

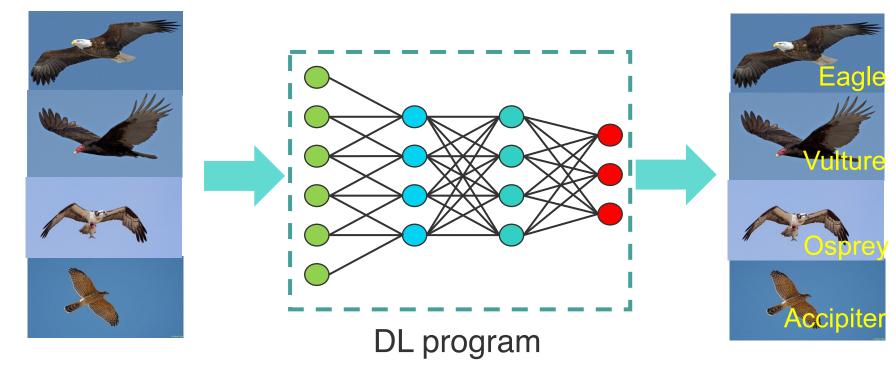
University

Poseidon: An Efficient Communication Architecture for Distributed Deep Learning on GPU Clusters

Hao Zhang

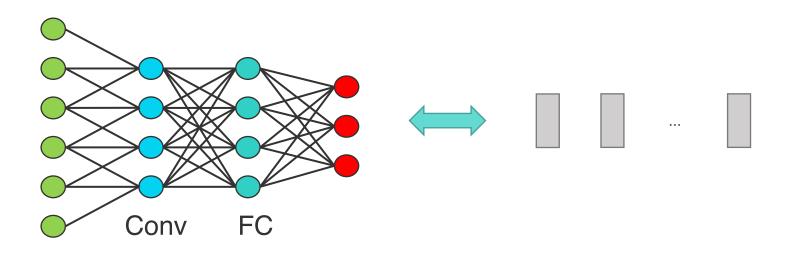
Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang, Zhiting Hu, Jianliang Wei, Pengtao Xie, Eric P. Xing Petuum Inc. and Carnegie Mellon University

Deep Learning

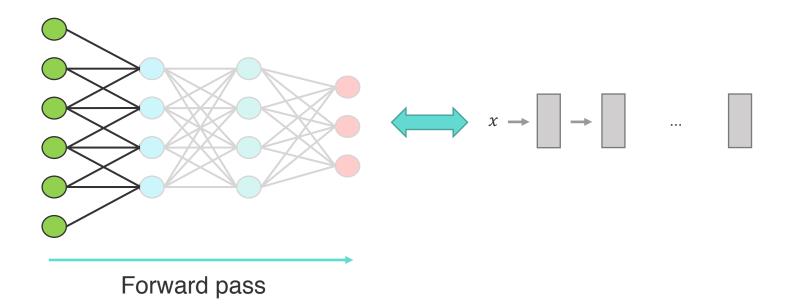


Training data: images w/ labels

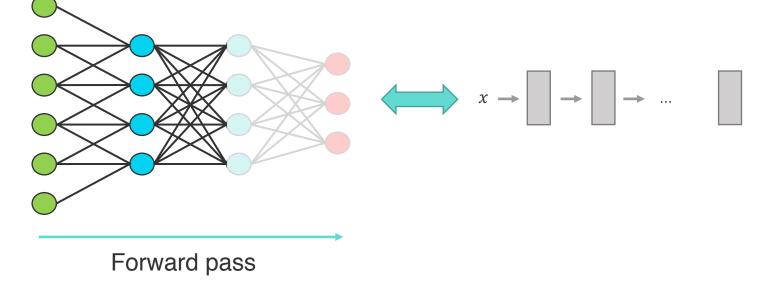
- Essentially, A neural network is composed of a few layers
- A layer in a NN is composed of a few (heavy) computational operations



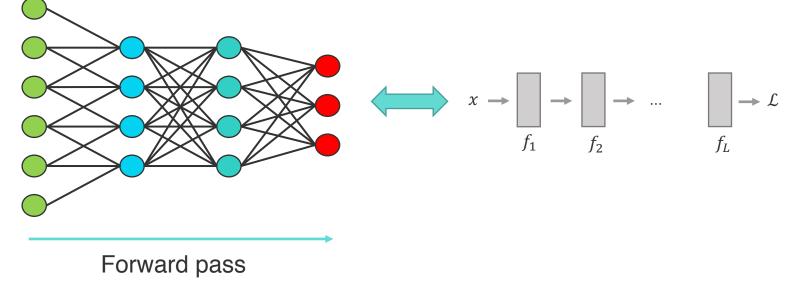
- Backpropagation (BP) is a principled algorithm to train NNs
- BP involves two passes through the network
 - Forward Pass: input x, Loss \mathcal{L}



- Backpropagation (BP) is a principled algorithm to train NNs
- BP involves two passes through the network
 - Forward Pass: input x, Loss \mathcal{L}
 - Forward through the NN, one layer at a time
 - We use l (l = 1, ..., L) to denote the lth layer in a neural network

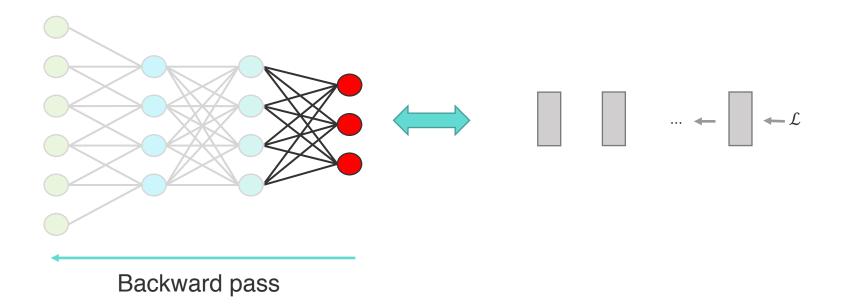


- Backpropagation (BP) is a principled algorithm to train NNs
- BP involves two passes through the network
 - Forward pass: input *x*
 - Forward through the NN, one layer at a time, until we get the loss $\mathcal L$
 - Denote the forward pass through layer l as an operation f_l



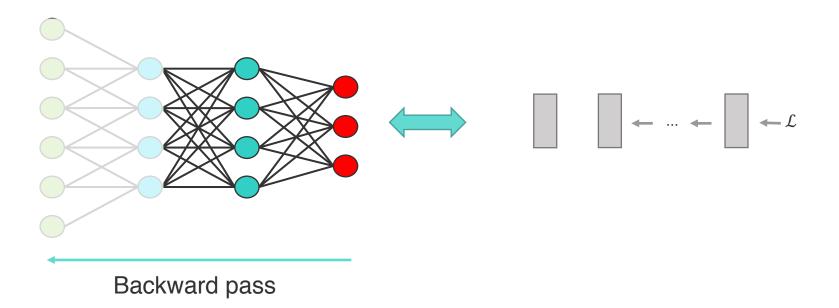
Backward through a Neural Network

- Backpropagation (BP) is a principled algorithm to train NNs
- BP involves two passes through the network
 - Backward pass: input is the loss



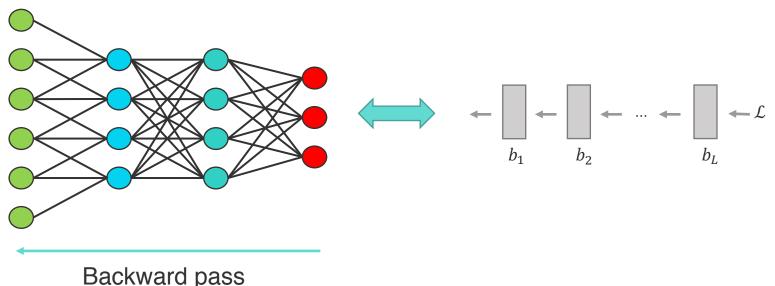
Backward through a Neural Network

- Backpropagation (BP) is a principled algorithm to train NNs
- BP involves two passes through the network
 - Backward pass derives the gradients of the parameters of a layer when backward through it



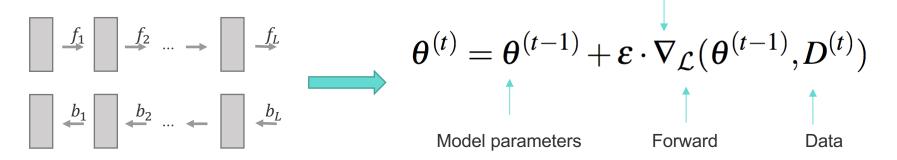
Backward through a Neural Network

- Backpropagation (BP) is a principled algorithm to train NNs
- BP involves two passes through the network
 - Backward derives the gradients of the parameters of a layer when backward through it
 - Denote the backward pass through layer l as an operation b_l

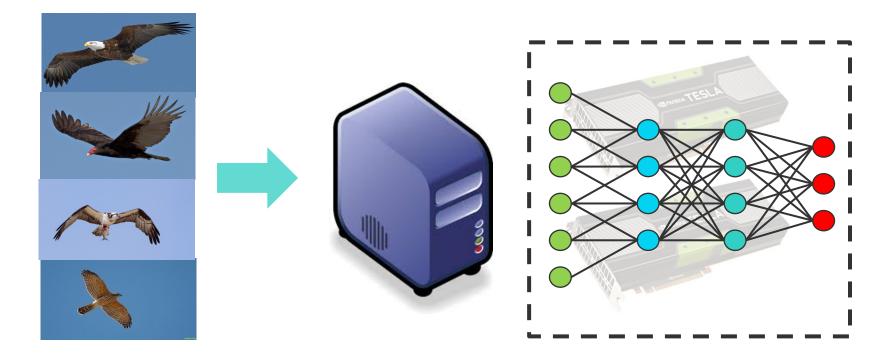


Training a Neural Network

- Stochastic Gradient Descent (SGD) via Backpropagation
 - Forward: sequentially executing f_1, f_2, \dots, f_L
 - Backward: sequentially executing b_L, b_{L-1}, \dots, b_1
 - Update: apply the gradients to update the model parameters
 - Repeat
- Formally, an iterative-convergence formulation Backward

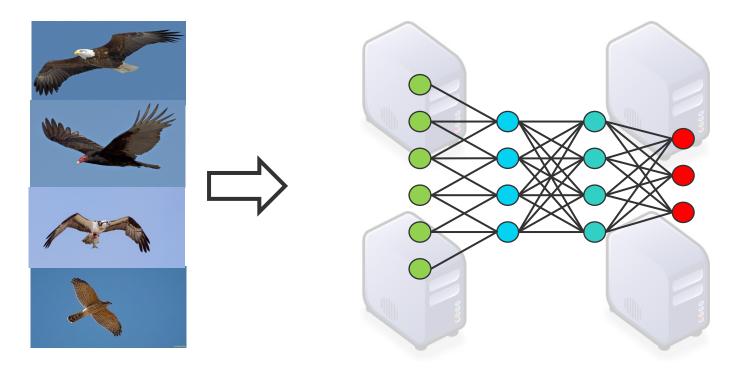


Deep Learning on GPUs



Training data: images w/ labels Computational Worker w/ GPUs

Deep Learning on Distributed GPUs

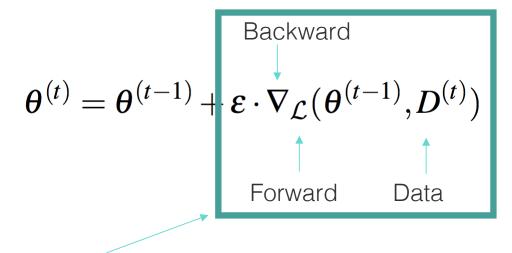


Large scale Training data

A Cluster of Workers with GPUs

Distributed Deep Learning

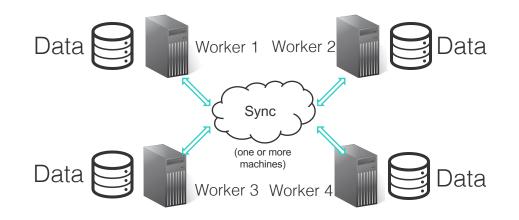
- Distributed DL: parallelize DL training using multiple machines.
- i.e. we want to accelerate the heaviest workload (in the box) to multiple machines



Forward and backward are the main computation (99%) workload of deep learning programs.

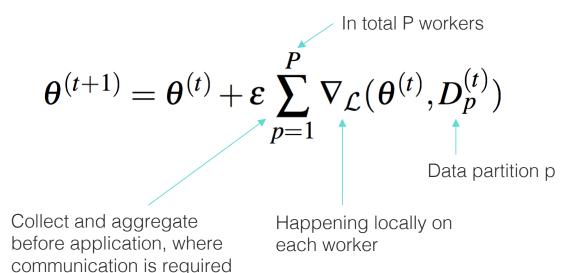
Data Parallelism with SGD

- We usually seek a parallelization strategy called data parallelism, based on SGD
 - We partition data into different parts
 - Let different machines compute the gradient updates on different data partitions
 - Then aggregate/sync.



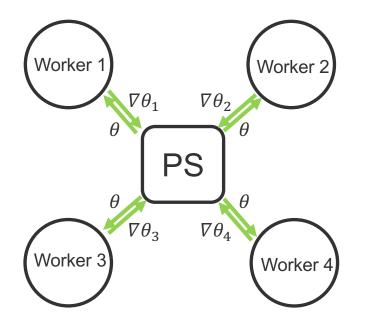
Data Parallel SGD

• Data-parallelism requires every worker to have read and write access to the shared model parameters θ , which causes communication among workers;



Parameter Server

- Parameter server is a shared key-value storage that provides a shared access for the global model parameters θ for ML
- The server is virtual physically, it could be distributed (instead of centralized), i.e., a distributed key-value storage



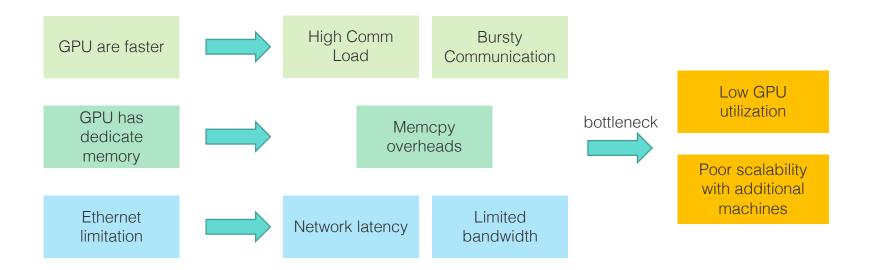
Deal el al., 2012, Ho et al., 2013 Li et al., 2014 Cui et al., 2014, Cui et al., 2015 Wei et al., 2015 Zhang et al., 2015

Parameter Server for DL on GPUs

- Deep learning can be trivially data-parallelized over distributed workers using PS by 3 steps:
 - Each worker computes the gradients (∇ L) on their own data partition (D_p) and send them to remote servers;
 - servers receive the updates and apply (+) them on globally shared parameters;
 - Each worker pulls back the updated parameters (θ_t)
- However, directly applying PS for GPU-based distributed deep learning will underperform (as will show later).

Parameter Server on GPU Clusters

- What prevents the trivial realization of distributed DL on GPUs?
- Communication challenges
 - GPUs are at least one order of magnitude faster than CPUs
 - Ethernet has very limited bandwidth



PS on GPU Clusters: an Example

• Train AlexNet, gradient generation rate 240M floats/(s*GPU)

• 61.5M float parameters, 0.25s/iter on Geforce Titan X (batchsize = 256)

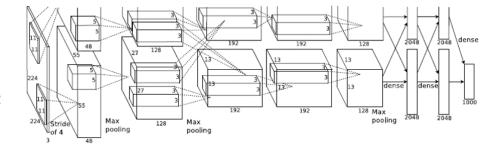
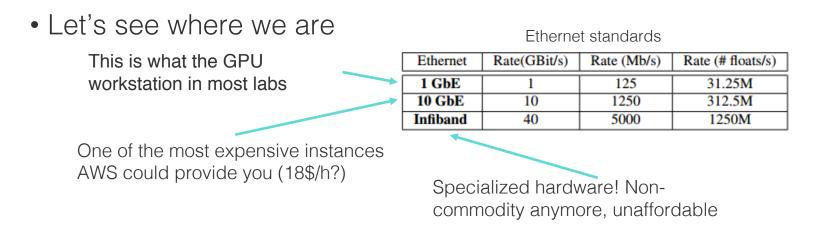


Figure from Krizhevsky et al. 2012

- Parallelize it over 8 machines each w/ one GPU using PS.
- To ensure the computation not blocked on GPU (i.e. linear speed-up with additional nodes)
 - Assume: every node holds 1/8 parameters as a PS shard
 - A node needs to transfer 240M * 7/8 * 4 = 840M floats/s = 26Gbps

PS on GPU Clusters



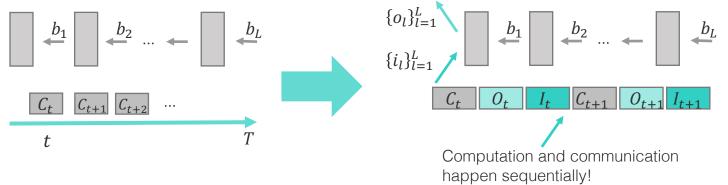
- Unfortunately, the problem will be more severe than described above
 - We only use 8 nodes (which is small). How about 32,128, or even 256?
 - We haven't considered other issues, e.g.,
 - Memory copy between DRAM and GPU will have a non-trivial cost [Cui et al. 2015]
 - The Ethernet might be shared with other tasks, i.e. available bandwidth is even less.
 - Burst communication happens very often on GPUs (which will explain later).

Address the Communication Bottleneck

- A simple fact: communication time may be reduced, but cannot be eliminated (of course)
- Poseidon's motivation: possible ideas to address the communication bottleneck
 - Wait-free backpropagation (WFBP): hide the communication time by overlapping it with the computation time
 - Hybrid communication (HybComm): (lossless) reduce the size of messages needed to be communications

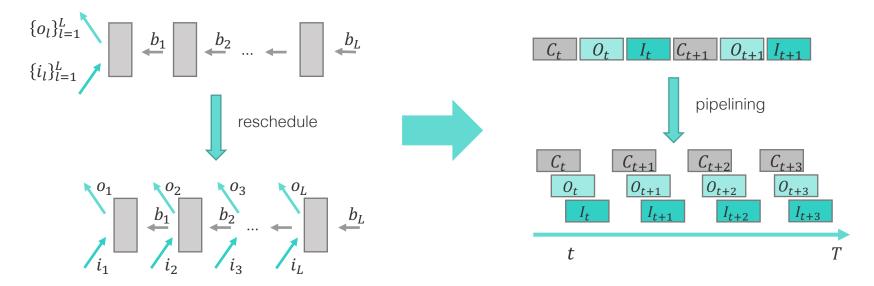
Overlap Computation and Communication

- Recall on a single node the computational flow of BP
 - b_l : backpropagation computation through layer l
 - C_t : forward and backward computation at iteration t
- On multiple nodes, when communication is involved, we introduce two communication operations
 - o_l : send out the gradients in layer l to the remote
 - i_l : pull back the globally shared parameters of layer l from the remote
 - O_t : the set $\{o_l\}_{l=1}^L$ at iteration t
 - I_t : the set $\{i_l\}_{l=1}^L$ at iteration t



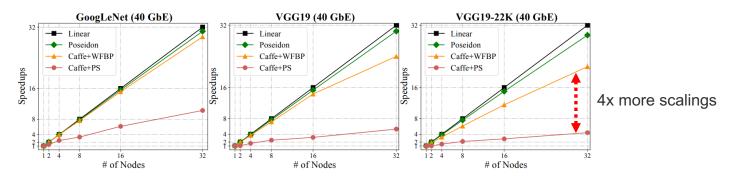
WFBP: Wait-free backpropagation

- Idea: overlap computation and communication by utilizing concurrency
 - Pipelining the updates and computation operations
 - Communication overhead is hidden under computation
 - Results: more computations in unit time

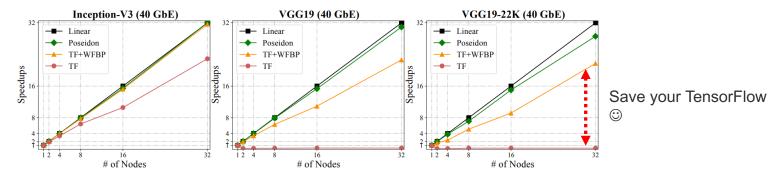


WFBP: Wait-free Backpropagation

- How does WFBP perform?
 - Using Caffe as an engine:

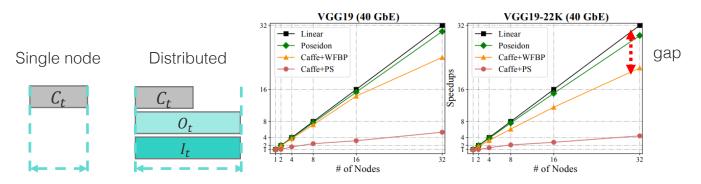


• Using TensorFlow as engine



WFBP: Wait-free Backpropagation

- Does overlapping communication and computation solve all the problems?
 - No, when communication time is longer than computation (see the figure below).
 - Empirically, if communication and computation are perfectly overlapped, how many scalability we can achieve?

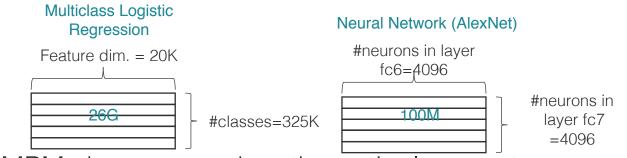


Outline

- A simple fact: communication time may be reduced, but cannot be eliminated (of course)
- Poseidon's motivation: possible ideas to address the communication bottleneck
 - Wait-free backpropagation (WFBP): hide the communication time by overlapping it with the computation time
 - Hybrid communication (HybComm): Reduce the size of messages needed to be communicated

Sufficient Factor Broadcasting (SFB)

Matrix-parametrized models (MPMs)



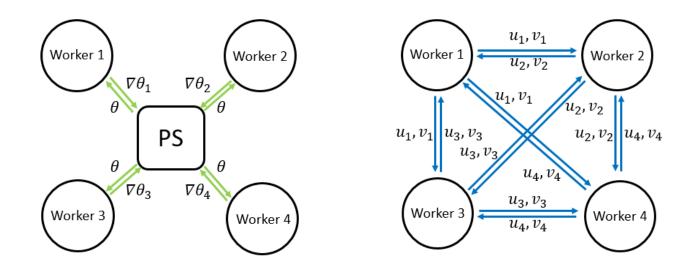
- Many MPMs have a good mathematical property
 - Full parameter matrix update ΔW can be computed as outer product of two vectors uv^T (called sufficient factors)

$$\min_{W} \frac{1}{N} \sum_{i=1}^{N} f_i(Wa_i; b_i) + h(W)$$
$$\Delta W = uv^{\mathrm{T}} \quad u = \frac{\partial f(Wa_i, b_i)}{\partial (Wa_i)} \quad v = a_i$$

$$\min_{Z} \frac{1}{N} \sum_{i=1}^{N} f_i^*(-z_i) + h^*(\frac{1}{N} Z A^{\mathrm{T}})$$
$$\Delta W = u v^{\mathrm{T}} \quad u = \Delta z_i \quad v = a_i$$

Sufficient Factor Broadcasting (SFB)

• Idea: Send lightweight SF updates (u,v), instead of expensive full-matrix ΔW updates!



Hybrid Communication: CNN

• Example: AlexNet CNN model

- FC6 = 4096 * 30000 matrix (120M parameters)
- Use SFB to communicate
 - Decouple into two 4096 vectors: 0, v
 - Transmit two vectors
 - Reconstruct the gradient matrix

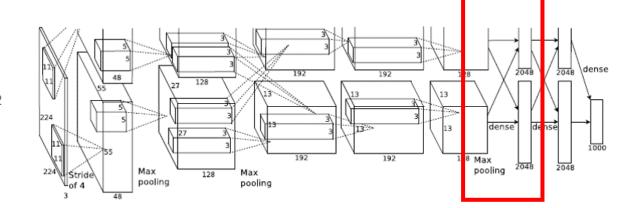


Figure from Krizhevsky et al. 2012

Hybrid Communication: CNN

- Example: AlexNet CNN model
 - Convolutional layers = e.g. 11 * 11 matrix (121 parameters)
 - Use full-matrix updates to communicate
 - SF decomposition does not save much

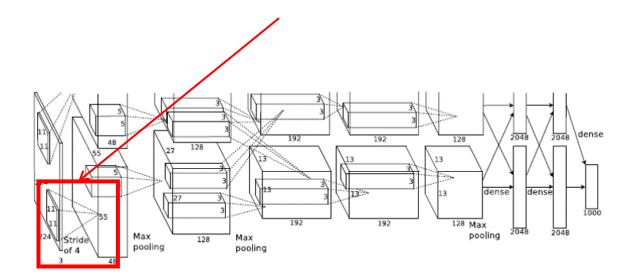
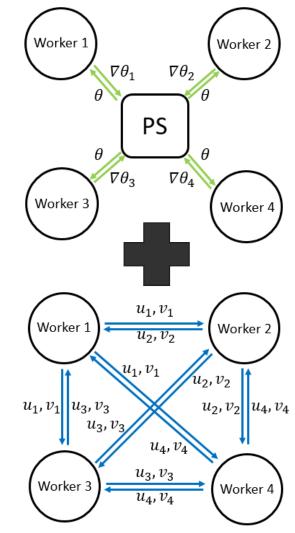


Figure from Krizhevsky et al. 2012

- Idea
 - Sync FC layers using SFB
 - Sync Conv layer using PS
- Effectiveness
 - It directly reduces the size of messages in many situations
- Is SFB always optimal?
 - No, its communication load increases quadratically
 - The right strategy: choose PS whenever it results in less communication



- How to choose? Where is the threshold?
- Determine the best strategy depending on
 - Layer type: CONV or FC?
 - Layer size
 - Batch size
 - # of Cluster nodes

Method	Server	Worker	Server & Worker
PS	$2P_1MN/P_2$	2 <i>MN</i>	$2MN(P_1 + P_2 - 2)/P_2$
SFB	N/A	$\frac{2K(P_1-1)(M+N)}{2K(P_1-1)(M+N)}$	N/A
Adam	$P_1MN +$	K(M+N) +	$(P_1 - 1)(MN +$
(max)	$P_1K(M+N)$	MN	KM + KN)

Table 1: Estimated communication cost of PS, SFB and Adam for synchrnizing the parameters of a $M \times N$ FC layer on a cluster with P_1 workers and P_2 servers, when batchsize is K.

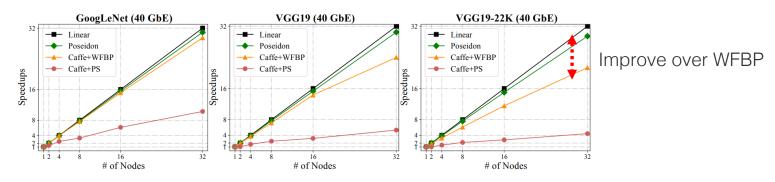
• Hybrid communication algorithm

Determine the best strategy depending on

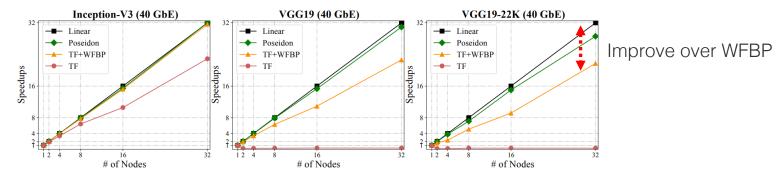
- Layer type: CONV or FC?
- Layer size: M, N
- Batch size: K
- # of Cluster nodes: P₁, P₂

Algorithm 1 Get the best comm method of layer *l* 1: **function** BESTSCHEME(*l*) 2: *layer_property* = Query(*l*.name) $P_1, P_2, K =$ Query('n_worker', 'n_server', 'batchsize') 3: **if** *layer_property*.type == 'FC' **then** 4: $M = layer_property.width$ 5: $N = layer_property_height$ 6: if $2K(P_1-1)(M+N) \le \frac{2MN(P_1+P_2-2)}{P_2}$ then 7: return 'SFB' 8: end if 9: end if 10: return 'PS' 11: 12: end function

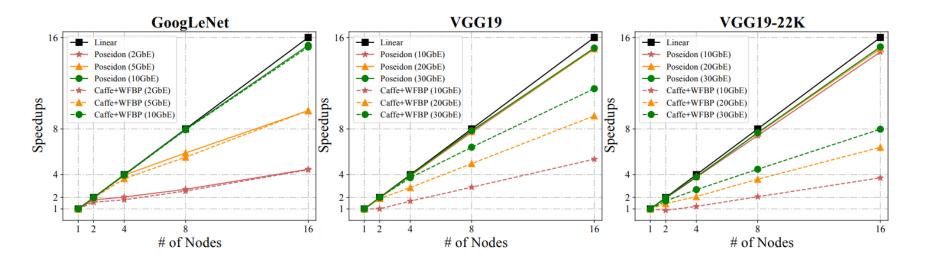
- How does hybrid communication perform?
 - Using Caffe as an engine:



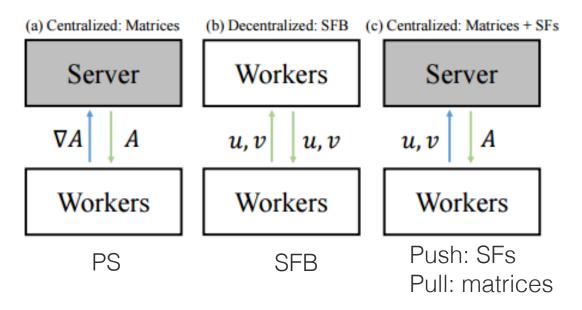
• Using TensorFlow as engine



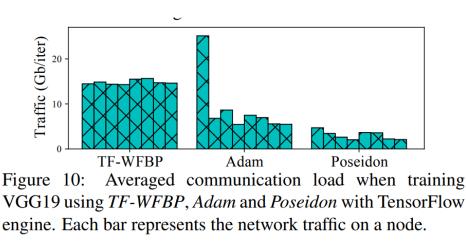
- More importantly, linear scalability on throughput, even with limited bandwidth!
 - Make distributed deep learning affordable



- Discussion: Utilizing SFs is not a new idea
- Microsoft Adam uses the third strategy (c)

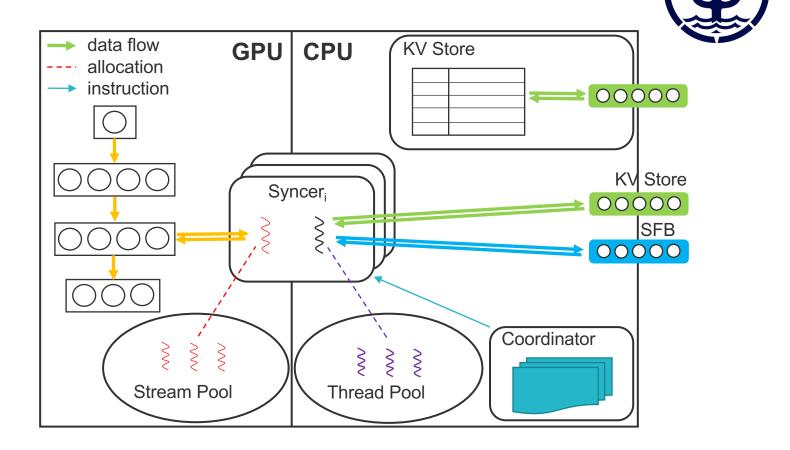


- Problem: Adam's strategy leads to communication bottleneck
 - Pushing SFs to server is fine
 - Pulling full matrices back will create a bottleneck on the server node.



- Hybrid communication yields communication load balancing
 - Which is important to address the problem of burst communication.

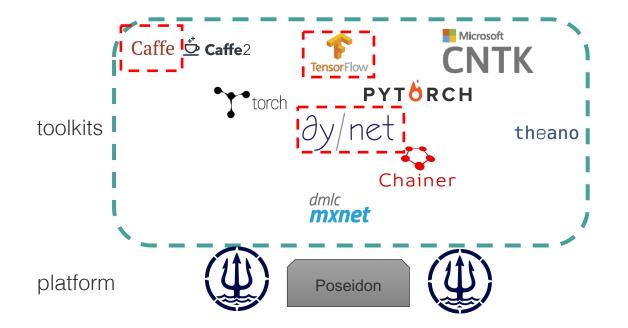
Poseidon System Architecture



Poseidon as a Platform

• Poseidon: An efficient communication architecture

- Efficient distributed platform for amplifying any DL toolkits
- Preserve the programming interface for any high-level toolkits
 - i.e. distribute the DL program without changing any line of code



Summary: Take-home Messages

- Communication is a bottleneck in distributed DL on GPUs
 - GPUs are too fast
 - Ethernet has limited bandwidth and latency
 - Burst communication
- Poseidon is designed to alleviate this problem
 - WFBP: pipelining the synchronization and computation
 - Hybrid Communication: adaptive protocol to reduce the size of messages
- Results:
 - Linear throughput scalability across different dataset, model sizes, and hardware configuration (Ethernet bandwidth)
 - A Platform to amplify existing DL toolboxes

PETUUM Carnegie Mellon University

Thank You! Q&A

Backup Slides

01010001 Ω

WFBP: Distributed Wait-free backpropagation

- Observation: Why DWBP is very effective in DL
 - More statistics of modern CNNs

Parameters		CONV Layers (#/%)		FC Layers (#/%)	
AlexNet		2.3M / 3.75		59M / 96.25	
VGG-16		7.15M / 5.58		121.1M / 94.42	
FLOPs	C	CONV Layers (#/%))	FC Layers (#/%)	
AlexNet		1,352M/92.0		117M / 8.0	
VGG-16		10,937M / 91.3		121.1M / 8.7	

Params/FLOP distribution of modern CNNs

- 90% computation happens at bottom layers
- 90% communication happens at top layers
- WFBP overlaps 90% communication with 90% computation

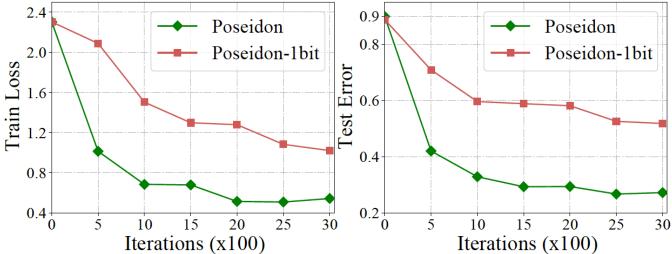
Poseidon API

- KV Store, Syncer and Coordinator
- Standard APIs similar to parameter server
 - Push/Pull API for parameter synchronization
 - BestScheme method to return the best communication method

Method	Owner	Arguments	Description
BestScheme	Coordinator	A layer name or index	Get the best communication scheme of a layer
Query	Coordinator	A list of property names	Query information from coordinators' information book
Send	Syncer	None	Send out the parameter updates of the corresponding layer
Receive	Syncer	None	Receive parameter updates from either parameter server or peer workers
Move	Syncer	A GPU stream and an indicator	Move contents between GPU and CPU, do transformations and
		of move direction	application of updates if needed
Send	KV store	updated parameters	Send out the updated parameters
Receive	KV store	parameter buffer of KV stores	Receive gradient updates from workers

Comparison: 1-bit Quantization

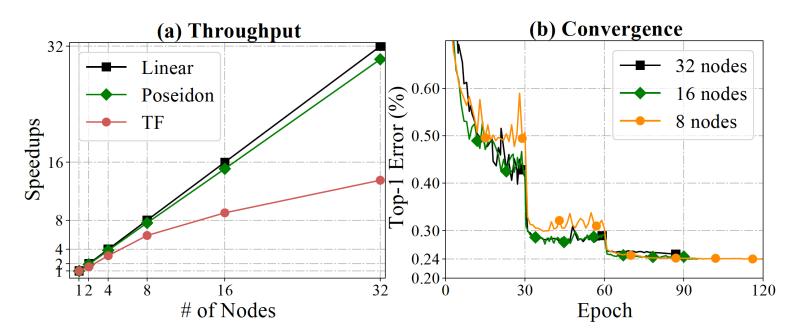
- Micrsoft CNTK has 1-bit quantization technique to lossy parameter compression
 - While our experiments reveal that it might not work well in terms of statistical convergence in some domains
- Good news! Some recent works report exciting results on this line



Results: Statistical Convergence

• Poseidon adopts fully synchronous consistency model

- Distributed training = larger batch size
- Turning parameters in distributed settings is an open problem
- Linear convergence speedup on ResNet-152 [He et al. 2015]



Discussion: Synchronous vs. Asynchronous

- Empirical results: synchronous updates yield the faster periteration convergence in training modern deep nearal networks
 - GeePS, Cui et al., Eurosys'16
 - TensorFlow, Abadi et al., OSDI'16
 - Poseidon, Zhang et al., ATC'16, '17
- Stragglers
 - Yes, stragglers exist. However, we'd still prefer synchronous training because the cost is less than having asynchrony
- Does/will asynchronous training work?
 - Yes, but it is domain-specific, e.g. in some speech/NLP application, there are some reported results that asynchrounous training yields same-quality results.
 - There are more and more ongoing research towards this direction in both machine learning and systems.