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Memory Corruptions Are Costly…

2



3



4



5

Name your phone “Nexus 5X %x.%x”



Battle against Memory Errors

Existing security mechanisms: W⊕R, ASLR, CFI

→ Not hard to by pass
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Battle against Memory Errors

Existing security mechanisms: W⊕R, ASLR, CFI

→ Not hard to by pass


Protect all dangerous operation using sanity checks:

→ Auto-applied at compile time
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void foo(T *a) {
*a = 0x1234;

} 

void foo(T *a) {
if(!is_valid_address(a) {

report_and_abort();
}
*a = 0x1234;

} 

Sanitize



Battle against Memory Errors
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Memory Error Main Causes Defenses

Out-of-bound read/write

Lack of length check

Softbound

AddressSanitizer

Integer overflow

Format string bug

Bad type casting

Use-after-free
Dangling pointer CETS


AddressSanitizerDouble free

Uninitialized read

Lack of initialization

MemorySanitizerData structure alignment

Subword copying

Undefined behaviors

Divide-by-zero

UndefinedBehaviorSanitizerPointer misalignment


Null-pointer dereference



Comprehensive Protection: Goal and Reality

• Accumulated execution slowdown


• Example: Softbound + CETS → 110% slowdown


• Implementation conflicts


• Example: AddressSanitizer and MemorySanitizer

9



Comprehensive Protection with Bunshin

• Accumulated execution slowdown


• Example: Softbound + CETS → 110% slowdown


• Bunshin: Reduce to 60% or 40% (depends on the config)


• Implementation conflicts


• Example: AddressSanitizer and MemorySanitizer


• Bunshin: Seamlessly enforce conflicting sanitizers
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The N-Version Way
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Input 

Output 



The N-Version Way
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Virtualization

Synchronize Execution & Consolidate Outputs

Input 

Output 

Variant 1 Variant 2 Variant 3Program

Input 

Output 



The N-Version Way
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Virtualization

Synchronize Execution & Consolidate Outputs

Input (benign) 

Output (consensus) 

Variant 1 Variant 2 Variant 3Program

Input 

Output 



The N-Version Way
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Virtualization

Synchronize Execution & Consolidate Outputs

Output (divergence) 

Variant 1 Variant 2 Variant 3Program

Input 

Output 

Input (malicious) 



The N-Version Way
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Virtualization

Synchronize Execution & Consolidate Outputs

Output (divergence) 

Variant 1 Variant 2 Variant 3Program

Input 

Output 

Input (malicious) 

An attacker has to simultaneously 
compromise all variants in order to to 

compromise the whole system



Similar Ideas

• Two variants placed in disjoint memory partitions               
[N-Variant Systems]


• Two variants with stacks growing in different directions 
[Orchestra]


• Multiple variants with randomized heap object locations    
[DieHard]


• Multiple versions of the same program                      
[Varan, Mx]
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Bunshin Overview

• Goal:


• Reduce slowdown caused by security mechanisms


• Enable different or even conflicting mechanisms
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Challenges for Bunshin
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• How to generate these variants?


• What properties they should have?


• How to make them appear as one to outsiders?


• What is a “behavior” and what is a divergence?


• What if the sanitizers introduces new behaviors?


• Multi-threading support?



Variant Generation Intuitions

• Scope of protection required → Sanitizers selected


• Instrumented checks by each sanitizer
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Memory Error Defenses

Out-of-bound read/write Softbound, AddressSanitizer

Use-after-free CETS, AddressSanitizer

Uninitialized read MemorySanitizer

Undefined behaviors UndefinedBehaviorSanitizer

void foo(T *a) {
if(!is_valid_address(a) {

report_and_abort();
}
*a = 0x1234;

} 

void bar(T *b) {
if(!is_valid_address(b) {

report_and_abort();
}
*b = 0x5678;

} 



Variant Generation Principles

• Check distribution


• Sanitizer distribution
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Check Distribution
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Virtualization
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Sanitizer Distribution
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Virtualization

Synchronize Execution & Consolidate Outputs
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Cost Profiling

• Calculate the slowdown caused by the sanity checks

void foo(T *a) {
timing_start();
if(!is_valid_address(a) {

report_and_abort();
}
*a = 0x1234;
timing_end();

} 

void foo(T *a) {
timing_start();
*a = 0x1234;
timing_end();

} 
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Cost Distribution

• Equally distribute overhead to variants so that they 
execute at the same speed
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Variant 1
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Variant Generation Process
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Costs
profiling

Security
mechanisms

Variant
compiling

Variant
generator

Source code

Variants
Overhead

distribution
(e.g., ASan, MSan, UBSan)

opt.

opt.

w/ ASanw/ UBSan

w/ MSan w/ ASan

...

full

selective

...



Variant Sync Considerations
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• What is a behavior and what is a divergence?


• System call (both order and arguments)


• How to hook it?


• By patching the system call table with a kernel module


• What if different sanitizers introduce different system calls?


• Sync only when a program is in its main function


• Do not check system calls for memory management



System Call Synchronization
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Userspace

Kernel

Leader Follower 1 Follower 2

Partition 1

Partition 2

Partition 3

sync slot

Syscall number

Arguments

Execution result



System Call Synchronization
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Userspace

Kernel

Leader Follower 1 Follower 2

Partition 1

Partition 2

Partition 3

Syscall number

Arguments

Execution result

sync slot

 ① Leader enters syscall



System Call Synchronization
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Userspace

Kernel

Leader Follower 1 Follower 2

Partition 1

Partition 2

Partition 3

Syscall number

Arguments

Execution result

sync slot

 ② Followers enter syscall



System Call Synchronization
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Userspace

Kernel

Leader Follower 1 Follower 2

Partition 1

Partition 2

Partition 3

Syscall number

Arguments

Execution result

sync slot

③ Kernel execute the syscall 
only once



System Call Synchronization
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Userspace

Kernel

Leader Follower 1 Follower 2

Partition 1

Partition 2

Partition 3

Syscall number

Arguments

Execution result

sync slot

④ Leader fetches syscall result ④ Followers fetch syscall result



Strict and Selective Lockstep
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Userspace

Kernel

Leader Follower 1 Follower 2

Partition 1

Partition 2

Partition 3

sync ring buffer

Leader writes at the 
next available slot

Followers read at
their own speed 



Strict and Selective Lockstep
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Userspace

Kernel

Leader Follower 1 Follower 2

Partition 1

Partition 2

Partition 3

sync ring buffer

Always strictly synchronized 
for “write” related system calls



Strict and Selective Lockstep
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Userspace

Kernel

Leader Follower 1 Follower 2

Partition 1

Partition 2

Partition 3

sync ring buffer

Always strictly synchronized 
for “write” related system calls

Selective-locksteps mitigates address leaks

Address leak involves a "write" 
system call and with ASLR enabled,
such leak attempt will be captured

Reduce sync. overhead by 3% - 5% 



Multi-threading Support
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Before fork

After fork

Leader Follower 1 Follower 2

Original
Execution group

New
Execution group

New ring buffer



Multi-threading Support
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Before fork

After fork

Leader Follower 1 Follower 2

Original
Execution group

New
Execution group

New ring buffer

Works if there is 
no interleaving 

between threads



Multi-threading Support
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Leader Follower 1 Follower 2

Userspace

Kernel

Total order of lock acquisition and releases

Record Enforce Enforce



Multi-threading Support
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Leader Follower 1 Follower 2

Userspace

Kernel

Total order of lock acquisition and releases

Record Enforce Enforce
Works under 

weak determinism
(data race-free programs)

Implementation specific
(pthread APIs only)



Evaluate Bunshin
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• Robustness and Security


• Efficiency and Scalability


• Protection Distribution Case Studies



Robustness
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Benchmark Single/Multi-thread Featuer Pass ?

SPEC CPU2006 Single

CPU IntensiveSPLASH-2x Multi

PARSEC Multi                6 out of 13

lighttpd Single

I/O Intensive

nginx Multi

python, php Single Interpreter



Security

• RIPE Benchmark


• Real-world CVEs
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Config Succeed Probabilistic Failed Not possible

Default 114 16 720 2990

AddressSanitizer 8 0 842 2990

Bunshin 8 0 842 2990

Config CVE Exploits Sanitizer Detect

nginx-1.4.0 2013-2028 Blind ROP AddressSanitizer

cpython-2.7.10 2016-5636 Integer overflow AddressSanitizer

php-5.6.6 2015-4602 Type confusion AddressSanitizer

openssl-1.0.1a 2014-0160 Heartbleed AddressSanitizer

httpd-2.4.10 2014-3581 Null dereference UndefinedBehaviorSanitizer



Performance

Benchmark Items Strict-Lockstep Selective-Lockstep

SPEC CPU2006
(19 Programs)

Max 17.5% 14.7%

Min 1.6% 1.0%

Ave 8.6% 5.6%

SPLASH-2X / PARSEC
(19 Programs)

Max 21.4% 18.9%

Min 10.7% 6.6%

Ave 16.6% 14.5%

lighttpd
1MB File Request Ave 1.44% 1.21%

nginx
1MB File Request Ave 1.71% 1.41%



Performance Highlights

• Low overhead (5% - 16%) for standard benchmarks


• Negligible overhead (<= 2%) for server programs


• Extra cost of ensuring weak determinism is 8%


• Selective-lockstep saves around 3% overhead



Scalability - Number of Variants
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Scalability - Number of Variants

45

 S
yn

c 
O

ve
rh

ea
d 

(%
)

Number of variants
2 4 6 8

0 0.5

6.6

11.4

1.7

11.2

17.2

37.6

0.6
4.4

10.5

20.9

Ave Max Min

The number of variants Bunshin can 
support with a reasonable overhead 
depends on machine configurations 

and program characteristics.



Scalability - System Load
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Scalability - System Load
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Bunshin works well in all levels of system load 
(i.e., Bunshin does not require exclusive cores)



Check Distribution - ASan
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Sanitizer Distribution - UBSan
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Deviation from Optimal - ASan
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Deviation from Optimal - UBSan
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Reasons for Deviation from Optimal

• Synchronization overhead


• Inaccuracy in profiling


• Suboptimal distribution


• Non-distributable overhead



Unifying LLVM Sanitizers
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Unifying LLVM Sanitizers
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With an average of 5% more slowdown, 
Bunshin can seamlessly unify all three

LLVM sanitizers



Limitations and Future Work

• Finer-grained check distribution


• Sanitizer integration


• Record-and-replay
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Conclusion

• It is feasible to achieve both comprehensive protection and high 
throughput with an N-version system


• Bunshin is effective in reducing slowdown caused by sanitizers


• 107% → 47.1% for ASan, 228% → 94.5% for UBSan


• Bunshin can seamlessly unify three LLVM sanitizers with 5% 
extra slowdown 


https://github.com/sslab-gatech/bunshin

(Source code will be released soon)

56

https://github.com/sslab-gatech/bunshin

