
Elastic	Memory	Management	for	
Cloud	Data	Analytics

Jingjing	Wang	and	Magdalena	Balazinska

1

…

Large-Scale	Cloud	Data	Analytics	

2

Large-Scale
Data

Myria
Spark

Hadoop

Impala

Memory
Giraph

• Memory	intensive
• Deployed	on	clusters
• Shared	environments

Memory	Management

Myria
Query

Container-Based
Cloud	Memory	Management

3

Spark
App

Myria
Query

Resource
ManagerSpark	App

Myria	Query

Containers

• Hard limits: Good for	isolation but lack flexibility
• Estimating memory usage before execution is hard

0 2 4 6 8 10 12 14 16
Heap Size (GB)

20

50
100
200

500

Q
ue

ry
 T

im
e

(s
)

1..

Myria
Spark 1.1
Spark 2.0

Inaccurate	Memory	Estimates	Affect	
Performance

• Application	failures due to out-of-memory
• Performance degradation	due	to	garbage collection

4
A	self-join	query

OOM

Our	Approach:	ElasticMem
• Make	container	memory	limits	dynamic

• Allocate	memory	to	multiple applications
– Perform actions:	garbage	collection,	change mem	limits,	etc

• Predict	how	memory	actions	affect	performance
– Use	predictions	to	drive	memory	allocation	decisions

• Our	focus:	analytical	(relational) queries	in	Java-based	
containers (JVM)

5

Our	Approach:	ElasticMem
• Make	container	memory	limits	dynamic

• Allocate	memory	to	multiple applications
– Perform actions:	garbage	collection,	change mem	limits,	etc

• Predict	how	memory	actions	affect	performance
– Use	predictions	to	drive	memory	allocation	decisions

6

Implementing	Dynamic	Heap	
Adjustment	in	a	JVM

• OpenJDK has	a	rigid	design:
– Reserve	heap	space	based	on	user-specified	value
– Cannot	be	changed	during	runtime

• But	memory	overcommitting	+	64-bit	address	
space	opens	up an	opportunity
– Reserve	and	commit	a	large	address	space
• Does	not	physically	occupy	memory

– Adjust	limits	according	to	actual	usage

7

Implementing	Dynamic	Heap	
Adjustment	in	a	JVM

8

Change limit	
(GROW)

GC	(Shrink)
DeadLive

Resource
Manager

JVM

Socket

Kill

Live

Actions

(OpenJDK 7)

Dynamic	limit

Used

Our	Approach:	ElasticMem
• Make	container	memory	limits	dynamic

• Allocate	memory	to	multiple applications
– Perform actions:	garbage	collection,	change mem	limits, etc

• Predict	how	memory	actions	affect	performance
– Use	predictions	to	drive	memory	allocation	decisions

9

Dynamic	Memory	Allocation

• Problem	description:
–Multiple	queries	sharing	memory
– At each timestep, allocate	memory	by	performing	
actions

– Goal:	Reduce	query	times	and	failures
• 0-1	knapsack	problem:
– Capacity:	total	memory
– Items:	JVM	memory	usages	after	performing	actions
– Item	value:	defined	on	multiple	attributes

10

Dynamic	Memory	Allocation

11

Spark
App

Myria
Query

Spark
App

Myria
Query

GC GROW

Spark
App

GROW

Myria
Query

KILL

Spark
App

Myria
Query

Spark
App

Myria
Query

PAUSE GROW

GROWGROW

Values	of	Actions	and	States

• Kill	(KILL):	#	of	killed	queries,	fewer	is	better
• Pause (NOOP):	#	of	paused	queries,	fewer is better
• Cost	to acquire more memory	(cost)
– Time/space efficiency

12

Action Value.KILL Value.NOOP Value.cost
KILL 1 0 N/A

NOOP 0 1 N/A

Others 0 0 time	/	space

• Value	of	a	state:	sum	of	action	values
• Lexicographic	order

Values	of	Actions:	Time	and	Space

• Increase memory limit (GROW):
– Space:	estimated	heap	growth
• Maximum	heap	usage	change	in	the	past few timesteps

– Time:	acquiring	and	accessing	memory	from	OS
• Run	a	calibration	program

• Reclaim memory (GC	actions)
– Space:	size	of	recycled	memory
– Time:	GC	time
– How	to	predict	them	from	heap	states?

13

Our	Approach:	ElasticMem
• Make	container	memory	limits	dynamic

• Allocate	memory	to	multiple applications
– Perform actions:	garbage	collection,	change mem	limits,	etc

• Predict	how	memory	actions	affect	performance
– Use	predictions	to	drive	memory	allocation	decisions

14

Build	Performance	Models	
from	Heap	States

• Our focus: analytical (relational) queries
– Large	in-memory	data	structures

• Pick	hash	tables	as	our	focus
– Predict	time	&	space	for	different	GCs	from	stats

Join

Aggregate

Select Select

Hash	Table	✕ 2

Hash	Table

15

Features	of	Hash	Tables

98195
95054

…

Alice Bob Carol

Alice

… …

• #	of	tuples
• #	of	keys
• Schema	information

– #	of	long columns
– #	of	String columns
– Sum	of	lengths	of	String

Keys	(zip code),	long Values	(name),	String

16

Join

Select Select

…

Features	of	Hash	Tables

98195

95054

Alice Bob Carol

Alice
98195 Alice Bob

98195 Alice Bob

• #	of	tuples	&	#	of	keys:	Total	&	delta	since	last	GC
• 7	features to collect,	4	values	to	predict

GC

17

L LL D D L L L

L L LL LL D D DYoung Collection

Full Collection

L	for	live	objects
D	for	dead	objectsYoung	Gen Old	Gen

Evaluation:	GC	Models

• Model: M5P	in	Weka
• Training:	generate	hash	tables	with	specific	
feature	values

18

Run a query with the
generated hash table

Weka	M5P

Pick feature
values Collect stats

Evaluation:	GC	Models

• Testing:	17 TPC-H queries, randomly	trigger	GCs

Values	to Predict Relative	
Absolute	Errors	
(RAE)

Total	size of	live	object	in	the	young	
generation	(ylive)

23%

Total	size of	live	object	in	the	old	
generation	(olive)

6%

Time	for	a	young	generation GC	(gcy) 25%
Time	for	an	old	generation GC	(gco) 22%

19

Evaluation:	Scheduling

• One	Amazon	EC2	r3.4xlarge	instance
• 4	most	memory	intensive	TPC-H	queries	with	
scale	factors	1	and	2	on	Myria

• Original:	OpenJDK 7u85
– Serial	execution	/	fully	parallel

• Elastic:	our	approach
– Resubmit:	resubmitting	killed	queries	serially	after	
all	queries	complete

20

Total Memory (GB)
10 15 20 30 40 50 70 90

0

500

1000

1500

E
la

ps
ed

 T
im

e
(s

) 7
8

8
8

8

8

8

8

8

8

8

8

8

8

8

8

Elastic-Resubmit, U=1/12
ori,null,1,f

Compare	to	Serial:	
Much	Less	Time	in	Most	Cases

21

Total Memory (GB)
10 15 20 25 30 40 50 70 90

0

500

1000

1500

2000

El
ap

se
d

Ti
m

e
(s

)

4 4

7
8

2 4
5

6

8 8

46
8 8

8

58 8

8

7 5
8 8

8

7 6
8 8

8

8 8 8

8

8
7

8 8

8

8
7

8 8

8

8 8

Elastic-Resubmit, U=1/12
Elastic, U=1/12

Original, DOP=1
Original, DOP=4

Original, DOP=8

#	of	completed	queries Total Memory (GB)
10 15 20 30 40 50 70 90

0

500

1000

1500

El
ap

se
d

Ti
m

e
(s

) 7
8

8
8

8

8

8

8

8

8

8

8

8

8

8

8

Elastic-Resubmit, U=1/12
Original, Serial

Total Memory (GB)
10 15 20 30 40 50 70 90

0

500

1000

1500

E
la

ps
ed

 T
im

e
(s

) 7

2 4

8

48 5
8

6
8 8

7
8

7
8 8

Elastic-Resubmit, U=1/12
ori,null,8,f

Compare	to	Fully	Parallel:	
Less	Failures,	Less	Time

22

Total Memory (GB)
10 15 20 25 30 40 50 70 90

0

500

1000

1500

2000

El
ap

se
d

Ti
m

e
(s

)

4 4

7
8

2 4
5

6

8 8

46
8 8

8

58 8

8

7 5
8 8

8

7 6
8 8

8

8 8 8

8

8
7

8 8

8

8
7

8 8

8

8 8

Elastic-Resubmit, U=1/12
Elastic, U=1/12

Original, DOP=1
Original, DOP=4

Original, DOP=8

Total Memory (GB)
10 15 20 30 40 50 70 90

0

500

1000

1500

El
ap

se
d

Ti
m

e
(s

) 7

2 4

8

48 5
8

6
8 8

7
8

7
8 8

Elastic-Resubmit, U=1/12
Original, Fully Parallel

• Advantages	of	ElasticMem:
– Automatically	adjusts	concurrency	level
– Faster	query	executions	and	fewer	failures
– Low	overhead	in	case	serial	execution	is	necessary

2 4 4 5 6 7 7

7

Total Memory (GB)
10 15 20 30 40 50 70 90

0

20

40

60

80

G
C

 T
im

e
R

ed
uc

tio
n

O
ve

r F
ul

ly
 P

ar
al

le
l

(%
)

Elastic, U=1/8
Elastic, U=1/12

Elastic, U=1/16
Elastic, U=500MB

Elastic, U=1000MB

GC	Time	Reduction:	Up	to	80%

23

• Different	memory	increments	U:
– Fixed	(U=500MB)	or	dynamic	(U=1/12	of	free	space)	

• When	memory	is	abundant,	careful	tuning	of	U is	not	required

Other	Results

24

• Query time saving up to 30%
• Elastic	methods	use	memory	more	efficiently

ElasticMem:	Conclusion

• Scheduling	with	hard	memory	limits	is	inefficient
• Avoid	using	containers	with	hard	limits	by	
modifying	JVM	

• Design	a	scheduling	algorithm	to	allocate	
memory	across	multiple	applications	in	real	time
– Build	models	to	predict	GC	time	and	space	saving
– Reduce	query	time	up	to	30%,	GC	time	up	to	80%,	use	
memory	more	efficiently

25

