Elastic Memory Management for
Cloud Data Analytics

Jingjing Wang and Magdalena Balazinska

s =)
\ == - e 8 05 Y
= r E A\
— . y A
R . B %
A - —_— ~ \
S— — : ' .] (R Y
= — - \ b d) ! o 44 \
p ¢ » { | SN SN
[, L ’ v) -~
L%) — v wa "
oh i m— ™, 4 a e ¥
W I \ L 4 \ . R .
i \) oA VA \) L%
v '. ’ 1 (N \ 1 [N - — .
Ll \ ¢ ' » \
AT . L) T 1 v
N " ' ‘A A . N
A " 3 h Ay wmm —
[N >] \ “ i —— -
. SN - - | \ —
) - 2
. y s —
t . o g e >
A b - -),
LY s .
) ¢
Ll B S i —
:

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING

Large-Scale Cloud Data Analytics

* Memory intensive
* Deployed on clusters
* Shared environments

Large-Scale
Data

Memory Management

Container-Based
Cloud Memory Management

Myria Query
E—

Resource

Spark App Manager
iners

-——‘
4

{ Myria (Spark] { Myria -
Query -~ App Query

* Hard limits: Good for isolation but lack flexibility

4m =

* Estimating memory usage before execution is hard

Inaccurate Memory Estimates Affect
Performance

* Application failures due to out-of-memory
* Performance degradation due to garbage collection

900

® Myria
Spark 1.1
m Spark 2.0

200
00

0

1

S

<

6 8 10 12 14 16
Heap Size (GB)

A self-join query

Query Time (s)

20

Our Approach: ElasticMem

* Make container memory limits dynamic

* Allocate memory to multiple applications
— Perform actions: garbage collection, change mem limits, etc

Predict how memory actions affect performance
— Use predictions to drive memory allocation decisions

Our focus: analytical (relational) queries in Java-based
containers (JVM)

Our Approach: ElasticMem

* Make container memory limits dynamic

* Allocate memory to multiple applications
— Perform actions: garbage collection, change mem limits, etc

* Predict how memory actions affect performance
— Use predictions to drive memory allocation decisions

Implementing Dynamic Heap
Adjustment in a JVM

* OpenlJDK has a rigid design:

— Reserve heap space based on user-specified value
— Cannot be changed during runtime

* But memory overcommitting + 64-bit address
space opens up an opportunity

— Reserve and commit a large address space

* Does not physically occupy memory

— Adjust limits according to actual usage

Implementing Dynamic Heap
Adjustment in a JVM

Dynamic limit

Resource
Manager

JVM
(OpenlJDK 7)

\

Our Approach: ElasticMem

* Make container memory limits dynamic

* Allocate memory to multiple applications
— Perform actions: garbage collection, change mem limits, etc

* Predict how memory actions affect performance
— Use predictions to drive memory allocation decisions

Dynamic Memory Allocation

* Problem description:

— Multiple queries sharing memory

— At each timestep, allocate memory by performing
actions

— Goal: Reduce query times and failures

* 0-1 knapsack problem:

— Capacity: total memory
— ltems: JVM memory usages after performing actions
— |ltem value: defined on multiple attributes

Dynamic Memory Allocation

11

Values of Actions and States

o Kill (KILL): # of killed queries, fewer is better
* Pause (NOOP): # of paused queries, fewer is better
* Cost to acquire more memory (cost)

— Time/space efficiency

KILL
NOOP 0 1 N/A
Others 0 0 time / space

e \alue of a state: sum of action values
* Lexicographic order

12

Values of Actions: Time and Space

* Increase memory limit (GROW):

— Space: estimated heap growth
 Maximum heap usage change in the past few timesteps

— Time: acquiring and accessing memory from OS
* Run a calibration program

* Reclaim memory (GC actions)
— Space: size of recycled memory
— Time: GC time
— How to predict them from heap states?

Our Approach: ElasticMem

* Make container memory limits dynamic

* Allocate memory to multiple applications
— Perform actions: garbage collection, change mem limits, etc

* Predict how memory actions affect performance
— Use predictions to drive memory allocation decisions

14

Build Performance Models
from Heap States

* Qur focus: analytical (relational) queries
— Large in-memory data structures

Hash Table X 2

Select Select

* Pick hash tables as our focus
— Predict time & space for different GCs from stats

15

Features of Hash Tables

Alice Bob Carol

Alice

Select Select

Keys (zip code), long Values (name), String

of tuples
of keys

Schema information
— # of long columns
— #of String columns
— Sum of lengths of String

16

Features of Hash Tables

; L for live objects
D for dead objects

98195 Alice Bob
l 98195 Alice Bob
/ 95054 == Alice
98195 Alice Bob

* # of tuples & # of keys: Total & delta since last GC
» 7 features to collect, 4 values to predict

Young Gen Old Gen

17

Fvaluation: GC Models

e Model: M5P in Weka

* Training: generate hash tables with specific
feature values

Pick feature Run a query with the
. query Wi Collect stats

values generated hash table

Weka M5P

18

Fvaluation: GC Models

* Testing: 17 TPC-H queries, randomly trigger GCs

Relative

Values to Predict
Absolute Errors

(RAE)

Total size of live object in the young 23%
generation (y;,.)

Total size of live object in the old 6%
generation (0,,.)

Time for a young generation GC (gc,) 25%
Time for an old generation GC (gc,) 22%

19

Evaluation: Scheduling

One Amazon EC2 r3.4xlarge instance

4 most memory intensive TPC-H queries with
scale factors 1 and 2 on Myria

* Original: OpenJDK 7u85

— Serial execution / fully parallel

* Elastic: our approach

— Resubmit: resubmitting killed queries serially after
all queries complete

Elapsed Time (s)

Compare to Serial:
Much Less Time in Most Cases

of completed queries

Total Memory (GB)

10 15 20 30 40 50 70 90
1500 7\
6 8 g 8 g 8
1000 8
500 8 8 8 8
0

Elastic-Resubmit, U=1/12 Original, Serial

21

Compare to Fully Parallel:

Less Failures, Less Time
Total Memory (GB)

15 20 30 40 50 70
0
= 3
= 1000
-
Q. 500 8 8 8 g8 8
Ll
0
Elastic-Resubmit, U=1/12 ®m Original, Fully Parallel

* Advantages of ElasticMem:

— Automatically adjusts concurrency level
— Faster query executions and fewer failures
— Low overhead in case serial execution is necessary

22

GC Time Reduction
Over Fully Parallel

GC Time Reduction: Up to 80%

Total Memory (GB)
20 30

80

m Elastic, U=1/8 m Elastic, U=1/16 m Elastic, U=1000MB
m Elastic, U=1/12 m Elastic, U=500MB

O
o

()
S

N
o

* Different memory increments U:
— Fixed (U=500MB) or dynamic (U=1/12 of free space)
* When memory is abundant, careful tuning of U is not required

23

Other Results

* Query time saving up to 30%
* Elastic methods use memory more efficiently

ElasticMem: Conclusion

* Scheduling with hard memory limits is inefficient

* Avoid using containers with hard limits by
modifying JVM

* Design a scheduling algorithm to allocate
memory across multiple applications in real time
— Build models to predict GC time and space saving

— Reduce query time up to 30%, GC time up to 80%, use
memory more efficiently

