
Bunshin: Compositing Security
Mechanisms through Diversification

Meng Xu, Kangjie Lu, Taesoo Kim, Wenke Lee

Georgia Institute of Technology

1

Memory Corruptions Are Costly…

2

3

4

5

Name your phone “Nexus 5X %x.%x”

Battle against Memory Errors

Existing security mechanisms: W⊕R, ASLR, CFI

→ Not hard to by pass

6

Battle against Memory Errors

Existing security mechanisms: W⊕R, ASLR, CFI

→ Not hard to by pass

Protect all dangerous operation using sanity checks:

→ Auto-applied at compile time

7

void foo(T *a) {
*a = 0x1234;

}

void foo(T *a) {
if(!is_valid_address(a) {

report_and_abort();
}
*a = 0x1234;

}

Sanitize

Battle against Memory Errors

8

Memory Error Main Causes Defenses

Out-of-bound read/write

Lack of length check

Softbound

AddressSanitizer

Integer overflow

Format string bug

Bad type casting

Use-after-free
Dangling pointer CETS

AddressSanitizerDouble free

Uninitialized read

Lack of initialization

MemorySanitizerData structure alignment

Subword copying

Undefined behaviors

Divide-by-zero

UndefinedBehaviorSanitizerPointer misalignment

Null-pointer dereference

Comprehensive Protection: Goal and Reality

• Accumulated execution slowdown

• Example: Softbound + CETS → 110% slowdown

• Implementation conflicts

• Example: AddressSanitizer and MemorySanitizer

9

Comprehensive Protection with Bunshin

• Accumulated execution slowdown

• Example: Softbound + CETS → 110% slowdown

• Bunshin: Reduce to 60% or 40% (depends on the config)

• Implementation conflicts

• Example: AddressSanitizer and MemorySanitizer

• Bunshin: Seamlessly enforce conflicting sanitizers

10

The N-Version Way

11

Program

Input

Output

The N-Version Way

12

Virtualization

Synchronize Execution & Consolidate Outputs

Input

Output

Variant 1 Variant 2 Variant 3Program

Input

Output

The N-Version Way

13

Virtualization

Synchronize Execution & Consolidate Outputs

Input (benign)

Output (consensus)

Variant 1 Variant 2 Variant 3Program

Input

Output

The N-Version Way

14

Virtualization

Synchronize Execution & Consolidate Outputs

Output (divergence)

Variant 1 Variant 2 Variant 3Program

Input

Output

Input (malicious)

The N-Version Way

15

Virtualization

Synchronize Execution & Consolidate Outputs

Output (divergence)

Variant 1 Variant 2 Variant 3Program

Input

Output

Input (malicious)

An attacker has to simultaneously
compromise all variants in order to to

compromise the whole system

Similar Ideas

• Two variants placed in disjoint memory partitions
[N-Variant Systems]

• Two variants with stacks growing in different directions
[Orchestra]

• Multiple variants with randomized heap object locations
[DieHard]

• Multiple versions of the same program
[Varan, Mx]

16

Bunshin Overview

• Goal:

• Reduce slowdown caused by security mechanisms

• Enable different or even conflicting mechanisms

17

Challenges for Bunshin

18

• How to generate these variants?

• What properties they should have?

• How to make them appear as one to outsiders?

• What is a “behavior” and what is a divergence?

• What if the sanitizers introduces new behaviors?

• Multi-threading support?

Variant Generation Intuitions

• Scope of protection required → Sanitizers selected

• Instrumented checks by each sanitizer

19

Memory Error Defenses

Out-of-bound read/write Softbound, AddressSanitizer

Use-after-free CETS, AddressSanitizer

Uninitialized read MemorySanitizer

Undefined behaviors UndefinedBehaviorSanitizer

void foo(T *a) {
if(!is_valid_address(a) {

report_and_abort();
}
*a = 0x1234;

}

void bar(T *b) {
if(!is_valid_address(b) {

report_and_abort();
}
*b = 0x5678;

}

Variant Generation Principles

• Check distribution

• Sanitizer distribution

20

Check Distribution

21

Virtualization

Synchronize Execution & Consolidate Outputs

Input

Output

Variant 1 Variant 2 Variant 3Program

Input

Output

Partition 1

Partition 2

Partition 3

Partition 1

Partition 2

Partition 3

Sanitizer Distribution

22

Virtualization

Synchronize Execution & Consolidate Outputs

Input

Output

Variant 1 Variant 2 Variant 3Program

Input

Output

A
D
D
R
E
S
S

M
E
M
O
R
Y

U
N
D
E
F

A
D
D
R
E
S
S

M
E
M
O
R
Y

U
N
D
E
F

Cost Profiling

• Calculate the slowdown caused by the sanity checks

void foo(T *a) {
timing_start();
if(!is_valid_address(a) {

report_and_abort();
}
*a = 0x1234;
timing_end();

}

void foo(T *a) {
timing_start();
*a = 0x1234;
timing_end();

}

23

Cost Distribution

• Equally distribute overhead to variants so that they
execute at the same speed

24

17%

28%

35%

20%

Foo

Bar

Baz

Qux

17%

35%

Foo

Baz

28%

20%

Bar

Qux

Variant 1
(52% overhead)

Variant 2
(48% overhead)

Variant Generation Process

25

Costs
profiling

Security
mechanisms

Variant
compiling

Variant
generator

Source code

Variants
Overhead

distribution
(e.g., ASan, MSan, UBSan)

opt.

opt.

w/ ASanw/ UBSan

w/ MSan w/ ASan

...

full

selective

...

Variant Sync Considerations

26

• What is a behavior and what is a divergence?

• System call (both order and arguments)

• How to hook it?

• By patching the system call table with a kernel module

• What if different sanitizers introduce different system calls?

• Sync only when a program is in its main function

• Do not check system calls for memory management

System Call Synchronization

27

Userspace

Kernel

Leader Follower 1 Follower 2

Partition 1

Partition 2

Partition 3

sync slot

Syscall number

Arguments

Execution result

System Call Synchronization

28

Userspace

Kernel

Leader Follower 1 Follower 2

Partition 1

Partition 2

Partition 3

Syscall number

Arguments

Execution result

sync slot

 ① Leader enters syscall

System Call Synchronization

29

Userspace

Kernel

Leader Follower 1 Follower 2

Partition 1

Partition 2

Partition 3

Syscall number

Arguments

Execution result

sync slot

 ② Followers enter syscall

System Call Synchronization

30

Userspace

Kernel

Leader Follower 1 Follower 2

Partition 1

Partition 2

Partition 3

Syscall number

Arguments

Execution result

sync slot

③ Kernel execute the syscall
only once

System Call Synchronization

31

Userspace

Kernel

Leader Follower 1 Follower 2

Partition 1

Partition 2

Partition 3

Syscall number

Arguments

Execution result

sync slot

④ Leader fetches syscall result ④ Followers fetch syscall result

Strict and Selective Lockstep

32

Userspace

Kernel

Leader Follower 1 Follower 2

Partition 1

Partition 2

Partition 3

sync ring buffer

Leader writes at the
next available slot

Followers read at
their own speed

Strict and Selective Lockstep

33

Userspace

Kernel

Leader Follower 1 Follower 2

Partition 1

Partition 2

Partition 3

sync ring buffer

Always strictly synchronized
for “write” related system calls

Strict and Selective Lockstep

34

Userspace

Kernel

Leader Follower 1 Follower 2

Partition 1

Partition 2

Partition 3

sync ring buffer

Always strictly synchronized
for “write” related system calls

Selective-locksteps mitigates address leaks

Address leak involves a "write"
system call and with ASLR enabled,
such leak attempt will be captured

Reduce sync. overhead by 3% - 5%

Multi-threading Support

35

Before fork

After fork

Leader Follower 1 Follower 2

Original
Execution group

New
Execution group

New ring buffer

Multi-threading Support

36

Before fork

After fork

Leader Follower 1 Follower 2

Original
Execution group

New
Execution group

New ring buffer

Works if there is
no interleaving

between threads

Multi-threading Support

37

Leader Follower 1 Follower 2

Userspace

Kernel

Total order of lock acquisition and releases

Record Enforce Enforce

Multi-threading Support

38

Leader Follower 1 Follower 2

Userspace

Kernel

Total order of lock acquisition and releases

Record Enforce Enforce
Works under

weak determinism
(data race-free programs)

Implementation specific
(pthread APIs only)

Evaluate Bunshin

39

• Robustness and Security

• Efficiency and Scalability

• Protection Distribution Case Studies

Robustness

40

Benchmark Single/Multi-thread Featuer Pass ?

SPEC CPU2006 Single

CPU IntensiveSPLASH-2x Multi

PARSEC Multi 6 out of 13

lighttpd Single

I/O Intensive

nginx Multi

python, php Single Interpreter

Security

• RIPE Benchmark

• Real-world CVEs

41

Config Succeed Probabilistic Failed Not possible

Default 114 16 720 2990

AddressSanitizer 8 0 842 2990

Bunshin 8 0 842 2990

Config CVE Exploits Sanitizer Detect

nginx-1.4.0 2013-2028 Blind ROP AddressSanitizer

cpython-2.7.10 2016-5636 Integer overflow AddressSanitizer

php-5.6.6 2015-4602 Type confusion AddressSanitizer

openssl-1.0.1a 2014-0160 Heartbleed AddressSanitizer

httpd-2.4.10 2014-3581 Null dereference UndefinedBehaviorSanitizer

Performance

Benchmark Items Strict-Lockstep Selective-Lockstep

SPEC CPU2006
(19 Programs)

Max 17.5% 14.7%

Min 1.6% 1.0%

Ave 8.6% 5.6%

SPLASH-2X / PARSEC
(19 Programs)

Max 21.4% 18.9%

Min 10.7% 6.6%

Ave 16.6% 14.5%

lighttpd
1MB File Request Ave 1.44% 1.21%

nginx
1MB File Request Ave 1.71% 1.41%

Performance Highlights

• Low overhead (5% - 16%) for standard benchmarks

• Negligible overhead (<= 2%) for server programs

• Extra cost of ensuring weak determinism is 8%

• Selective-lockstep saves around 3% overhead

Scalability - Number of Variants

44

 S
yn

c
O

ve
rh

ea
d

(%
)

Number of variants
2 4 6 8

0 0.5

6.6

11.4

1.7

11.2

17.2

37.6

0.6
4.4

10.5

20.9

Ave Max Min

Scalability - Number of Variants

45

 S
yn

c
O

ve
rh

ea
d

(%
)

Number of variants
2 4 6 8

0 0.5

6.6

11.4

1.7

11.2

17.2

37.6

0.6
4.4

10.5

20.9

Ave Max Min

The number of variants Bunshin can
support with a reasonable overhead
depends on machine configurations

and program characteristics.

Scalability - System Load

46

 S
yn

c
O

ve
rh

ea
d

(%
)

Number of variants
2% 50% 99%

0.2
0.8

1.9

6.4

9.7

13

2.2

4.8

6.6

Ave Max Min

Scalability - System Load

47

 S
yn

c
O

ve
rh

ea
d

(%
)

Number of variants
2% 50% 99%

0.2
0.8

1.9

6.4

9.7

13

2.2

4.8

6.6

Ave Max Min

Bunshin works well in all levels of system load
(i.e., Bunshin does not require exclusive cores)

Check Distribution - ASan

48

O
ve

rh
ea

d
(%

)

Whole V1 V2 V3 Bunshin

43.1
37.234.934.8

107

O
ve

rh
ea

d
(%

)

Whole V1 V2 Bunshin

65.663
57.4

107

Sanitizer Distribution - UBSan

49

O
ve

rh
ea

d
(%

)

Whole V1 V2 V3 Bunshin

94.58878.777.2

228

O
ve

rh
ea

d
(%

)

Whole V1 V2 Bunshin

129125124

228

Deviation from Optimal - ASan

50

O
ve

rh
ea

d
(%

)

Whole V1 V2 V3 Bunshin

43.1
37.234.934.8

107

O
ve

rh
ea

d
(%

)

Whole V1 V2 Bunshin

65.663
57.4

107

53.553.5

35.7 35.7

Deviation from Optimal - UBSan

51

O
ve

rh
ea

d
(%

)

Whole V1 V2 V3 Bunshin

94.58878.777.2

228

O
ve

rh
ea

d
(%

)

Whole V1 V2 Bunshin

129125124

228

114 114

76 76

Reasons for Deviation from Optimal

• Synchronization overhead

• Inaccuracy in profiling

• Suboptimal distribution

• Non-distributable overhead

Unifying LLVM Sanitizers

53

O
ve

rh
ea

d
(%

)

gobmk povray h264ref average

177

208

248

165 172

207
189

141 148

191

246

158

98.9
112

205

116

ASan MSan UBSan Bunshin

O
ve

rh
ea

d
(%

)

gobmk povray h264ref average

177

208

248

165 172

207
189

141 148

191

246

158

98.9
112

205

116

ASan MSan UBSan Bunshin

Unifying LLVM Sanitizers

54

With an average of 5% more slowdown,
Bunshin can seamlessly unify all three

LLVM sanitizers

Limitations and Future Work

• Finer-grained check distribution

• Sanitizer integration

• Record-and-replay

55

Conclusion

• It is feasible to achieve both comprehensive protection and high
throughput with an N-version system

• Bunshin is effective in reducing slowdown caused by sanitizers

• 107% → 47.1% for ASan, 228% → 94.5% for UBSan

• Bunshin can seamlessly unify three LLVM sanitizers with 5%
extra slowdown

https://github.com/sslab-gatech/bunshin

(Source code will be released soon)

56

https://github.com/sslab-gatech/bunshin

