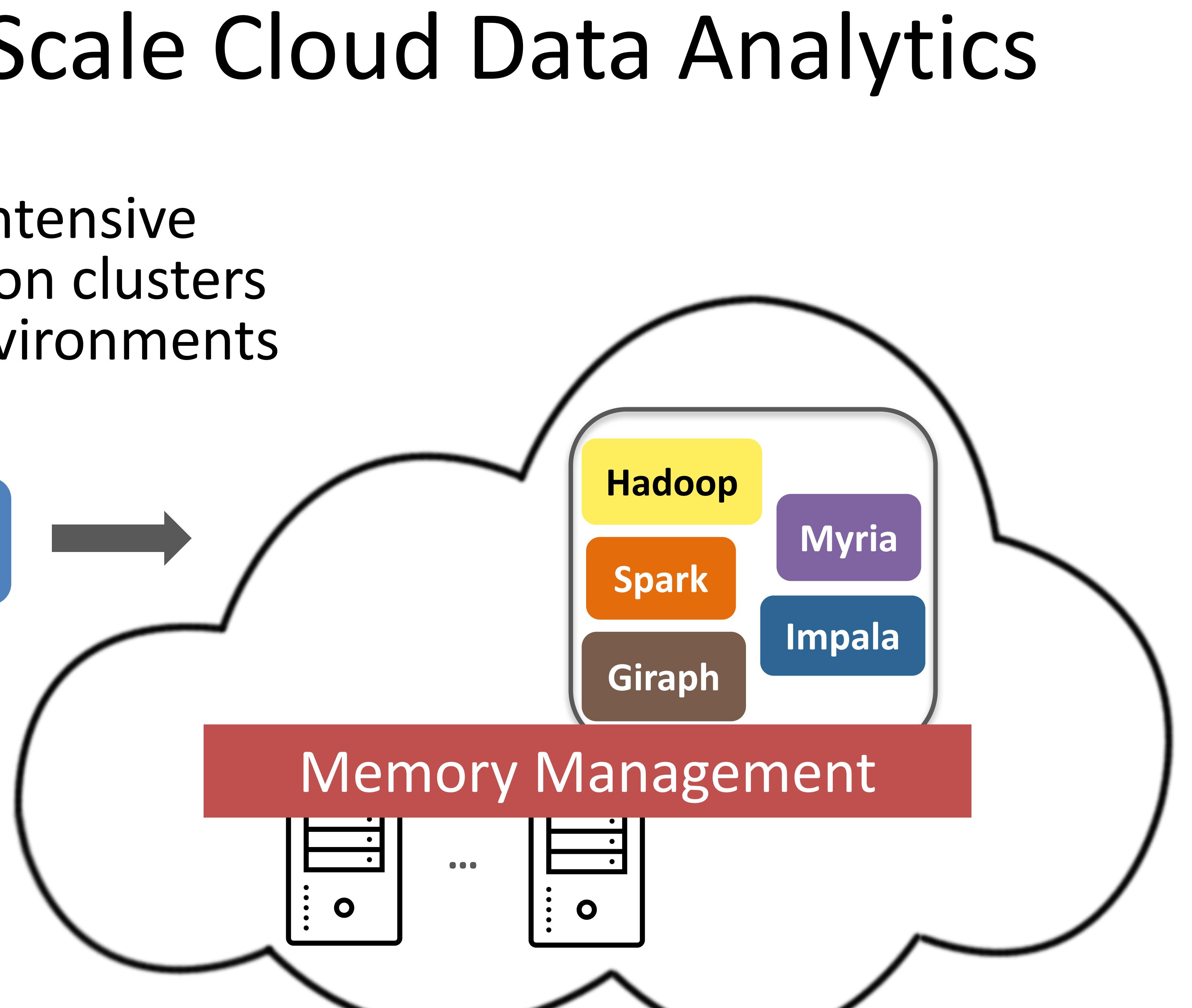
Elastic Memory Management for Cloud Data Analytics Jingjing Wang and Magdalena Balazinska PAUL G. ALLEN SCHOOL **OF COMPUTER SCIENCE & ENGINEERING**

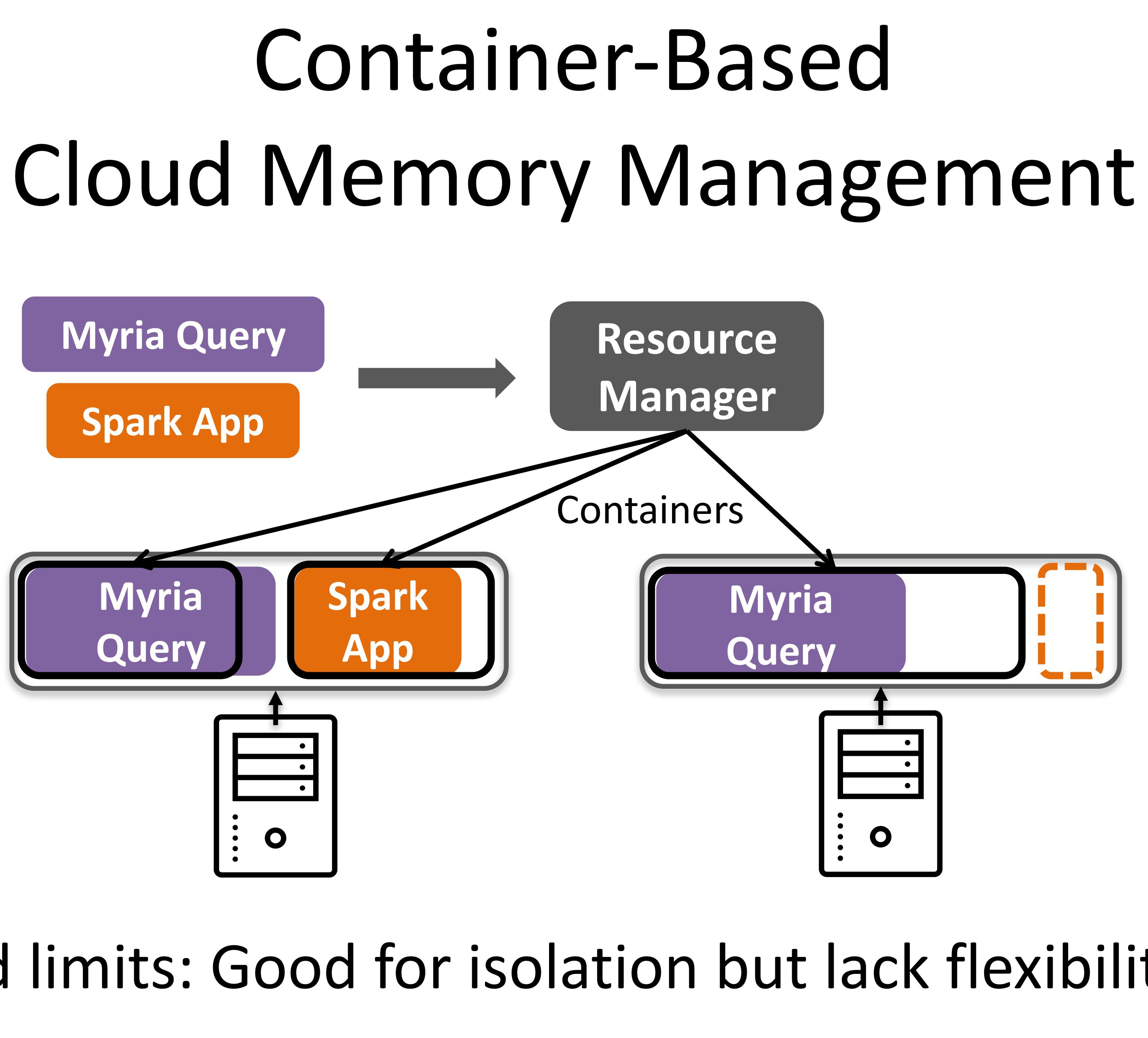
Large-Scale Cloud Data Analytics

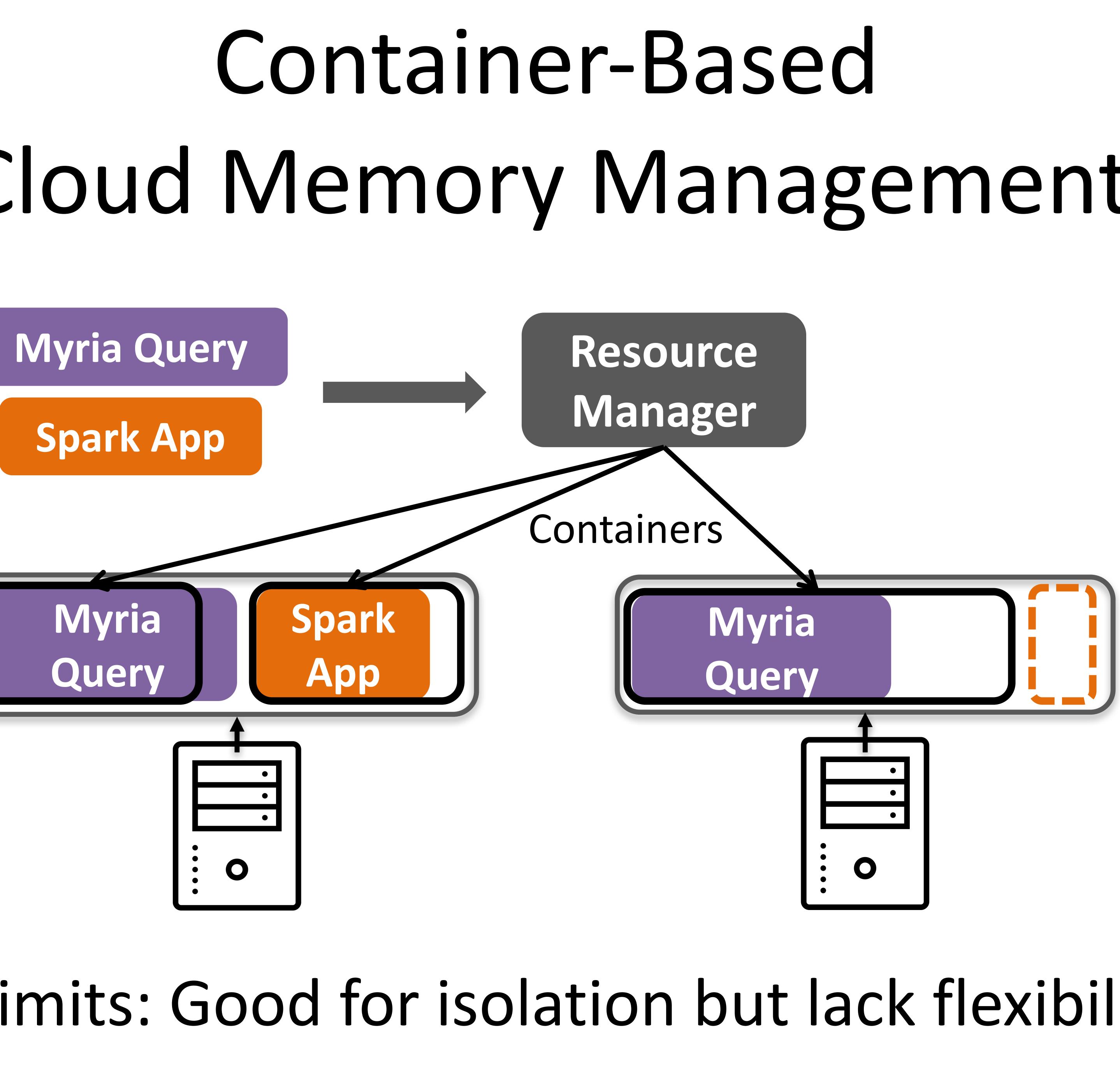
Memory intensive Deployed on clusters Shared environments

Large-Scale Data



Hard limits: Good for isolation but lack flexibility Estimating memory usage before execution is hard

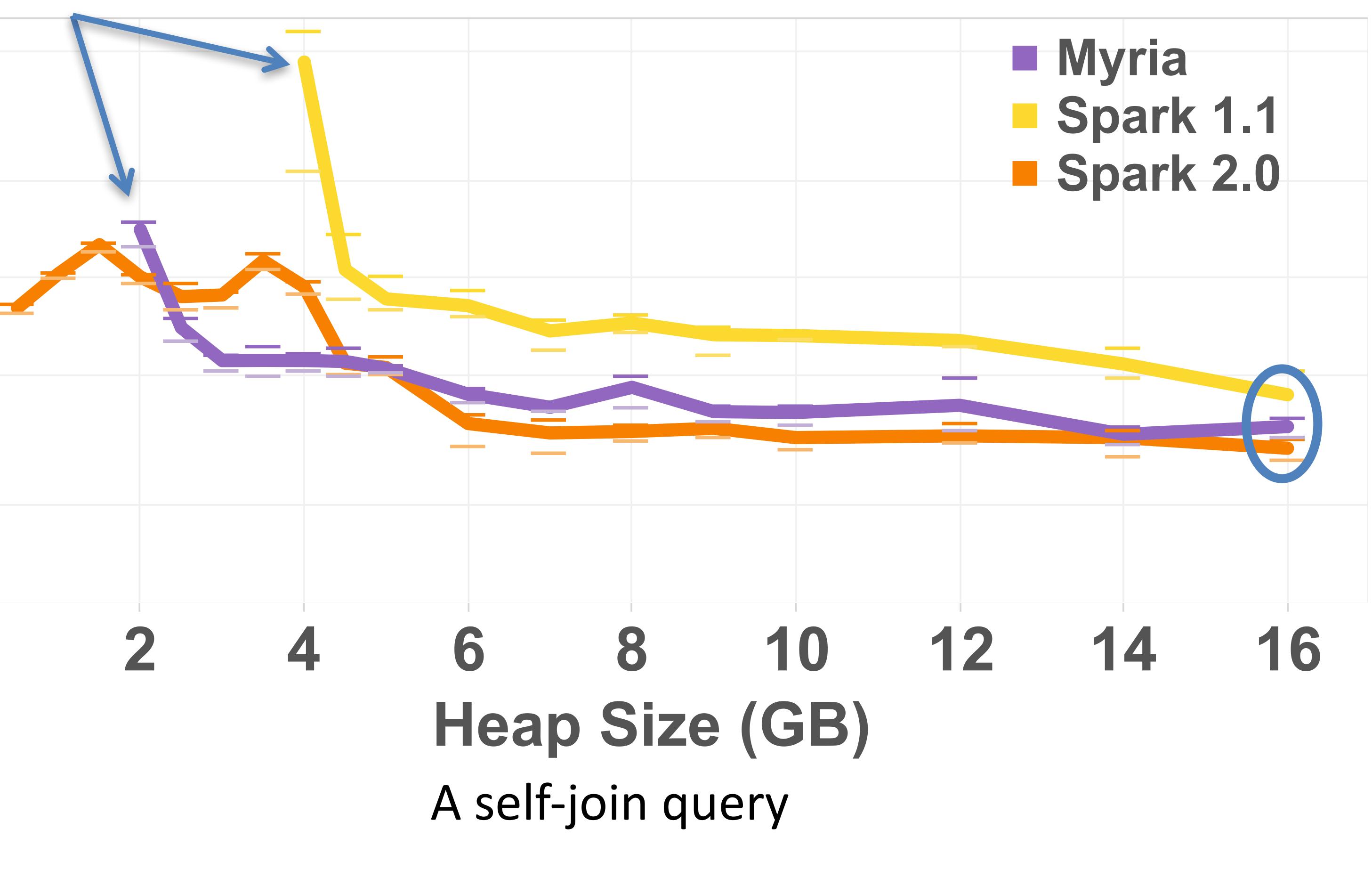




Performance OOM

Inaccurate Memory Estimates Affect Application failures due to out-of-memory Performance degradation due to garbage collection

500	
200	
100	
50	
20	



containers (JVM)

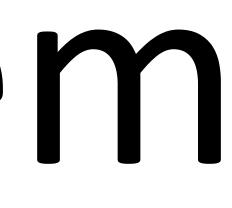
Our Approach: ElasticMem

• Make container memory limits dynamic

 Allocate memory to multiple applications – Perform actions: garbage collection, change mem limits, etc

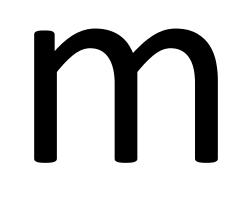
• Predict how memory actions affect performance Use predictions to drive memory allocation decisions

- Our focus: analytical (relational) queries in Java-based



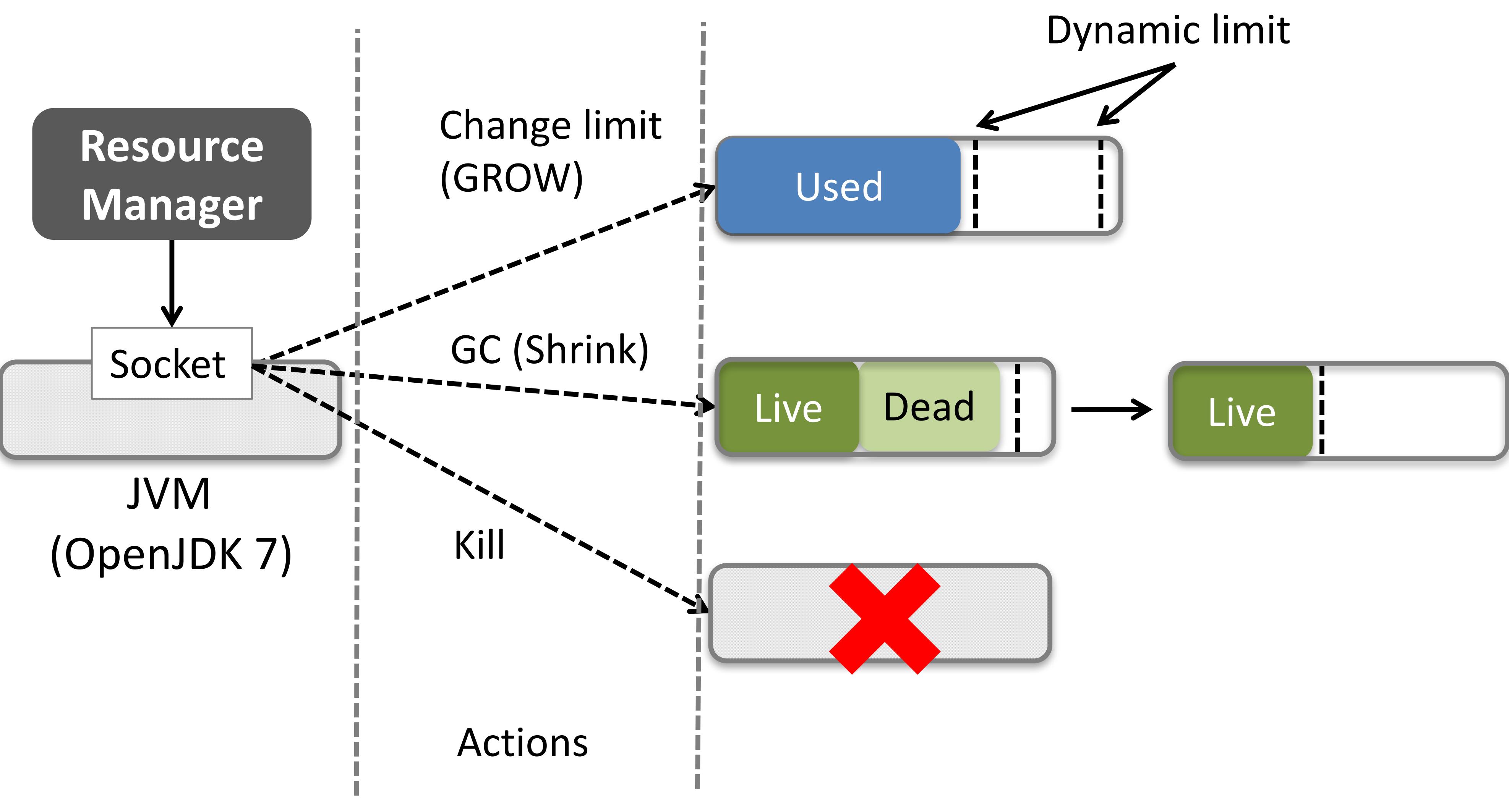
Our Approach: ElasticMem • Make container memory limits dynamic Allocate memory to multiple applications - Perform actions: garbage collection, change mem limits, etc • Predict how memory actions affect performance

Use predictions to drive memory allocation decisions



Implementing Dynamic Heap Adjustment in a JVM

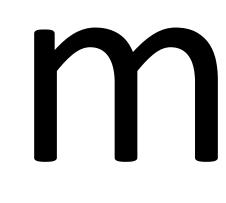
- OpenJDK has a rigid design:
 - Reserve heap space based on user-specified value
 - Cannot be changed during runtime
- But memory overcommitting + 64-bit address
 - space opens up an opportunity
 - Reserve and commit a large address space
 - Does not physically occupy memory
 - Adjust limits according to actual usage



Implementing Dynamic Heap Adjustment in a JVM

Our Approach: ElasticMem Make container memory limits dynamic Allocate memory to multiple applications - Perform actions: garbage collection, change mem limits, etc

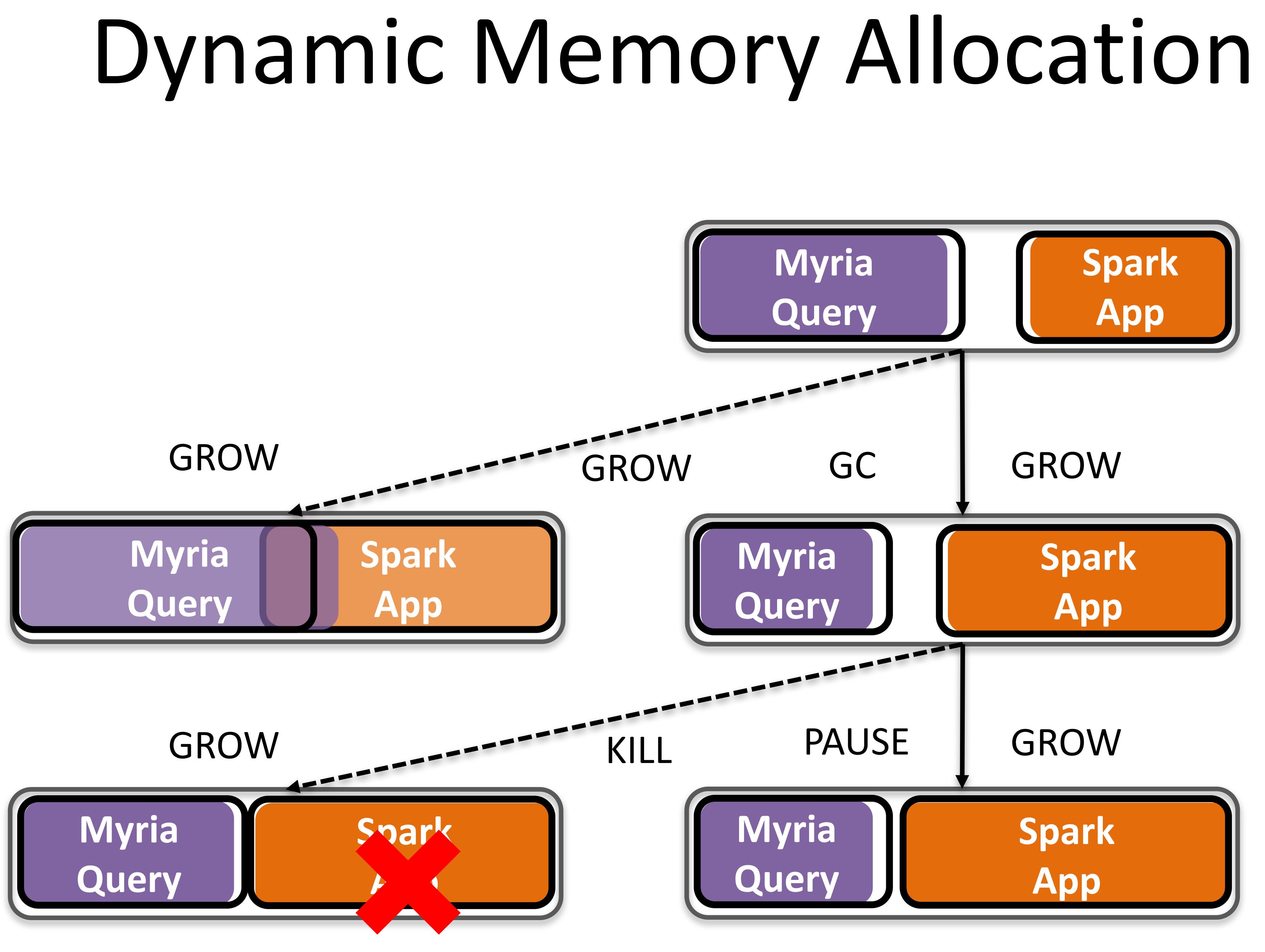
• Predict how memory actions affect performance Use predictions to drive memory allocation decisions

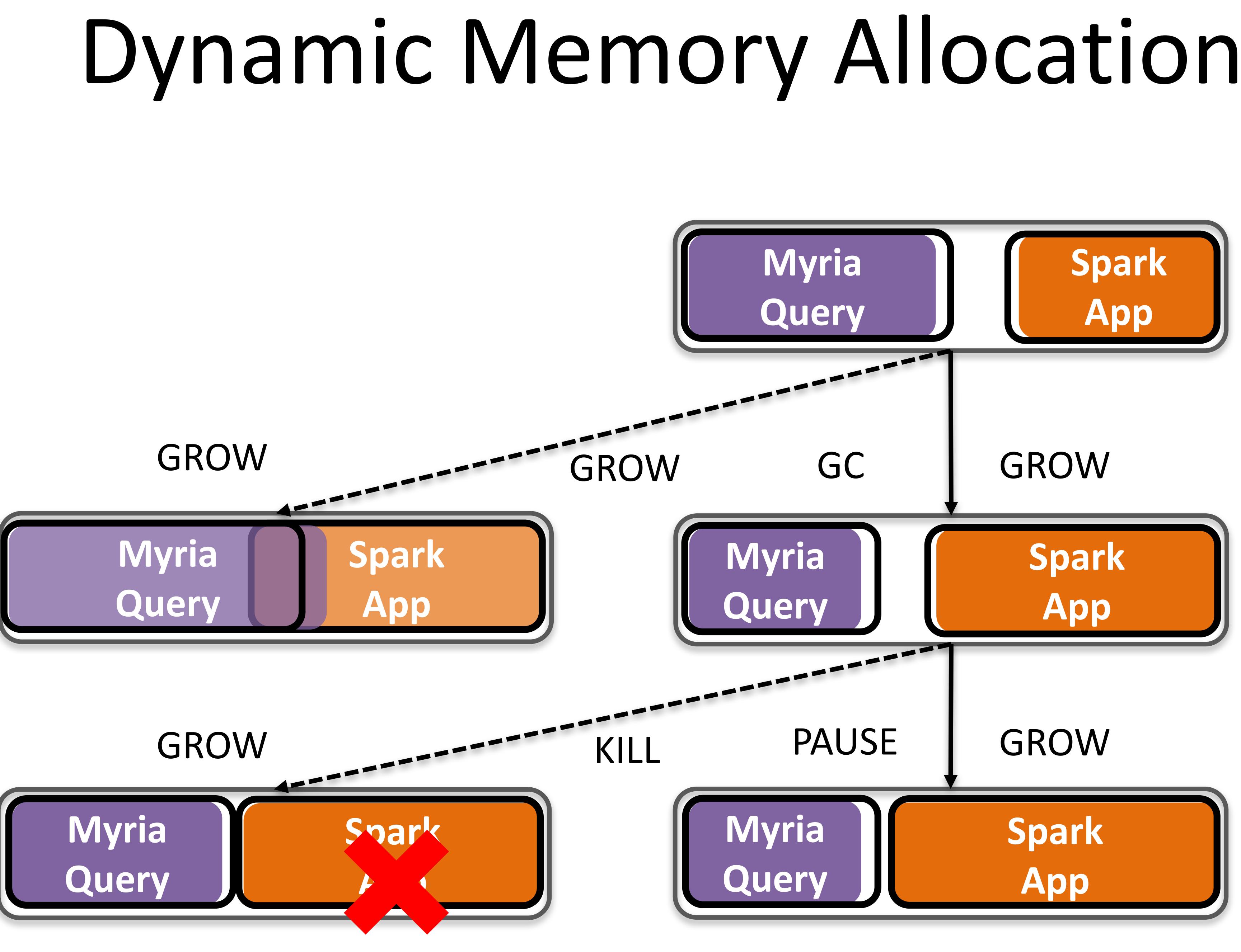


Dynamic Memory Allocation

- Problem description:
 - Multiple queries sharing memory - At each timestep, allocate memory by performing
 - actions
- Goal: Reduce query times and failures 0-1 knapsack problem: - Capacity: total memory Item value: defined on multiple attributes

Items: JVM memory usages after performing actions





Values of Actions and States

• Kill (KILL): # of killed queries, fewer is better • Pause (NOOP): # of paused queries, fewer is better Cost to acquire more memory (cost) - Time/space efficiency Value.KILL Value.NO Action KILL \mathbf{O} NOOP Others \mathbf{O} Value of a state: sum of action Lexicographic order

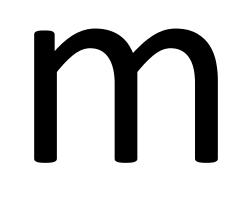
OP	Value.cost
	N/A
	N/A
	time / space
tior	Nalues

Values of Actions: Time and Space Increase memory limit (GROW): Space: estimated heap growth • Maximum heap usage change in the past few timesteps - Time: acquiring and accessing memory from OS Run a calibration program • Reclaim memory (GC actions) - Space: size of recycled memory - Time: GC time

- How to predict them from heap states?

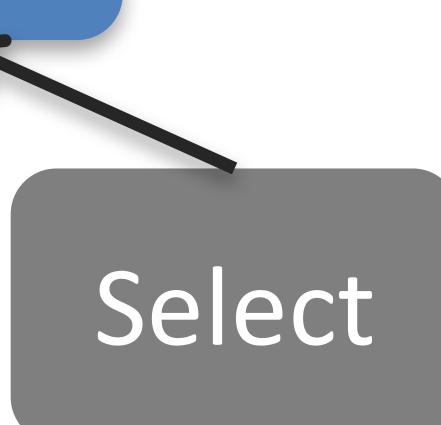
Our Approach: ElasticMem Make container memory limits dynamic • Allocate memory to multiple applications - Perform actions: garbage collection, change mem limits, etc

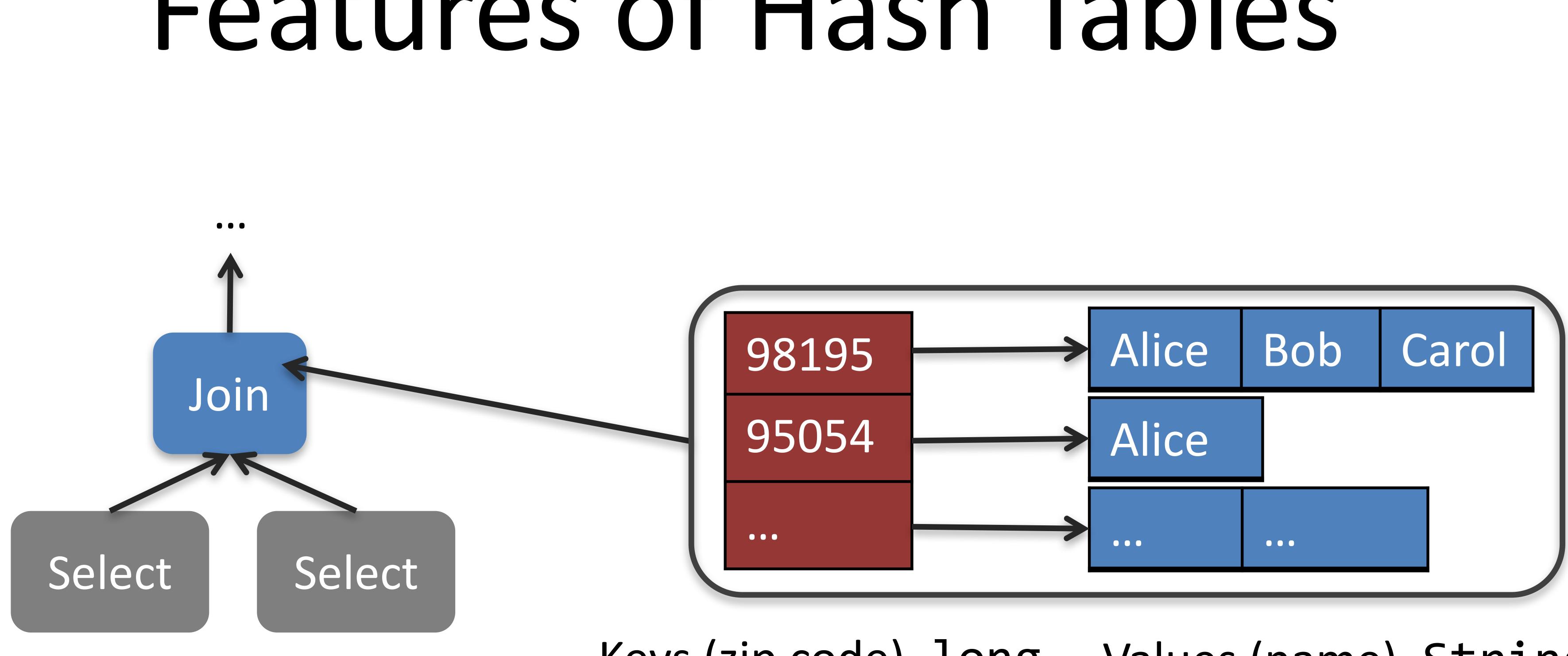
• Predict how memory actions affect performance Use predictions to drive memory allocation decisions



Build Performance Models from Heap States • Our focus: analytical (relational) queries Large in-memory data structures Aggregate Hash Table Join Hash Table X 2 Select Select • Pick hash tables as our focus

Predict time & space for different GCs from stats





• # of tuples • # of keys Schema information – # of long columns

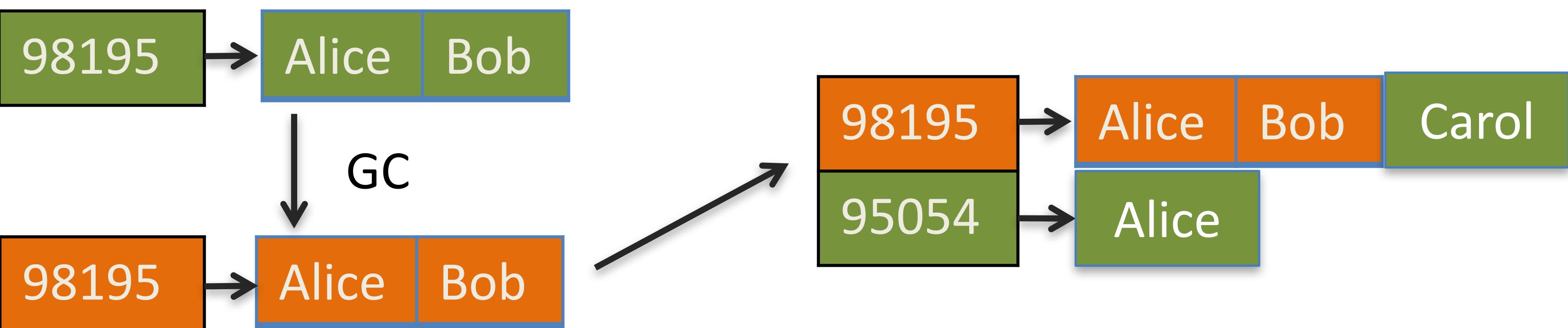
— # of String columns — Sum of lengths of String

Features of Hash Tables

Keys (zip code), long

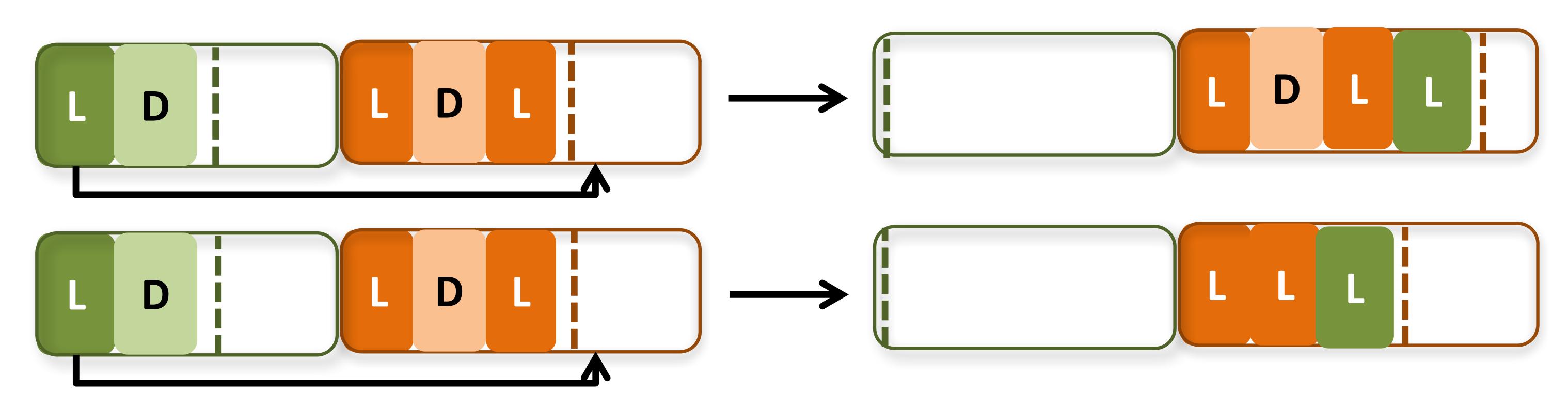
Values (name), String

Young Collection Full Collection



• # of tuples & # of keys: Total & delta since last GC • 7 features to collect, 4 values to predict

Features of Hash Tables L for live objects Young Gen Old Gen D for dead objects



Evaluation: GC Models Model: M5P in Weka • Training: generate hash tables with specific feature values

Pick feature values

Run a query with the generated hash table

Collect stats

Evaluation: GC Models • Testing: 17 TPC-H queries, randomly trigger GCs

Values to Predict

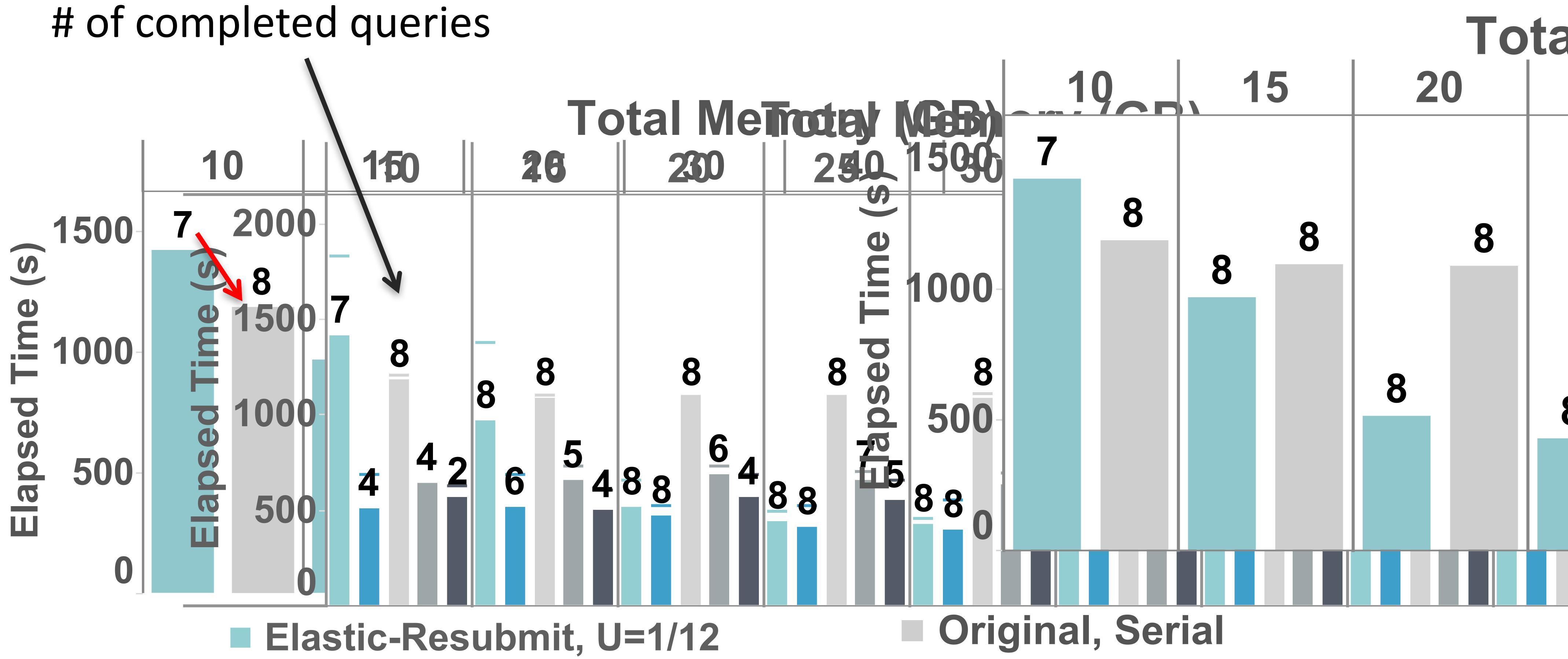
generation (y_{live}) generation (O_{live})

Total size of live object in the y Total size of live object in the o Time for a young generation G Time for an old generation GC

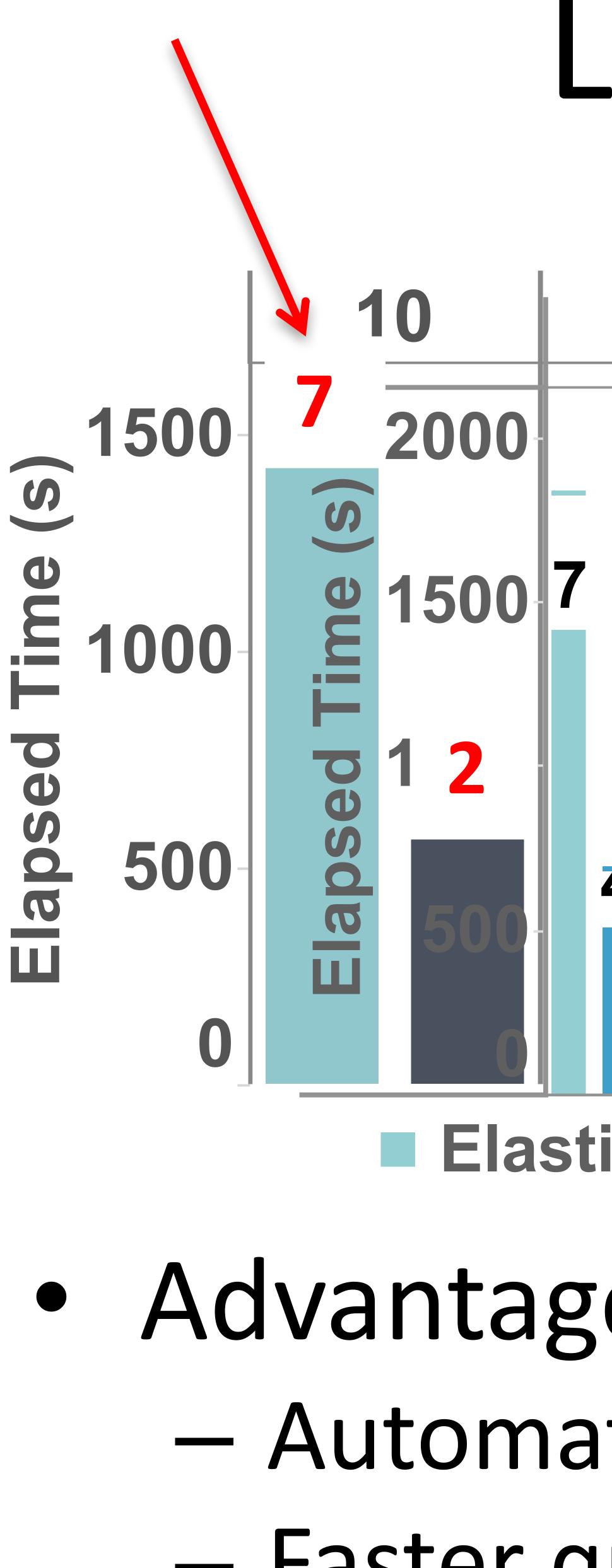
	Relative Absolute (RAE)
Joung	
bld	6%
$iC(gc_y)$	25%
(gc_0)	22%

- Serial execution / fully parallel Resubmit: resubmitting killed queries serially after
- Original: OpenJDK 7u85 • Elastic: our approach all queries complete

Evaluation: Scheduling • One Amazon EC2 r3.4xlarge instance 4 most memory intensive TPC-H queries with scale factors 1 and 2 on Myria

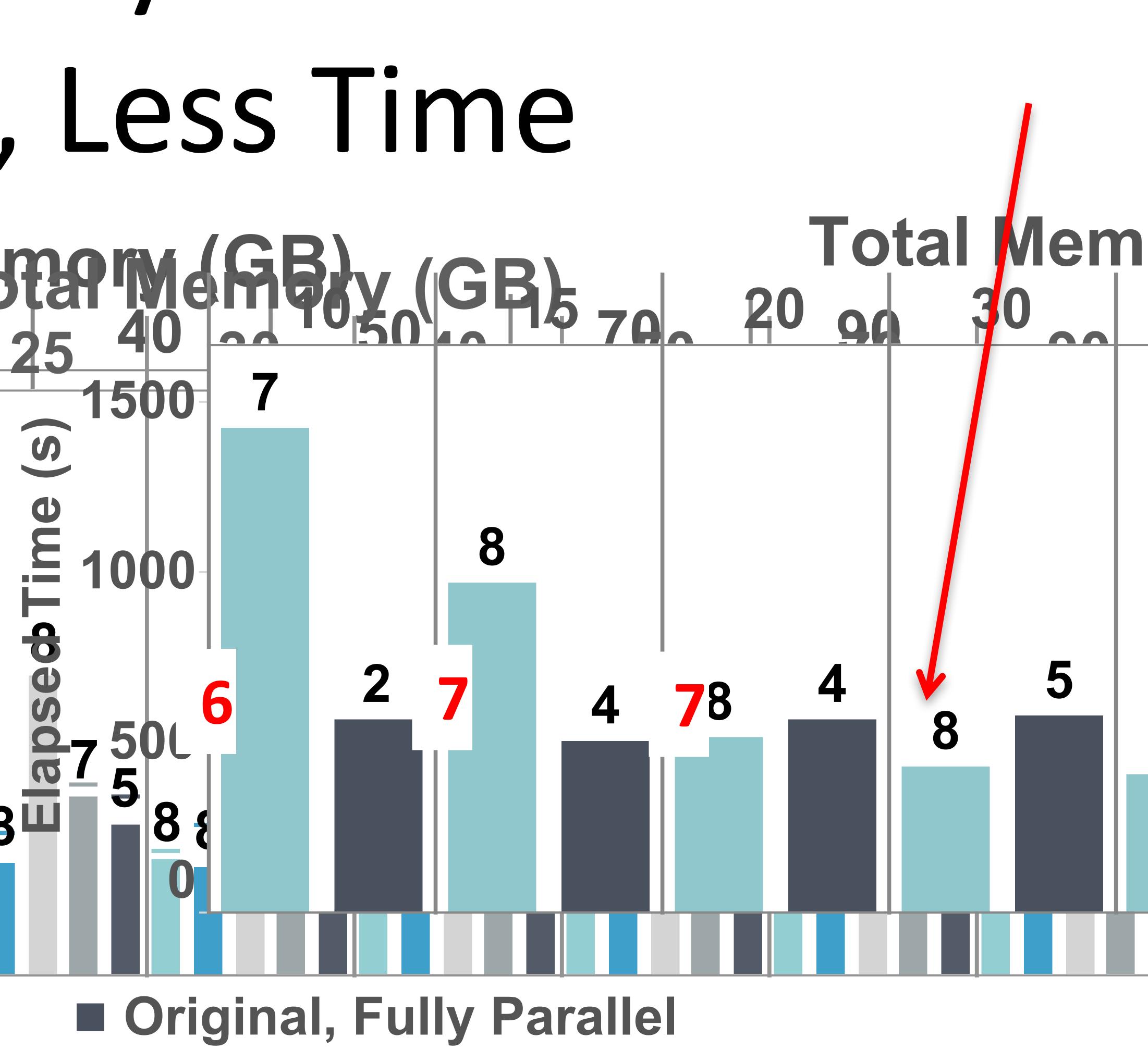


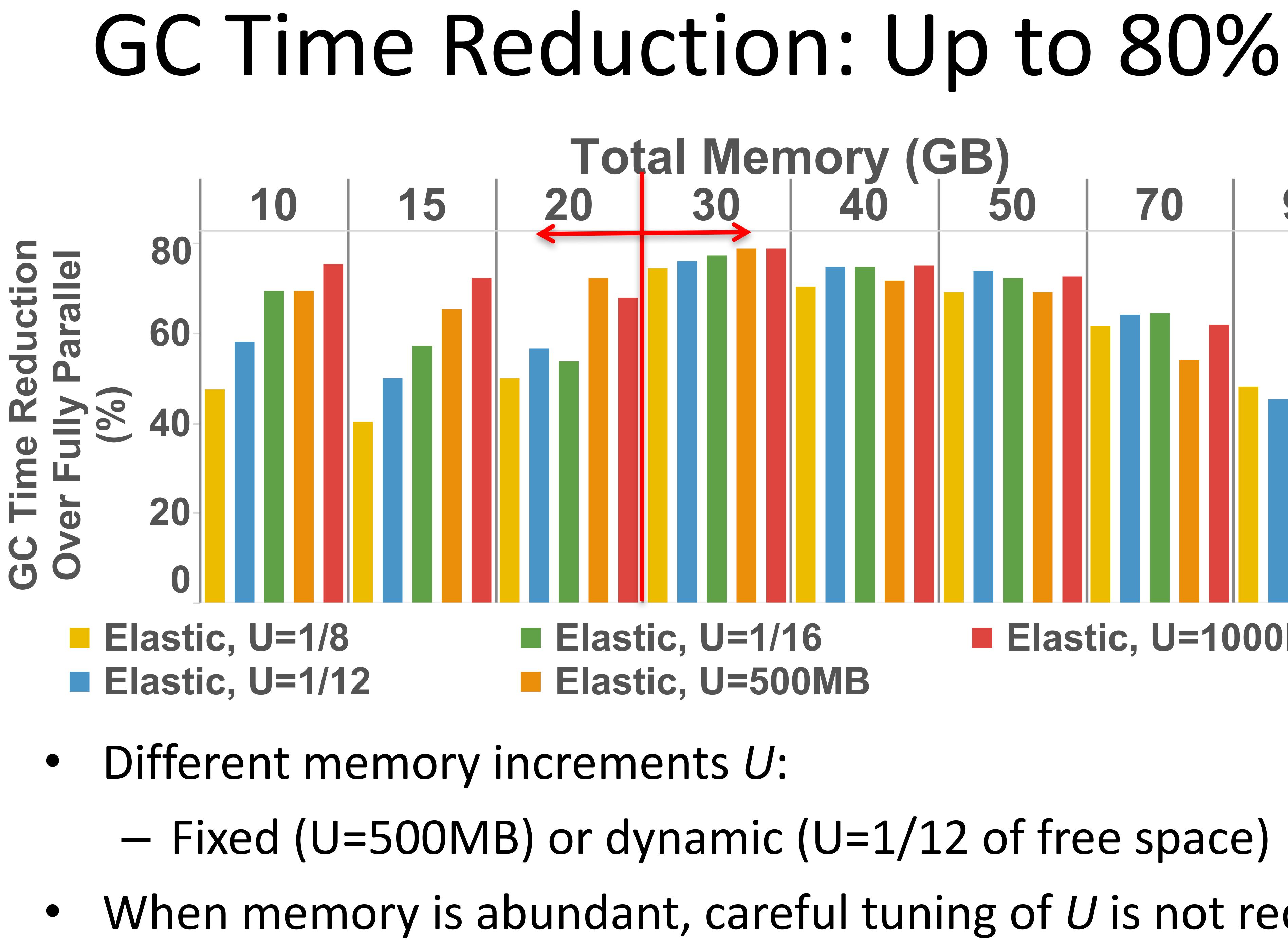
Compare to Serial: Much Less Time in Most Cases



 Advantages of ElasticMem: Automatically adjusts concurrency level Faster query executions and fewer failures Low overhead in case serial execution is necessary

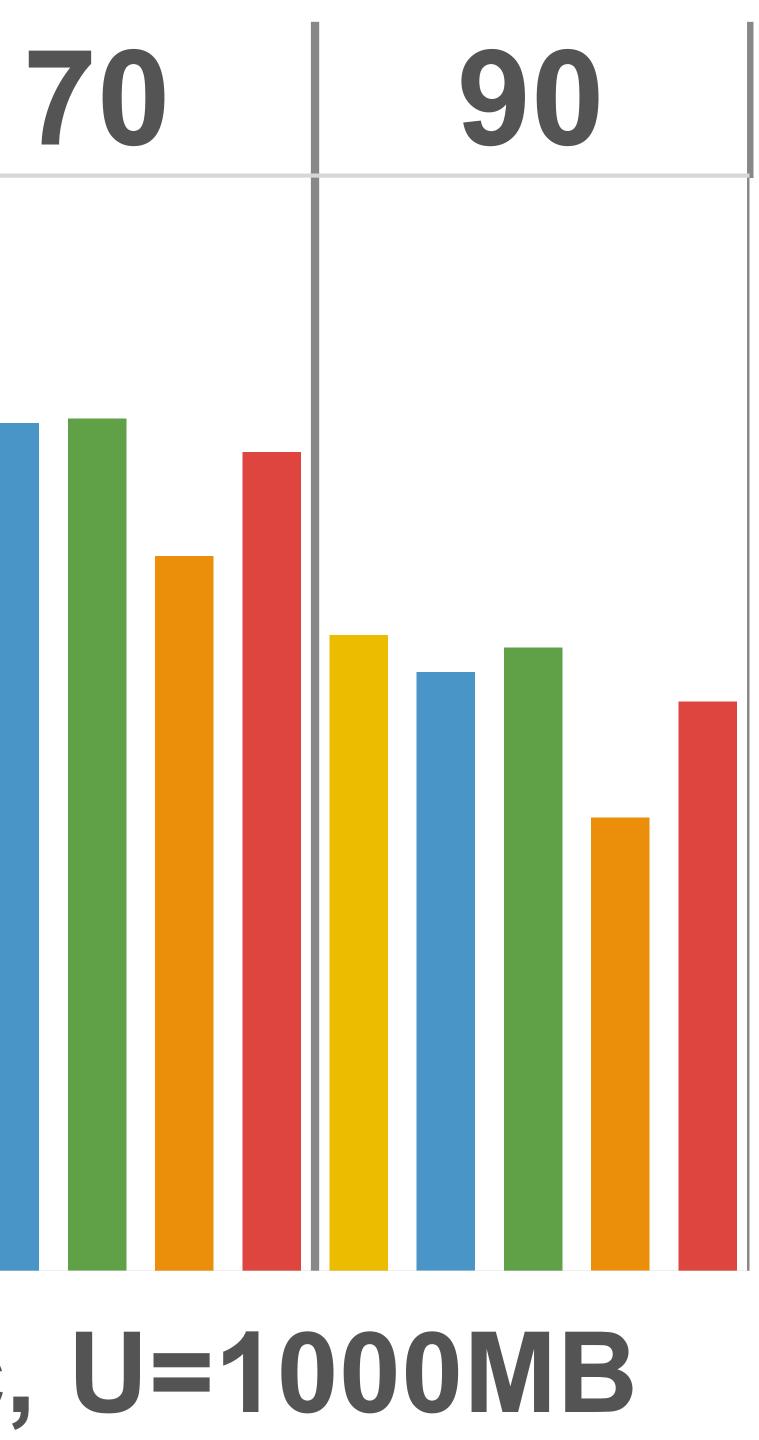
Compare to Fully Parallel: Less Failures, Less Time Total Menanie GB_{20} (GB) 70 Total 1 $\frac{20}{20}$ 25 40 GB_{20} (GB) 70 20 00 35 5 Elastic-Resubmit, U=1/12





- Fixed (U=500MB) or dynamic (U=1/12 of free space) • When memory is abundant, careful tuning of U is not required

Total Memory (GB) 20 30 40 50 70 Elastic, U=1000MB



Other Results Query time saving up to 30% • Elastic methods use memory more efficiently

modifying JVM

- Avoid using containers with hard limits by
- Design a scheduling algorithm to allocate

 - Reduce query time up to 30%, GC time up to 80%, use memory more efficiently

ElasticMem: Conclusion

• Scheduling with hard memory limits is inefficient

memory across multiple applications in real time Build models to predict GC time and space saving