Bunshin: Compositing Security
Mechanisms through Diversification

Meng Xu, Kangjie Lu, Taesoo Kim, Wenke Lee

Georgia Institute of Technology

Memory Corruptions Are Costly...

Heartbleed bug 'will cost millions'

Revoking all SSL certificates leaked by Heartbleed will cost millions of dollars,
according to Cloudflare, which provides services to website hosts

Image: Codenomicon

June 08, 2017

InfoSec 2017: Memory-based attacks on printers on
the rise, says HP

0000000

Increase in use of printers as an attack vector for hackers: recommended that
purchasing decisions include security considerations, not just price.

Name your phone “Nexus 5X %X.%X”

Kopieren Media @ Quelle

—

?’
“g{(g:gx 238.3a736d77

Titel: It Ain't Me

Interpret: Kygo
Album: It Ain‘t Me

splelzeit: 2:13

—

" n

Funktionen 716 » DD
- e

———

Battle against Memory Errors

Existing security mechanisms: We&R, ASLR, CFl
— Not hard to by pass

Battle against Memory Errors

Existing security mechanisms: We&R, ASLR, CFl
— Not hard to by pass

Protect all dangerous operation using sanity checks:
— Auto-applied at compile time

void foo(T *a) {
1f(!is valid address(a) {
report and abort();
) }
*a = 0x1234;
}

void foo(T *a) { Sanitize
*a = 0x1234: >

Battle against Memory Errors

Memory Error Main Causes Defenses

Lack of length check l
Integer overflow i

Out-of-bound read/write ';;,‘;f,;;;t';;,;;g;g"'"'"'""""""""""'"@iﬁgfeiiré‘lnmzer
Badtype casting |
Dangling pointer SCETS

Use-after-free Domibie frag Iy deressSanitizer
Lack of initialization

Uninitialized read Data structure alignment | MemorySanitizer
Subword copying
Divide-by-zero

Undefined behaviors Pointer mlsallgnment UndefinedBehaviorSanitizer
Null-pointer dereference

Comprehensive Protection: Goal and Reality

e Accumulated execution slowdown

e Example: Softbound + CETS — 110% slowdown

e Implementation conflicts

e Example: AddressSanitizer and MemorySanitizer

Comprehensive Protection with Bunshin

e Accumulated execution slowdown

e Example: Softbound + CETS — 110% slowdown

* Bunshin: Reduce to 60% or 40% (depends on the config)

* Implementation conflicts
 Example: AddressSanitizer and MemorySanitizer

 Bunshin: Seamlessly enforce conflicting sanitizers

10

4

Program

Input

Output

The N-Version Way

11

4

Program

Input

Output

The N-Version Way

' Input

Virtualization

$y & ¥

Variant 1 Variant 2 Variant 3

Synchronize Execution & Consolidate Outputs

Output

12

4

Program

Input

Output

The N-Version Way

' Input (benign)

Virtualization

$y & ¥

Variant 1 Variant 2 Variant 3

Synchronize Execution & Consolidate Outputs

Output (consensus)

13

4

Program

Input

Output

The N-Version Way

' Input (malicious)

Virtualization

$y & ¥

Variant 1 Variant 2 Variant 3

4

Synchronize Execution & Consolidate Outputs

‘ Output (divergence)

14

The N-Version Way

An attacker has to simultaneously
compromise all variants in order to to
compromise the whole system

15

Similar Ideas

Two variants placed in disjoint memory partitions
[IN-Variant Systems]

Two variants with stacks growing in different directions
[Orchestra]

Multiple variants with randomized heap object locations
[DieHard]

Multiple versions of the same program
[Varan, Mx]

16

Bunshin Overview

e (Goal:
e Reduce slowdown caused by security mechanisms

e Enable different or even conflicting mechanisms

17

Challenges for Bunshin

How to generate these variants?

What properties they should have?

How to make them appear as one to outsiders?
What is a “behavior” and what is a divergence?

What if the sanitizers introduces new behaviors?

Multi-threading support?

18

Variant Generation Intuitions

e Scope of protection required — Sanitizers selected

Memory Error Defenses
Out-of-bound read/write Softbound, AddressSanitizer
Use-after-free | CETS, AddressSanitizer
Uninitializedread ~ |MemonSanitizer
Undefined behaviors ~|UndefinedBeaviorSanitizer

* |nstrumented checks by each sanitizer

void foo(T *a) { void bar(T *b) {
1if(!is valid address(a) { 1if(!is valid address(b) {
report and abort(); report and abort();
} }
*a = 0x1234; *b = 0x5678;
} }

19

Variant Generation Principles

e Check distribution

e Sanitizer distribution

20

Check Distribution

' Input

Virtualization

$

3~ F 3

Partition 1

Partition 1

Partition 2

Partition 3

Program Variant 1 Variant 2 Variant 3
Output

Synchronize Execution & Consolidate Outputs

Output

21

Sanitizer Distribution

' Input

Virtualization

4 .k

4

wwvwmIOO >

<~

ariant 1 Variant 2 Variant 3

Program

Output

Synchronize Execution & Consolidate Outputs

Output

22

Cost Profiling

Calculate the slowdown caused by the sanity checks

void foo(T *a) {
timing start();
1if(!is valid address(a) {
report and abort();

void foo(T *a) {
timing start();
*a = 0x1234;
timing end();

}

}
*a = 0x1234;
timing end();

23

Cost Distribution

e Equally distribute overhead to variants so that they
execute at the same speed

Foo Foo
: Variant 1

(52% overhead)

Bar Baz

Baz Bar
: Variant 2
: @ (48% overhead)

Qux Qux

24

Variant Generation Process

Source code

==
L) —

Security
mechanisms

Em—

(e.g., ASan, MSan, UBSan)

(

Variant
generator

Costs
profiling
Overhead

distribution

Variant
compiling

~

Variants

Sl

w/ MSan w/ ASan

Y ENYS

w/ UBSan W/ ASan

25

I
|
Selectlve

Variant Sync Considerations

e What is a behavior and what is a divergence?
e System call (both order and arguments)
e How to hook it?
By patching the system call table with a kernel module
e What if different sanitizers introduce different system calls?

e Sync only when a program is in its main function

Do not check system calls for memory management

20

System Call Synchronization

Userspace

Kernel

Partition 1

Leader

Execution result
_

Syscall number

sync slot

27

Follower 1

|Fo||ower 2|

System Call Synchronization

Partition 1

Userspace | Leader

. @ Leader enters syscall

Kernel

Syscall number

Execution result

sync slot

28

Follower 1

|Fo||ower 2|

System Call Synchronization

Userspace

Partition 1

Leader

Syscall number

Execution result

sync slot

29

Follower 1 Follower 2

“ (@ Followers enter syscall

System Call Synchronization

Partition 1

Userspace | Leader Follower 1 |Fo||ower 2|

Kernel

Syscall number

Arguments

Execution result

“ @ Kernel execute the syscall
only once

sync slot

30

System Call Synchronization

Userspace

Kernel

@ Leader fetches syscall result

Partition 1

Leader

Syscall number

7 "o
oooooooooooooooooooo

Execution result

sync slot

31

)&Z“

Follower 1 |Fo||ower 2|

/ ~ @ Followers fetch syscall result

Strict and Selective Lockstep

Partition 1

Userspace | Leader

Kernel Leader writes at

next available slot

sync ring buffer

32

Follower 1

LSV

their own speed,~”

|Fo||ower 2|

" Followers read at "

Strict and Selective Lockstep

Partition 1

Userspace | Leader

Kernel

Always strictly synchronized
for “write” related system calls

sync ring buffer

33

Follower 1

|Fo||ower 2|

Strict and Selective Lockstep

Selective-locksteps mitigates address leaks

Address leak involves a "write"
system call and with ASLR enabled,
such leak attempt will be captured

Reduce sync. overhead by 3% - 5%

34

Before fork

Original
Execution group

After fork

New
Execution group

Multi-threading Support

f

Leader

New ring buffer

35

f

Follower 1

f

Follower 2

Multi-threading Support

Works if there iIs
no interleaving
between threads

36

Multi-threading Support

Leader Follower 1 Follower 2

I

Retord Enf rce Enf c
Kernel f

37

Multi-threading Support

Works under
weak determinism
(data race-free programs)

Implementation specific
(pthread APIs only)

38

Evaluate Bunshin

e Robustness and Security
e Efficiency and Scalability

e Protection Distribution Case Studies

39

Benchmark

Robustness

Single/Multi-thread

Featuer

Pass ?

SPEC CPU2006 Single

SPLASH-2x Multi CPU Intensive

PARSEC Multi \ 6 out of 13
lighttpd Single

--- /O Intensive
nginx Multi

python, php Single Elnterpreter

40

Security

e RIPE Benchmark

Config Succeed Probabilistic Failed Not possible
Default 114 16 720 2990
AddressSanitizer |8 0 . g2 2000
Bunshin | 8 0o 812 200
 Real-world CVEs

Config CVE Exploits Sanitizer Detect
nginx-1.4.0 2013-2028 éBlind ROP éAddressSanitizer :
cpython-2.7.10 20165636 | ntegeroverflow | AddressSanitizer |/
ohp566 | 20154602 Typeconfusion AddressSanitizer |/
openssi-1.0.1a |2014-0160 Heartbleed | AddressSanitizer |/
hitpd-2.4.10 | 2014-3581 Null dereference | UndefinedBehaviorSanitizer |/

41

Performance

Benchmark ltems Strict-Lockstep Selective-Lockstep

Max 17.5% 14.7%

SPEC CPU2006 Min 16% 1.0%
(19 Programs) .

Ave 8.6% 5.6%

Max 21.4% 18.9%

SPLASH-2X / PARSEC Min 10.7% 6.6%

(19 Programs)
Ave 16.6% 14.5%
lighttpd Ave 1.44% 1.21%

1MB File Request

nginx E . 5]
1MB File Request Ave 1.71% 1.41%

Performance Highlights

Low overhead (5% - 16%) for standard benchmarks
Negligible overhead (<= 2%) for server programs
Extra cost of ensuring weak determinism is 8%

Selective-lockstep saves around 3% overhead

Scalability - Number of Variants

Ave O Max O Min

37.6

S

1

@

o)

<

)

>

®)

S

-

>

0p)
4.4
0.5

2 4 6 8

Number of variants

44

Scalability - Number of Variants

The number of variants Bunshin can

support with a reasonable overhead

depends on machine configurations
and program characteristics.

45

Sync Overhead (%)

Scalablility - System Load

Ave O Max O Min
13

0.7

6.4 6.6
4.8

2.2 1.9
0.8

0.2

2% 50% 99%

Number of variants

46

Scalablility - System Load

Bunshin works well in all levels of system load
(i.e., Bunshin does not require exclusive cores)

47

Overhead (%)

Whole

Check Distribution - ASan

Overhead (%)

V1 V2 Bunshin Whole V1 V2

48

V3 Bunshin

Overhead (%)

Sanitizer Distribution - UBSan

Overhead (%)

Whole V1 V2 Bunshin Whole V1 V2 V3 Bunshin

49

Overhead (%)

Deviation from Optimal - ASan

Overhead (%)

Whole V1 V2 Bunshin Whole V1 V2 V3 Bunshin

50

Overhead (%)

Deviation from Optimal - UBSan

Overhead (%)

Whole V1 V2 Bunshin Whole V1 V2 V3 Bunshin

51

Reasons for Deviation from Optimal

Synchronization overhead
Inaccuracy in profiling
Suboptimal distribution

Non-distributable overhead

Unifying LLVM Sanitizers

" ASan B MSan B UBSan B Bunshin

172|177
148

Overhead (%)

112
8.

gobmk povray h264ref average
53

Unifying LLVM Sanitizers

With an average of 5% more slowdown,
Bunshin can seamlessly unify all three
LLVM sanitizers

54

Limitations and Future Work

e Finer-grained check distribution
e Sanitizer integration

e Record-and-replay

55

Conclusion

e |tis feasible to achieve both comprehensive protection and high
throughput with an N-version system

* Bunshin is effective in reducing slowdown caused by sanitizers

e 107% — 47.1% for ASan, 228% — 94.5% for UBSan

e Bunshin can seamlessly unify three LLVM sanitizers with 5%
extra slowdown

https://github.com/sslab-gatech/bunshin

(Source code will be released soon)

56

https://github.com/sslab-gatech/bunshin

