
Poseidon: An Efficient Communication
Architecture for Distributed Deep

Learning on GPU Clusters
Hao Zhang

Zeyu Zheng, Shizhen Xu, Wei Dai, Qirong Ho, Xiaodan Liang,
Zhiting Hu, Jianliang Wei, Pengtao Xie, Eric P. Xing

Petuum Inc. and Carnegie Mellon University

Deep Learning

July 17 Hao Zhang 1

Training data:
images w/ labels

Eagle

Vulture

Accipiter

Osprey

DL program

Forward through a Neural Network

• Essentially, A neural network is composed of a few layers
• A layer in a NN is composed of a few (heavy) computational

operations

July 17 Hao Zhang 2

⋯

Conv FC

Forward through a Neural Network

• Backpropagation (BP) is a principled algorithm to train NNs
• BP involves two passes through the network

• Forward Pass: input 𝑥, Loss ℒ

July 17 Hao Zhang 3

⋯

Forward pass

𝑥

Forward through a Neural Network

• Backpropagation (BP) is a principled algorithm to train NNs
• BP involves two passes through the network

• Forward Pass: input 𝑥, Loss ℒ
• Forward through the NN, one layer at a time
• We use 𝑙	(𝑙 = 1, … , 𝐿) to denote the 𝑙th layer in a neural network

July 17 Hao Zhang 4

⋯

Forward pass

𝑥

Forward through a Neural Network

• Backpropagation (BP) is a principled algorithm to train NNs
• BP involves two passes through the network

• Forward pass: input 𝑥
• Forward through the NN, one layer at a time, until we get the loss ℒ
• Denote the forward pass through layer 𝑙 as an operation 𝑓.

July 17 Hao Zhang 5

⋯

Forward pass

𝑥 ℒ

𝑓/ 𝑓0𝑓1

Backward through a Neural Network

• Backpropagation (BP) is a principled algorithm to train NNs
• BP involves two passes through the network

• Backward pass: input is the loss

July 17 Hao Zhang 6

Backward pass

⋯ ℒ

Backward through a Neural Network

• Backpropagation (BP) is a principled algorithm to train NNs
• BP involves two passes through the network

• Backward pass derives the gradients of the parameters of a layer
when backward through it

July 17 Hao Zhang 7

Backward pass

⋯ ℒ

Backward through a Neural Network

• Backpropagation (BP) is a principled algorithm to train NNs
• BP involves two passes through the network

• Backward derives the gradients of the parameters of a layer when
backward through it

• Denote the backward pass through layer 𝑙 as an operation 𝑏.

July 17 Hao Zhang 8

Backward pass

⋯ ℒ

𝑏0𝑏/ 𝑏1

• Stochastic Gradient Descent (SGD) via Backpropagation
• Forward: sequentially executing 𝑓/, 𝑓1, … , 𝑓0
• Backward: sequentially executing 𝑏0, 𝑏03/, … , 𝑏/
• Update: apply the gradients to update the model parameters
• Repeat

• Formally, an iterative-convergence formulation

⋯
𝑓0𝑓1𝑓/

⋯
𝑏0𝑏1𝑏/

Training a Neural Network

Hao Zhang 9July 17

Model parameters Forward

Backward

Data

Deep Learning on GPUs

July 17 Hao Zhang 10

Training data:
images w/ labels

Computational Worker w/ GPUs

Deep Learning on Distributed GPUs

July 17 Hao Zhang 11

Large scale
Training data

A Cluster of Workers with GPUs

Distributed Deep Learning

• Distributed DL: parallelize DL training using multiple machines.
• i.e. we want to accelerate the heaviest workload (in the box) to

multiple machines

Forward

Backward

Data

Forward and backward are the main computation
(99%) workload of deep learning programs.

Hao Zhang 12July 17

Data Parallelism with SGD

• We usually seek a parallelization strategy called data
parallelism, based on SGD

• We partition data into different parts
• Let different machines compute the gradient updates on different data

partitions
• Then aggregate/sync.

Sync

(one or more
machines)

Worker 1 Worker 2

Worker 3 Worker 4

Data

Data

Data

Data

Hao Zhang 13July 17

Data Parallel SGD

• Data-parallelism requires every worker to have read and write
access to the shared model parameters 𝜃, which causes
communication among workers;

Data partition p

In total P workers

Happening locally on
each worker

Collect and aggregate
before application, where
communication is required

Hao Zhang 14July 17

Parameter Server

• Parameter server is a shared key-value storage that provides a
shared access for the global model parameters 𝜃 for ML

• The server is virtual – physically, it could be distributed
(instead of centralized), i.e., a distributed key-value storage

Worker 1 Worker 2

Worker 3 Worker 4

PS

𝛻𝜃/ 𝛻𝜃1

𝛻𝜃6 𝛻𝜃7

𝜃 𝜃

𝜃 𝜃

Hao Zhang 15July 17

Deal el al., 2012, Ho et al., 2013
Li et al., 2014
Cui et al., 2014, Cui et al., 2015
Wei et al., 2015
Zhang et al., 2015

Parameter Server for DL on GPUs

• Deep learning can be trivially data-parallelized over distributed
workers using PS by 3 steps:

• Each worker computes the gradients (𝛻L) on their own data partition
(𝐷:) and send them to remote servers;

• servers receive the updates and apply (+) them on globally shared
parameters;

• Each worker pulls back the updated parameters (𝜃;)
• However, directly applying PS for GPU-based distributed deep

learning will underperform (as will show later).

Hao Zhang 16July 17

Parameter Server on GPU Clusters

• What prevents the trivial realization of distributed DL on GPUs?
• Communication challenges

• GPUs are at least one order of magnitude faster than CPUs
• Ethernet has very limited bandwidth

Hao Zhang 17July 17

GPU are faster High Comm
Load

Memcpy
overheads

bottleneck

Low GPU
utilization

Poor scalability
with additional

machines

Bursty
Communication

Network latency

GPU has
dedicate
memory

Ethernet
limitation

Limited
bandwidth

• Train AlexNet, gradient generation rate 240M floats/(s*GPU)
• 61.5M float parameters, 0.25s/iter on Geforce Titan X (batchsize = 256)

• Parallelize it over 8 machines each w/ one GPU using PS.
• To ensure the computation not blocked on GPU (i.e. linear

speed-up with additional nodes)
• Assume: every node holds 1/8 parameters as a PS shard
• A node needs to transfer 240M * 7/8 * 4 = 840M floats/s = 26Gbps

PS on GPU Clusters: an Example

Hao Zhang 18July 17

Figure from
Krizhevsky et al. 2012

PS on GPU Clusters

• Let’s see where we are

• Unfortunately, the problem will be more severe than described above
• We only use 8 nodes (which is small). How about 32,128, or even 256?
• We haven’t considered other issues, e.g.,

• Memory copy between DRAM and GPU will have a non-trivial cost [Cui et al. 2015]
• The Ethernet might be shared with other tasks, i.e. available bandwidth is even less.
• Burst communication happens very often on GPUs (which will explain later).

Ethernet standards
This is what the GPU
workstation in most labs

One of the most expensive instances
AWS could provide you (18$/h?)

Specialized hardware! Non-
commodity anymore, unaffordable

Hao Zhang 19July 17

Address the Communication Bottleneck

• A simple fact: communication time may be reduced, but
cannot be eliminated (of course)

• Poseidon’s motivation: possible ideas to address the
communication bottleneck

• Wait-free backpropagation (WFBP): hide the communication time by
overlapping it with the computation time

• Hybrid communication (HybComm): (lossless) reduce the size of
messages needed to be communications

Hao Zhang 20July 17

Overlap Computation and Communication

• Recall on a single node the computational flow of BP
• 𝑏.: backpropagation computation through layer 𝑙
• 𝐶;: forward and backward computation at iteration t

• On multiple nodes, when communication is involved, we
introduce two communication operations

• 𝑜.: send out the gradients in layer 𝑙 to the remote
• 𝑖.: pull back the globally shared parameters of layer 𝑙 from the remote
• 𝑂;: the set 𝑜. .@/0 at iteration t
• 𝐼;: the set 𝑖. .@/0 at iteration t

	𝐶; 		𝐶;B/

⋯
𝑏0𝑏1𝑏/

		𝐶;B1 ⋯

𝑇𝑡

Hao Zhang 21July 17

	𝐶; 	𝑂; 𝐼; 𝐶;B/ 	𝐼;B/

⋯

𝑂;B/

𝑏0𝑏1𝑏/
𝑜. .@/0

𝑖. .@/0

Computation and communication
happen sequentially!

WFBP: Wait-free backpropagation

• Idea: overlap computation and communication by utilizing
concurrency

• Pipelining the updates and computation operations
• Communication overhead is hidden under computation
• Results: more computations in unit time

⋯
𝑏0𝑏1𝑏/

𝑜0𝑜6𝑜1𝑜/

𝑖0𝑖6𝑖1𝑖/

⋯
𝑏0𝑏1𝑏/

𝑜. .@/0

𝑖. .@/0

reschedule

Hao Zhang 22July 17

	𝐶; 	𝑂; 𝐼; 𝐶;B/ 	𝐼;B/

𝐶;
𝑂;
𝐼;

𝑂;B/

𝐶;B/
𝑂;B/
𝐼;B/

𝐶;B1
𝑂;B1
𝐼;B1

𝐶;B6
𝑂;B6
𝐼;B6

𝑇𝑡

pipelining

• How does WFBP perform?
• Using Caffe as an engine:

• Using TensorFlow as engine

WFBP: Wait-free Backpropagation

4x more scalings

Hao Zhang 23July 17

Save your TensorFlow
J

WFBP: Wait-free Backpropagation

• Does overlapping communication and computation solve all
the problems?

• No, when communication time is longer than computation (see the
figure below).

• Empirically, if communication and computation are perfectly
overlapped, how many scalability we can achieve?

𝐶;
𝑂;
𝐼;

𝐶;

Single node Distributed gap

Hao Zhang 24July 17

Outline

• A simple fact: communication time may be reduced, but
cannot be eliminated (of course)

• Poseidon’s motivation: possible ideas to address the
communication bottleneck

• Wait-free backpropagation (WFBP): hide the communication time by
overlapping it with the computation time

• Hybrid communication (HybComm): Reduce the size of messages
needed to be communicated

Hao Zhang 25July 17

Sufficient Factor Broadcasting (SFB)

• Matrix-parametrized models (MPMs)

• Many MPMs have a good mathematical property
• Full parameter matrix update ΔW can be computed as outer product

of two vectors 𝑢𝑣G (called sufficient factors)

#classes=325K

Feature dim. = 20K

26G

Multiclass Logistic
Regression Neural Network (AlexNet)

#neurons in layer
fc6=4096

#neurons in
layer fc7
=4096

100M

Hao Zhang 26July 17

)();(1min
1

WhbWaf
N

N

i
iiiW
+å

=

T (,)
()

i i
i

i

f Wa bW uv u v a
Wa

¶
D = = =

¶

* * T

1

1 1min () ()
N

i iZ i
f z h ZA

N N=

- +å

T
i iW uv u z v aD = = D =

Sufficient Factor Broadcasting (SFB)

• Idea: Send lightweight SF updates (u,v), instead of expensive
full-matrix ΔW updates!

Hao Zhang 27July 17

Hybrid Communication: CNN

• Example: AlexNet CNN model
• FC6 = 4096 * 30000 matrix (120M parameters)
• Use SFB to communicate

• Decouple into two 4096 vectors: u, v
• Transmit two vectors
• Reconstruct the gradient matrix

Hao Zhang 28

Figure from
Krizhevsky et al. 2012

July 17

Hybrid Communication: CNN

• Example: AlexNet CNN model
• Convolutional layers = e.g. 11 * 11 matrix (121 parameters)
• Use full-matrix updates to communicate

• SF decomposition does not save much

Hao Zhang 29

Figure from
Krizhevsky et al. 2012

July 17

Hybrid Communication

• Idea
• Sync FC layers using SFB
• Sync Conv layer using PS

• Effectiveness
• It directly reduces the size of

messages in many situations
• Is SFB always optimal?

• No, its communication load
increases quadratically

• The right strategy: choose PS
whenever it results in less
communication

Hao Zhang 30July 17

Hybrid Communication

• How to choose? Where is the threshold?
• Determine the best strategy depending on

• Layer type: CONV or FC?
• Layer size
• Batch size
• # of Cluster nodes

Hao Zhang 31July 17

Hybrid Communication

• Hybrid communication algorithm

Hao Zhang 32

Determine the best strategy depending on
• Layer type: CONV or FC?
• Layer size: M, N
• Batch size: K
• # of Cluster nodes: 𝑃/, 𝑃1

July 17

• How does hybrid communication perform?
• Using Caffe as an engine:

• Using TensorFlow as engine

Hybrid Communication

Hao Zhang 33July 17

Improve over WFBP

Improve over WFBP

Hybrid Communication

• More importantly, linear scalability on throughput, even with
limited bandwidth!

• Make distributed deep learning affordable

Hao Zhang 34July 17

• Discussion: Utilizing SFs is not a new idea
• Microsoft Adam uses the third strategy (c)

Hybrid Communication

PS SFB Push: SFs
Pull: matrices

Hao Zhang 35July 17

Hybrid Communication

• Problem: Adam’s strategy leads to communication bottleneck
• Pushing SFs to server is fine
• Pulling full matrices back will create a bottleneck on the server node.

• Hybrid communication yields communication load balancing
• Which is important to address the problem of burst communication.

Hao Zhang 36July 17

Poseidon System Architecture

GPU CPU

Stream Pool Thread Pool

KV Store

Synceri

Coordinator

SFB

data flow
allocation
instruction

KV Store

Hao Zhang 37July 17

Poseidon as a Platform

• Poseidon: An efficient communication architecture
• Efficient distributed platform for amplifying any DL toolkits
• Preserve the programming interface for any high-level toolkits

• i.e. distribute the DL program without changing any line of code

Poseidon

toolkits

platform

Hao Zhang 38July 17

Summary: Take-home Messages

• Communication is a bottleneck in distributed DL on GPUs
• GPUs are too fast
• Ethernet has limited bandwidth and latency
• Burst communication

• Poseidon is designed to alleviate this problem
• WFBP: pipelining the synchronization and computation
• Hybrid Communication: adaptive protocol to reduce the size of

messages
• Results:

• Linear throughput scalability across different dataset, model sizes,
and hardware configuration (Ethernet bandwidth)

• A Platform to amplify existing DL toolboxes

Hao Zhang 39July 17

Thank You!
Q&A

Backup Slides

July 17 Hao Zhang 41

WFBP: Distributed Wait-free backpropagation

• Observation: Why DWBP is very effective in DL
• More statistics of modern CNNs

• 90% computation happens at bottom layers
• 90% communication happens at top layers
• WFBP overlaps 90% communication with 90% computation

Params/FLOP distribution of modern CNNs

Hao Zhang 42July 17

Poseidon API

• KV Store, Syncer and Coordinator
• Standard APIs similar to parameter server

• Push/Pull API for parameter synchronization
• BestScheme method to return the best communication method

July 17 Hao Zhang 43

Comparison: 1-bit Quantization

• Micrsoft CNTK has 1-bit quantization technique to lossy
parameter compression

• While our experiments reveal that it might not work well in terms of
statistical convergence in some domains

• Good news! Some recent works report exciting results on this
line

July 17 Hao Zhang 44

Results: Statistical Convergence

• Poseidon adopts fully synchronous consistency model
• Distributed training = larger batch size
• Turning parameters in distributed settings is an open problem

• Linear convergence speedup on ResNet-152 [He et al. 2015]

July 17 Hao Zhang 45

Discussion: Synchronous vs. Asynchronous

• Empirical results: synchronous updates yield the faster per-
iteration convergence in training modern deep nearal networks

• GeePS, Cui et al., Eurosys’16
• TensorFlow, Abadi et al., OSDI’16
• Poseidon, Zhang et al., ATC’16, ’17

• Stragglers
• Yes, stragglers exist. However, we’d still prefer synchronous training

because the cost is less than having asynchrony
• Does/will asynchronous training work?

• Yes, but it is domain-specific, e.g. in some speech/NLP application,
there are some reported results that asynchrounous training yields
same-quality results.

• There are more and more ongoing research towards this direction in
both machine learning and systems.

July 17 Hao Zhang 46

