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Large-Scale	Cloud	Data	Analytics	
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• Memory	intensive
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Myria
Query

Container-Based
Cloud	Memory	Management
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• Hard limits: Good for	isolation but lack flexibility
• Estimating memory usage before execution is hard
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• Application	failures due to out-of-memory
• Performance degradation	due	to	garbage collection
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Our	Approach:	ElasticMem
• Make	container	memory	limits	dynamic

• Allocate	memory	to	multiple applications
– Perform actions:	garbage	collection,	change mem	limits,	etc

• Predict	how	memory	actions	affect	performance
– Use	predictions	to	drive	memory	allocation	decisions

• Our	focus:	analytical	(relational) queries	in	Java-based	
containers (JVM)
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Implementing	Dynamic	Heap	
Adjustment	in	a	JVM

• OpenJDK has	a	rigid	design:
– Reserve	heap	space	based	on	user-specified	value
– Cannot	be	changed	during	runtime

• But	memory	overcommitting	+	64-bit	address	
space	opens	up an	opportunity
– Reserve	and	commit	a	large	address	space
• Does	not	physically	occupy	memory

– Adjust	limits	according	to	actual	usage
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Implementing	Dynamic	Heap	
Adjustment	in	a	JVM
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Dynamic	Memory	Allocation

• Problem	description:
–Multiple	queries	sharing	memory
– At each timestep, allocate	memory	by	performing	
actions

– Goal:	Reduce	query	times	and	failures
• 0-1	knapsack	problem:
– Capacity:	total	memory
– Items:	JVM	memory	usages	after	performing	actions
– Item	value:	defined	on	multiple	attributes
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Dynamic	Memory	Allocation
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Values	of	Actions	and	States

• Kill	(KILL):	#	of	killed	queries,	fewer	is	better
• Pause (NOOP):	#	of	paused	queries,	fewer is better
• Cost	to acquire more memory	(cost)
– Time/space efficiency
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Action Value.KILL Value.NOOP Value.cost
KILL 1 0 N/A

NOOP 0 1 N/A

Others 0 0 time	/	space

• Value	of	a	state:	sum	of	action	values
• Lexicographic	order



Values	of	Actions:	Time	and	Space

• Increase memory limit (GROW):
– Space:	estimated	heap	growth
• Maximum	heap	usage	change	in	the	past few timesteps

– Time:	acquiring	and	accessing	memory	from	OS
• Run	a	calibration	program

• Reclaim memory (GC	actions)
– Space:	size	of	recycled	memory
– Time:	GC	time
– How	to	predict	them	from	heap	states?
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Build	Performance	Models	
from	Heap	States

• Our focus: analytical (relational) queries
– Large	in-memory	data	structures

• Pick	hash	tables	as	our	focus
– Predict	time	&	space	for	different	GCs	from	stats

Join

Aggregate

Select Select

Hash	Table	✕ 2

Hash	Table
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Features	of	Hash	Tables

98195
95054

…

Alice Bob Carol

Alice

… …

• #	of	tuples
• #	of	keys
• Schema	information

– #	of	long columns
– #	of	String columns
– Sum	of	lengths	of	String

Keys	(zip code),	long Values	(name),	String
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Features	of	Hash	Tables

98195

95054

Alice Bob Carol

Alice
98195 Alice Bob

98195 Alice Bob

• #	of	tuples	&	#	of	keys:	Total	&	delta	since	last	GC
• 7	features to collect,	4	values	to	predict

GC
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Evaluation:	GC	Models

• Model: M5P	in	Weka
• Training:	generate	hash	tables	with	specific	
feature	values
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Evaluation:	GC	Models

• Testing:	17 TPC-H queries, randomly	trigger	GCs

Values	to Predict Relative	
Absolute	Errors	
(RAE)

Total	size of	live	object	in	the	young	
generation	(ylive)

23%

Total	size of	live	object	in	the	old	
generation	(olive)

6%

Time	for	a	young	generation GC	(gcy) 25%
Time	for	an	old	generation GC	(gco) 22%
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Evaluation:	Scheduling

• One	Amazon	EC2	r3.4xlarge	instance
• 4	most	memory	intensive	TPC-H	queries	with	
scale	factors	1	and	2	on	Myria

• Original:	OpenJDK 7u85
– Serial	execution	/	fully	parallel

• Elastic:	our	approach
– Resubmit:	resubmitting	killed	queries	serially	after	
all	queries	complete
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Compare	to	Serial:	
Much	Less	Time	in	Most	Cases
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• Advantages	of	ElasticMem:
– Automatically	adjusts	concurrency	level
– Faster	query	executions	and	fewer	failures
– Low	overhead	in	case	serial	execution	is	necessary
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GC	Time	Reduction:	Up	to	80%
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• Different	memory	increments	U:
– Fixed	(U=500MB)	or	dynamic	(U=1/12	of	free	space)	

• When	memory	is	abundant,	careful	tuning	of	U is	not	required



Other	Results
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• Query time saving up to 30%
• Elastic	methods	use	memory	more	efficiently



ElasticMem:	Conclusion

• Scheduling	with	hard	memory	limits	is	inefficient
• Avoid	using	containers	with	hard	limits	by	
modifying	JVM	

• Design	a	scheduling	algorithm	to	allocate	
memory	across	multiple	applications	in	real	time
– Build	models	to	predict	GC	time	and	space	saving
– Reduce	query	time	up	to	30%,	GC	time	up	to	80%,	use	
memory	more	efficiently
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