Redesigning Protection Storage for
Modern Workloads

DALEMC

Data Domain File System

Purpose-built backup appliance

— Designed to identify duplicate regions of files
and replace with references

— Designed around backup workloads which is
typically data written and read sequentially.

De-duplication

— Content-defined chunks, fingerprinted with
secure hash

— Generally claim 10-40x data reduction

Avoiding disk bottlenecks in Data Domain[Zhu
08]

- SISL: Stream informed segment layout
- Locality preserved caching for segments

De-duplication storage pipeline

NFS, CIFS, VTL, DDBOOST

Partition data into chunks

Fingerprint chunks uniquely

Filter duplicates

Locally compress

Store to disk

Shift in Data Protection Workloads

——
| --\ e

Traditional — Modern Backup/Restore
Backup/Restore Workloads

Challenge was to enhance our filesystem stack to support BOTH traditional and modern workloads

|O Profile for Traditional vs Modern

Directory Manager

File represented as

Primary Storage/Backup
Applications

v

Access Protocols

/
L o~

User1 ! User2

4 O]

VM1

@FI

Afo Bfo Cfo Xfo on Zfo

T

Merkle Tree
A0
Maps fingerprint Bpr 0
Lfp >
of data chunks to D e 1
containers Lp.
Fingerprint
Index

D

FPI | Containers
marIm-
e

Traditional Workloads:
e Large files amortize Directory Manager lookup cost

* File Metadata (FMD) can be pre-fetched into
memory for sequential I/O

e Gooddatalocality—Only one FPI lookup for 1 MB

* Good datalocality—fewer I/Os to fetch data chunks
number of data can be Pre-fetched to memory

Modern Workloads:

* Increased Directory Manager lookups for native
format backups (small files)

* FMD pre-fetch into memoryis not efficient for NSIO

* Increasedindexlookupsduetorandomlocality

(once every 1/0)

« Random /O to HDD for every request

Example

Primary Storage/Backup 1 MB Sequential /0
Applications
v
Access Protocols \/
| 0.001 /O for DM
Directory Manager lookup

|/O for FMD |/O for data
chunkload ~ chunkload 7

o |

|

File represented as
Merkle Tree

=

Maps fingerprint
of data chunks to
containers

1/O for
1+1
Chunk Access 1+4

Fingerprint

Index Total number of HDD I/Os = ~8 1/Os per 1MB

Example

Primary Storage/Backup 8KB NSIO
Applications
v
Access Protocols \/
| 0.001 |/O for DM
Directory Manager lookup

|/O for FMD |/O for data
chunkload ~ chunkload 4

o |

|

File represented as
Merkle Tree

D

Maps fingerprint
of data chunks to
containers

1+1 /O for 1+1

Chunk Access

Fingerprint

Index Total number of HDD I/Os = ~8 1/Os per 8KB

~1024 per 1MB

Fingerprint Index (FPIl) Cache

Two level index requires 2 HDD 1/Os per chunk FPl on HDD
read FPl on

For sequential restores, index I/Os are 25% of SSD A O
total I/Os, for NSIO, it is 50% Asiz O B7, 0
Index metadata is 1.5% of total physical space Bs_ff’_ ° C 1
Caching short fingerprints (4 bytes) in SSD Zsig D3 1
reduces SSD space requirement to 0.4%, with a

collision rate < 0.01%.

Collisionsresolved by comparing full FP on disk

3500

FPI cache improves sequential restore s000
performance by up to 32% on I/O bound 0 [= bisk Oy
configurations g 2000 7

M Disk + SSD for Fingerprint
cache

o
= 1500 +

1000 +

500

0 1
96 Stream Read

Addition of SSD Cache for PBBA (dense drive support)

Primary Storage/Backup 1 MB Sequential /O
Applications)

Access Protocols

A !

énslate

DM lookup
Directory Mapager 0.001 U
| ! 3
File representet as TIIFAie)s
Merkle TreéI z ; 1 FMD lookup
|]
SSD 1/0 for
| | 1 FPI lookup
Maps fingerprint i
N4
L+3] Hoo ot
Data Access

Fingerprint

Ind Total number of HDD I/Os = ~6 1/0Os per 1MB
ndex

File Metadata (FMD) Cache

|Os for file metadata account to 50% of total I/Os for R
super Size
NSIO, FMD is cached only on NSIO accesses | i l | Content Handle

File metadataisvariablesized (Average 16kb)

Super Segment Level 6

— Accountsto 0.05% of logical backup size ,
Top Lp Segment Lp segment span is

10% of available SSD is reserved as FMD Cache to 512*(span of child)
account for high metadata churn during NSIO _ _ L2 Segments (2 GB span)

FMD is packed into 1IMB Write eviction units to SSD ? _ L1 Segments (span 4 MB)
cache

LO Segments (data)
It is a write through cache, populatedon FMD — i —

updates and read misses

Eviction is LRU based, this keeps most relevant data

in cache Just FMD Cache reduces HDD 1/Os required

for 8KB NSIO from 8 1/Os to 4 1/Os

Data Cache on SSD

Cache chunks of data that are randomly accessed within a file
Data is cached on a read miss and on write

Chunks are gathered and written to cache as 1MB Eviction unit. Eviction
algorithm is LRU

Larger chunks are read-ahead and cached until the cache is sufficiently
warm

40% of SSD cache is allocated for Data, sufficient to instantly access up to
32 VMDKs and support up to 50k IOPs on our larger systems

Data is not compressed on SSD to reduce CPU utilization

Data Cache reduces NSIO I/Osto HDD to 0

Addition of SSD Cache for NSIO

Primary Storage/Backup
Applications

Access Protocols

e

Directory Ma?'nager

]
File representéd as
Merkle Treb

Maps fingerprint
of data chunks to
containers

Fingerprint
Index

i e

S

Cache
varmup

8KB NSIO

0.001

énslates

SSD 1/0 for
DM lookup

Il

SSD 1/0 for
FMD lookup

]

SSD 1/0 for
Index lookup

SSD 1/0 for
Data Access

Total number of HDD I/Os = 0* 1/Os

*Assumes 100% cache hit, typical read/write

workload sees >95% cache hits

File-system Modifications For NSIO Support

Access history per region
Access pattern detection

, , OMB-1MB 2GB-2.1GB 4.2GB-4.3GB
* Detect Sequential, NSIO Monotonic and NSIO 1MB-2MB 5 8GB-3GB 4.0GB-4.1GB
patterns 2MB-3MB 3.1GB-3.2GB 4.9GB-5.0GB
* Detect multiple access patterns across different 5.0 oeB-268 2GB-4GB 4GB-6GB
regions of a file label: Sequential NSIO-Monotonic NSIO
* Based on a sufficient history of past 1/Os within a
region of a file
. . Enable parallel FMD and FPI Fixed size chunking for image
D I I fetch for NSI
R SSich iOn S0 lookups for NSIO backups
Dk contf(;rrmeNrSrlrg)etadata gead Disable dedup for small NSIO Delayed FMD updates for NSIO

QoS For Mixed Workloads

Tunable shares for non sequential workloads,

default is 20% e
CPU scheduling based on least loaded CPU, 80 20
previously round robin

Higher priority for random reads compared to

writes @
Edge throttling based on feedback from [l

Increasing QoS share for NSIO workloads
increased NSIO performance in our mixed [I
workload experiments

different modules and subsystem health External
Y (Sf)

Backup /~ Restore Repl
(25) . (30) » (25)

Mixed Workload Performance

NSIO performance was
capped at 10K IOPs

QOS throttle for NSIO set at
10%, Backup/Restore
impacted by at-most 10%

*DDBOOST — Bandwidth Optimized Open
Storage Protocol

Throughputin MB/s

14000

12000
10000+
8000
6000 -

4000

M Backup Workload
M Backup and NSIO workload with 100% read
m Backup and NSIO workload with 70% read

2000 +

NFS Write DDBOOST DDBOOST NFS DDBOOST
Write Read Read/Write Read/Write

NSIO Performance Evaluation

60000

50000 -

40000 -~

I0PS

B Without Flash Cache with software
optimizations

30000

20000

10000

4312 5157

3276
P 561 1932
O e e » '

No. of VMs 1 8 16 24 32

I0PS

60000

50000

40000

30000

20000

10000

NSIO Performance Evaluation

B Without Flash Cache with software optimizations
29427

24018 ® With metadatain Flash Cache with software

optimizations

17735

No. of VMs 1 8

I0PS

60000

50000

40000

30000

20000

10000

NSIO Performance Evaluation

56134

57658

No. of VMs

1

16

24

B Without Flash Cache with software
optimizations

B With metadatain Flash Cache with software
optimizations

m With data & metadatain Flash Cache with
software optimizations

I0PS

NSIO Performance Evaluation

60000

57658

50000

B Without Flash Cache with software
optimizations

40000

B With metadatain Flash Cache with software
optimizations

30000

20000

10000

m With data & metadatain Flash Cache with
software optimizations

m With data & metadatain Flash Cache without
sofware optimizations

Conclusion/Future Work

Improvements to our software and the addition of SSD caches allow Data Domain to support both new
and traditional workloads

Witha NSIO workload, with SSDs for caching metadata, we measured a 5.7x I0PS improvement
relative to a system without SSDs

e Addingdatacache improved performance by further 1.7x

e CombiningSSD caching with software optimizations throughout our system, added an additional
2.7x |I0Ps increase for NSIO workloads.

 Performance for traditional workloads did not see any degradation

Future work:
Additional SSDs and IOPs based on use-case
QOS/priorities within random workloads
Optimizations toimprove CPU and disk utilization as we support higher IOPs

THANK YOU

