Performance	Evaluation

0

10000

20000

30000

40000

50000

60000

No.	of	VMs 1 8 16 24 32

561 1932 3276 4312 5157

IO
PS

Without	Flash	Cache	with	software	
optimizations

NSIO	Performance	Evaluation

0

10000

20000

30000

40000

50000

60000

No.	of	VMs 1 8 16 24 32

0 561
1932

3276 4312 5157

0 1389

9896

17735

24018

29427

IO
PS

Without	Flash	Cache	with	software	optimizations

With	metadata	in	Flash	Cache	with	software	
optimizations

NSIO	Performance	Evaluation

0

10000

20000

30000

40000

50000

60000

No.	of	VMs 1 8 16 24 32

0 561
1932

3276 4312 5157

0
1389

9896

17735

24018

29427

9965

48159

56134 57658

50213

IO
PS

Without	Flash	Cache	with	software	
optimizations

With	metadata	in	Flash	Cache	with	software	
optimizations

With	data	&	metadata	in	Flash	Cache	with	
software	optimizations

NSIO	Performance	Evaluation

0

10000

20000

30000

40000

50000

60000

No.	of	VMs 1 8 16 24 32

0 561
1932

3276 4312 5157

0
1389

9896

17735

24018

29427

9965

48159

56134
57658

50213

1610

9488

15588
19258 18529

IO
PS

Without	Flash	Cache	with	software	
optimizations

With	metadata	in	Flash	Cache	with	software	
optimizations

With	data	&	metadata	in	Flash	Cache	with	
software	optimizations

With	data	&	metadata	in	Flash	Cache		without	
sofware	optimizations

Conclusion/Future	Work
Improvements	to	our	software	and	the	addition	of	SSD	caches	allow	Data	Domain		to	support	both	new	
and	traditional	workloads
• With	a	NSIO	workload,	with	SSDs	for	caching	metadata,	we	measured	a	5.7x		IOPS	improvement	

relative	to	a	system	without	SSDs
• Adding	data	cache	improved	performance	by	further	1.7x	
• Combining	SSD	caching	with	software	optimizations	throughout	our	system,	added	an	additional	

2.7x		IOPs	increase	for	NSIO	workloads.
• Performance	for	traditional	workloads	did	not	see	any	degradation	

Future	work:
Additional	SSDs	and	IOPs	based	on	use-case
QOS/priorities	within	random	workloads
Optimizations	to	improve	CPU	and	disk	utilization	as	we	support	higher	IOPs

THANK	YOU

