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Large-Scale Cloud Data Analytics

* Memory intensive
* Deployed on clusters
* Shared environments

Large-Scale
Data

Memory Management




Container-Based
Cloud Memory Management

Myria Query
E—

Resource

Spark App Manager
iners

-——‘
4

{ Myria ( Spark ] { Myria -
Query -~ App Query

* Hard limits: Good for isolation but lack flexibility
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* Estimating memory usage before execution is hard



Inaccurate Memory Estimates Affect
Performance

* Application failures due to out-of-memory
* Performance degradation due to garbage collection
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Our Approach: ElasticMem

* Make container memory limits dynamic

* Allocate memory to multiple applications
— Perform actions: garbage collection, change mem limits, etc

Predict how memory actions affect performance
— Use predictions to drive memory allocation decisions

Our focus: analytical (relational) queries in Java-based
containers (JVM)




Our Approach: ElasticMem
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Implementing Dynamic Heap
Adjustment in a JVM

* OpenlJDK has a rigid design:

— Reserve heap space based on user-specified value
— Cannot be changed during runtime

* But memory overcommitting + 64-bit address
space opens up an opportunity

— Reserve and commit a large address space

* Does not physically occupy memory

— Adjust limits according to actual usage



Implementing Dynamic Heap
Adjustment in a JVM

Dynamic limit
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Our Approach: ElasticMem

* Make container memory limits dynamic

* Allocate memory to multiple applications
— Perform actions: garbage collection, change mem limits, etc

* Predict how memory actions affect performance
— Use predictions to drive memory allocation decisions



Dynamic Memory Allocation

* Problem description:

— Multiple queries sharing memory

— At each timestep, allocate memory by performing
actions

— Goal: Reduce query times and failures

* 0-1 knapsack problem:

— Capacity: total memory
— ltems: JVM memory usages after performing actions
— |ltem value: defined on multiple attributes



Dynamic Memory Allocation
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Values of Actions and States

o Kill (KILL): # of killed queries, fewer is better
* Pause (NOOP): # of paused queries, fewer is better
* Cost to acquire more memory (cost)

— Time/space efficiency

KILL
NOOP 0 1 N/A
Others 0 0 time / space

e \alue of a state: sum of action values
* Lexicographic order
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Values of Actions: Time and Space

* Increase memory limit (GROW):

— Space: estimated heap growth
 Maximum heap usage change in the past few timesteps

— Time: acquiring and accessing memory from OS
* Run a calibration program

* Reclaim memory (GC actions)
— Space: size of recycled memory
— Time: GC time
— How to predict them from heap states?



Our Approach: ElasticMem

* Make container memory limits dynamic

* Allocate memory to multiple applications
— Perform actions: garbage collection, change mem limits, etc

* Predict how memory actions affect performance
— Use predictions to drive memory allocation decisions

14



Build Performance Models
from Heap States

* Qur focus: analytical (relational) queries
— Large in-memory data structures

Hash Table X 2

Select Select

* Pick hash tables as our focus
— Predict time & space for different GCs from stats
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Features of Hash Tables

Alice Bob Carol

Alice

Select Select

Keys (zip code), long Values (name), String

# of tuples
# of keys

Schema information
— # of long columns
— #of String columns
— Sum of lengths of String
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Features of Hash Tables

; L for live objects
D for dead objects

98195 Alice Bob
l 98195 Alice Bob
/ 95054 == Alice
98195 Alice Bob

* # of tuples & # of keys: Total & delta since last GC
» 7 features to collect, 4 values to predict

Young Gen Old Gen
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Fvaluation: GC Models

e Model: M5P in Weka

* Training: generate hash tables with specific
feature values

Pick feature Run a query with the
. query Wi Collect stats

values generated hash table

Weka M5P
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Fvaluation: GC Models

* Testing: 17 TPC-H queries, randomly trigger GCs

Relative

Values to Predict
Absolute Errors

(RAE)

Total size of live object in the young 23%
generation (y;,.)

Total size of live object in the old 6%
generation (0,,.)

Time for a young generation GC (gc, ) 25%
Time for an old generation GC (gc,) 22%
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Evaluation: Scheduling

One Amazon EC2 r3.4xlarge instance

4 most memory intensive TPC-H queries with
scale factors 1 and 2 on Myria

* Original: OpenJDK 7u85

— Serial execution / fully parallel

* Elastic: our approach

— Resubmit: resubmitting killed queries serially after
all queries complete



Elapsed Time (s)

Compare to Serial:
Much Less Time in Most Cases

# of completed queries

Total Memory (GB)

10 15 20 30 40 50 70 90
1500 7\
6 8 g 8 g 8
1000 8
500 8 8 8 8
0

Elastic-Resubmit, U=1/12 Original, Serial

21



Compare to Fully Parallel:

Less Failures, Less Time
Total Memory (GB)
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* Advantages of ElasticMem:

— Automatically adjusts concurrency level
— Faster query executions and fewer failures
— Low overhead in case serial execution is necessary
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GC Time Reduction
Over Fully Parallel

GC Time Reduction: Up to 80%

Total Memory (GB)
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* Different memory increments U:
— Fixed (U=500MB) or dynamic (U=1/12 of free space)
* When memory is abundant, careful tuning of U is not required
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Other Results

* Query time saving up to 30%
* Elastic methods use memory more efficiently



ElasticMem: Conclusion

* Scheduling with hard memory limits is inefficient

* Avoid using containers with hard limits by
modifying JVM

* Design a scheduling algorithm to allocate
memory across multiple applications in real time
— Build models to predict GC time and space saving

— Reduce query time up to 30%, GC time up to 80%, use
memory more efficiently



