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Memory Corruptions Are Costly...



Heartbleed bug 'will cost millions'

Revoking all SSL certificates leaked by Heartbleed will cost millions of dollars,
according to Cloudflare, which provides services to website hosts
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June 08, 2017

InfoSec 2017: Memory-based attacks on printers on
the rise, says HP

0000000

Increase in use of printers as an attack vector for hackers: recommended that
purchasing decisions include security considerations, not just price.
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Battle against Memory Errors

Existing security mechanisms: We&R, ASLR, CFl
— Not hard to by pass



Battle against Memory Errors

Existing security mechanisms: We&R, ASLR, CFl
— Not hard to by pass

Protect all dangerous operation using sanity checks:
— Auto-applied at compile time

void foo(T *a) {
1f(!is valid address(a) {
report and abort();
) }
*a = 0x1234;
}

void foo(T *a) { Sanitize
*a = 0x1234: >




Battle against Memory Errors

Memory Error Main Causes Defenses

Lack of length check l
Integer overflow i

Out-of-bound read/write ';;,‘;f,;;;t';;,;;g;g"'"'"'""""""""""'"@iﬁgfeiiré‘lnmzer
Badtype casting |
Dangling pointer SCETS

Use-after-free Domibie frag Iy deressSanitizer
Lack of initialization

Uninitialized read Data structure alignment | MemorySanitizer
Subword copying
Divide-by-zero

Undefined behaviors Pointer mlsallgnment UndefinedBehaviorSanitizer
Null-pointer dereference




Comprehensive Protection: Goal and Reality

e Accumulated execution slowdown

e Example: Softbound + CETS — 110% slowdown

e Implementation conflicts

e Example: AddressSanitizer and MemorySanitizer



Comprehensive Protection with Bunshin

e Accumulated execution slowdown

e Example: Softbound + CETS — 110% slowdown

* Bunshin: Reduce to 60% or 40% (depends on the config)

* Implementation conflicts
 Example: AddressSanitizer and MemorySanitizer

 Bunshin: Seamlessly enforce conflicting sanitizers
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The N-Version Way

An attacker has to simultaneously
compromise all variants in order to to
compromise the whole system
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Similar Ideas

Two variants placed in disjoint memory partitions
[IN-Variant Systems]

Two variants with stacks growing in different directions
[Orchestra]

Multiple variants with randomized heap object locations
[DieHard]

Multiple versions of the same program
[Varan, Mx]
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Bunshin Overview

e (Goal:
e Reduce slowdown caused by security mechanisms

e Enable different or even conflicting mechanisms
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Challenges for Bunshin

How to generate these variants?

What properties they should have?

How to make them appear as one to outsiders?
What is a “behavior” and what is a divergence?

What if the sanitizers introduces new behaviors?

Multi-threading support?
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Variant Generation Intuitions

e Scope of protection required — Sanitizers selected

Memory Error Defenses
Out-of-bound read/write Softbound, AddressSanitizer
Use-after-free | CETS, AddressSanitizer
Uninitializedread ~ |MemonSanitizer
Undefined behaviors ~|UndefinedBeaviorSanitizer

* |nstrumented checks by each sanitizer

void foo(T *a) { void bar(T *b) {
1if(!is valid address(a) { 1if(!is valid address(b) {
report and abort(); report and abort();
} }
*a = 0x1234; *b = 0x5678;
} }
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Variant Generation Principles

e Check distribution

e Sanitizer distribution
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Check Distribution
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Sanitizer Distribution
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Cost Profiling

Calculate the slowdown caused by the sanity checks

void foo(T *a) {
timing start();
1if(!is valid address(a) {
report and abort();

void foo(T *a) {
timing start();
*a = 0x1234;
timing end();

}

}
*a = 0x1234;
timing end();
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Cost Distribution

e Equally distribute overhead to variants so that they
execute at the same speed

Foo Foo
: Variant 1

(52% overhead)

Bar Baz

Baz Bar
: Variant 2
: @ (48% overhead)

Qux Qux
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Variant Generation Process
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Variant Sync Considerations

e What is a behavior and what is a divergence?
e System call (both order and arguments)
e How to hook it?
By patching the system call table with a kernel module
e What if different sanitizers introduce different system calls?

e Sync only when a program is in its main function

Do not check system calls for memory management
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System Call Synchronization

Userspace
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System Call Synchronization
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System Call Synchronization
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System Call Synchronization

Partition 1

Userspace | Leader Follower 1 |Fo||ower 2|

Kernel

Syscall number

Arguments

Execution result

“ @ Kernel execute the syscall
only once

sync slot
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System Call Synchronization

Userspace

Kernel

@ Leader fetches syscall result

Partition 1

Leader

Syscall number

7 "o
oooooooooooooooooooo

Execution result

sync slot
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Strict and Selective Lockstep

Partition 1

Userspace | Leader

Kernel Leader writes at

next available slot

sync ring buffer
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Strict and Selective Lockstep

Partition 1

Userspace | Leader

Kernel

Always strictly synchronized
for “write” related system calls

sync ring buffer
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Strict and Selective Lockstep

Selective-locksteps mitigates address leaks

Address leak involves a "write"
system call and with ASLR enabled,
such leak attempt will be captured

Reduce sync. overhead by 3% - 5%
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Before fork

Original
Execution group

After fork

New
Execution group

Multi-threading Support

f

Leader

New ring buffer
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Multi-threading Support

Works if there iIs
no interleaving
between threads
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Multi-threading Support

Leader Follower 1 Follower 2

I

Retord Enf rce Enf c
Kernel f
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Multi-threading Support

Works under
weak determinism
(data race-free programs)

Implementation specific
(pthread APIs only)
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Evaluate Bunshin

e Robustness and Security
e Efficiency and Scalability

e Protection Distribution Case Studies
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Benchmark

Robustness

Single/Multi-thread

Featuer

Pass ?

SPEC CPU2006 Single

SPLASH-2x Multi CPU Intensive

PARSEC Multi \ 6 out of 13
lighttpd Single

--------------------------------------------------------------------------------------------------------- /O Intensive
nginx Multi

python, php Single Elnterpreter
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Security

e RIPE Benchmark

Config Succeed Probabilistic Failed Not possible
Default 114 16 720 2990
AddressSanitizer |8 0 . g2 2000
Bunshin | 8 0o 812 200
 Real-world CVEs

Config CVE Exploits Sanitizer Detect
nginx-1.4.0 2013-2028 éBlind ROP éAddressSanitizer :
cpython-2.7.10 20165636 | ntegeroverflow | AddressSanitizer |/
ohp566 | 20154602 Typeconfusion  AddressSanitizer |/
openssi-1.0.1a  |2014-0160 Heartbleed | AddressSanitizer |/
hitpd-2.4.10 | 2014-3581 Null dereference | UndefinedBehaviorSanitizer |/
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Performance

Benchmark ltems Strict-Lockstep Selective-Lockstep

Max 17.5% 14.7%

SPEC CPU2006 Min 16% 1.0%
(19 Programs) .

Ave 8.6% 5.6%

Max 21.4% 18.9%

SPLASH-2X / PARSEC Min 10.7% 6.6%

(19 Programs)
Ave 16.6% 14.5%
lighttpd Ave 1.44% 1.21%

1MB File Request

nginx E . 5 ]
1MB File Request Ave 1.71% 1.41%




Performance Highlights

Low overhead (5% - 16%) for standard benchmarks
Negligible overhead (<= 2%) for server programs
Extra cost of ensuring weak determinism is 8%

Selective-lockstep saves around 3% overhead



Scalability - Number of Variants
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Scalability - Number of Variants

The number of variants Bunshin can

support with a reasonable overhead

depends on machine configurations
and program characteristics.
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Sync Overhead (%)

Scalablility - System Load

Ave O Max O Min
13
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Scalablility - System Load

Bunshin works well in all levels of system load
(i.e., Bunshin does not require exclusive cores)
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Overhead (%)

Whole

Check Distribution - ASan

Overhead (%)

V1 V2 Bunshin Whole V1 V2
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Overhead (%)

Sanitizer Distribution - UBSan

Overhead (%)

Whole V1 V2 Bunshin Whole V1 V2 V3 Bunshin
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Overhead (%)

Deviation from Optimal - ASan

Overhead (%)

Whole V1 V2 Bunshin Whole V1 V2 V3 Bunshin
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Overhead (%)

Deviation from Optimal - UBSan

Overhead (%)

Whole V1 V2 Bunshin Whole V1 V2 V3 Bunshin
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Reasons for Deviation from Optimal

Synchronization overhead
Inaccuracy in profiling
Suboptimal distribution

Non-distributable overhead



Unifying LLVM Sanitizers

" ASan B MSan B UBSan B Bunshin

172|177
148

Overhead (%)

112
8.

gobmk povray h264ref average
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Unifying LLVM Sanitizers

With an average of 5% more slowdown,
Bunshin can seamlessly unify all three
LLVM sanitizers
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Limitations and Future Work

e Finer-grained check distribution
e Sanitizer integration

e Record-and-replay
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Conclusion

e |tis feasible to achieve both comprehensive protection and high
throughput with an N-version system

* Bunshin is effective in reducing slowdown caused by sanitizers

e 107% — 47.1% for ASan, 228% — 94.5% for UBSan

e Bunshin can seamlessly unify three LLVM sanitizers with 5%
extra slowdown

https://github.com/sslab-gatech/bunshin

(Source code will be released soon)
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