@*ﬂ&w‘{ﬁfﬁ USENIX ATC’17, Jul. 12-14

HiKV: A Hybrid Index Key-Value Store
for DRAM-NVM Memory Systems

Fei Xia'2, Dejun Jiang', Jin Xiong'!, Ninghui Sun’
1. Institute of Computing Technology, CAS
2. University of Chinese Academy of Sciences

Non-Volatile Memory

« Emerging Non-Volatile Memories (NVMSs)
— PCM, ReRAM, STT-MRAM

» Characteristics of memory technologies
[Xia+,JCST'2015, Yang+, FAST 2015,Chi+,ISCA’2016]

Categories | Volatility | Density Read Write Write
Latency Latency Endurance
Yes Low

DRAM 60ns 60ns 1016

PCM No High 50~70ns 150~1000ns 10°

{ ReRAM No High 25ns 300ns 1012
NAND Flash No High 35us 350us 10°

Hybrid Memory (DRAM+NVM)

- DRAM: volatile, low latency, low capacity
« NVM: non-volatile, high latency, high capacity
 Hybrid DRAM and NVM memory is a promising solution.

— Example: The machine

HP. Labs presents a peek under the hood of The Machine, the future... 0 c(

Innovation-Zone

* " Off-Node
Optical Adapte

(100s of Gigabits
Local p .

Processor Fabric

‘ = - =5 Switch _
Persistent Memorg: < ‘

“The Machine” [Source: HP Discover2015]

Key-Value Store

Key-Value Store Systems (KV Store) have become an
storage infrastructure of datacenters

— Google LevelDB, Facebook RocksDB

— Facebook, Twitter, Amazon et al. Memcached cluster

Local file system and distributed file system use KV store
to store metadata

— Local file system: TableFSIRen* ATC’2013] BetrfSlJannen+, FAST 2015]

— Distributed file system: CephFSMWeil+,0SDI2006], HDFSIHDFS
summit, 2015]

Relational databases use KV as the storage engine

— Facebook has replaced the InnoDB with MyRocks (KV store)
in MySQL

Motivation

= LinkedIn & OpenCloud ~ Yahoo! PROD & Yahoo! R&D

* Rich KV operations:
— Put/Get/Delete/Update

Throughput (M ops/s)

— Range Scan/Query(Scan

3.5
3.0
2.5
2.0
15
1.0
0.5
0.0

100%
80%

PUT, GET, UPDATE

SCAN

60%

|

) 40%

20%

0% —=

I

Mknod
Distribution of file system operation

I

I

I

I
= Hash
mm SkipList
[B+-Tree

m |

1

Put

Get Update Delete

Scan

Chmod Rename Mkdir

Neither hash nor sorted

Readdir

indexing can efficiently
support different KV

operations.

Remove

_—__J
S[X|a0+, SoCC2015]

Related work

e« Echo [Bailey+, INFLOW2013]

— Hybrid memory, Hash index
e NVStore [Yang+ FAST2015]
— NVM, Optimized B*-Tree index:

e unsorted leaf nodes
e FPTree [Oukid+, SIGMOD’2016]

— Hybrid memory, Optimized B*-Tree index:
* Unsorted leaf nodes
» Bitmap and fingerprints

All these NVM-based systems use a single index.

Hybrid index Key-Value Store (HiKV)

« Key idea of HIKV:
— Hybrid index: Hash and B*-Tree

Put/Update/ Put/Update/
Delete Delete

KV Data

« Challenges of hybrid index:
— Latency: How to reduce the latency of Put/Update/Delete?
— Concurrency: How to control the concurrency of hybrid index?

— Consistency: How to guarantee crash consistency with low
performance overhead?
7

HiKV overview

« Techniques:
* Asynchronous index updating
» Differential concurrency control
« Write-ordered consistency

/DRAM)
o
/

~——_ 5

B

Asynchronous index updating

* Index Placement
— Placing hash in slow NVM and B*-Tree in fast DRAM

* Index Updating
— Updating kv_item and hash index synchronously
— Updating B*-Tree asynchronously in the backend

/—————————————————————————————

{ Threadpool
Backend threads | Serving threads

N

|

|

thread0 | ... threadM || | thread0 ... threadN || |
|

/

Differential concurrency control

 Hash index and KV items

« Partitioning, fine-grained lock in partition
* Global B+-Tree index

« Hardware Transactional Memory (HTM)

/DRAM

N / " T Hashindex | _ . |
NvM | [CHashindex) o oo

(lock)

Partition Ni

\ VAN <'k> i/

Dynamic threads adaption

[Serving threads
Put/Update/Delete

« Challenge

— Performance degradation in
multithreaded execution

queue

[Backend threads

e Solution
— Sample # of KV ops and their latencies

— Dynamically adjust # of serving threads (Nsinq)
and backend threads (Npinq)

i (di ’ Lspd + Ng) Lsg + Nu) Lsu + Ns ’ Lss)/Nsrhd — di ’ prd/Nbrhd

- Filling rate Processing rate

~ Ngna + Nptha = Nipa
11

Write-ordered consistency

* Does not guarantee consistency of B*-Tree

Index to reduce NVM write.

* Write-ordered consistency
« First, update a kv item out-of-place
 Then, update the index entry atomically

key
signature

kv _item_pos

Hash Index | 16B

Key-Value
items

0 0

|1

T

12

Evaluation methodology

o Platform:

— Server: Intel Xeon E5-2620 v4

— Emulating NVM using DRAM by adding write latency in
software (600ns)

 Workloads:
— Micro-benchmarks: Put/Get/Update/Delete/Scan
— YCSB[Cooper+,SOCC’10]

— 16B key, 256B value, 50M key-value items

 Compared systems:

— NVStorelYang+,FAST'15]
— FPTreelOukid+,SIGMOD16]

— FPTree-C: using DRAM as Cache

13

Single-threaded performance

Latency reduction

2.0

T
@ NVStore

B FPTree
] FPTree C _
B HiKV

Normalized latency

Get Put Update Delete Scan

14

Single-threaded performance

Throughput improvement

6

I
= NVStore

5L B FPTree —
1 FPTree C
4 B HiKV |

Normalized throughput

Get Put Update Delete Scan

For Get, HiKV can improve throughput by 5.0x and 6.4x than NVStore
and FPTree.

For Delete, HIKV is 10.0% lower than FPTree due to one serving thread.

15

Throughput (M ops/s)

Scalability

« Throughput of YCSB-A/B

14

T T b 35 T T 1
15 | % NVStore 2 30 L 7 NVStore oF
= FPTree &, = FPTree
10 - < FPTree_C é 25 - < FPTree_C
8 = 20
6 - § 15
4 = 10 -
S
2) <= 5
o = — R
0 | L
2 4 8 16 24 32 2 4 8 16 24 32
Number of threads Number of threads
YCSB-A: 50%Get-50%Update YCSB-B: 95%Get-5%Update

16

DRAM and NVM consumption (GB)

DRAM Consumption

E NVStore-DRAM FPTree-NVM #¢ NVStore-ratio
1 NVStore-NVM [HiKV-DRAM & FPTree-ratio
B FPTree-DRAM [HiKV-NVM H} HiKV-ratio

80 8.0
L] - =
70 7.0 =
60 - 160 Z
e
50 + _ — -45.0 5
40 + _ \ - 4.0 g
30 + 5 -4 3.0 »
20 + \ 420 ¢
10 L . 410 S
=] L ~

O — | | S - } \, 00

64 128 256 512 1024

Value size (B)

For 256B value, HiKV-ratio is 15.8%, while FPTree-ratio is 0.4%.
Reducing the DRAM consumption is our future work.

17

Recovery time

* Recovering 50M key-values

NVStore 11.0s
FPTree 1.7s

HiKV-1thread 88.2s

HiKV-4thread 23.1s
HiKV-16thread 6.3s

HiKV takes longerrecovery time than NVStore and FPTree
due to unsorted hash index.

18

Summary

Hybrid DRAM and NVM memory is a promising solution
for future storage system.

A single index employed in existing NVM-based KV
stores can not efficiently support all KV operations.

This work proposes a hybrid index for hybrid memory
systems to serve different KV operations.

HIKV based on hybrid index outperforms the start-of-art
NVM-based KV stores.

19

Thanks for your listening!

Q&A

YRBMIE AR LG T &
3 L 3% -
INSTITUTE OF COMPUTING TECHNOLOGY, CHINESE ACADEMY OF SCIENCES 5
1

