
Graphene-SGX

A Practical Library OS for Unmodified
Applications on SGX

Chia-Che Tsai Donald E. Porter Mona Vij

Intel SGX: Trusted Execution on Untrusted Hosts

App confidentiality & integrity on machines you have no control

Processing Sensitive Data
(Ex: Medical Records)

Client
Machines

Public
Cloud

Porting Apps to SGX is Not Exactly Painless

An effortless option for wide-ranged Ubuntu apps?

Crypto Functions
(Ex: WolfSSL)

Microservices
(Ex: lighttpd)

Language Runtimes
(Ex: OpenJDK)

▪ OS functionality available but not trusted

▪ Porting: novice hell

Some SGX frameworks
(SCONE/Panoply) target here

Still “some” porting effort (Ex: recompiling)

Open SGX framework for Unmodified Linux Apps

▪ Graphene-SGX:

• No reprogramming or recompiling

• Servers / Command-line apps / Runtimes
(Apache, NGINX, GCC, R, Python, OpenJDK, Memcached, …)

• Multi-process APIs (fork, IPC, …)

• Not meant to be perfect, but a quick, practical option
(or to avoid app changes)

Talk Outline

▪ How does Graphene-SGX protect unmodified applications?

▪ Why should you try Graphene-SGX?

▪ What is the right way for porting applications to SGX?

The Graphene LibOS Project [Eurosys14]

▪ An open libOS for reusing Linux applications

(github.com/oscarlab/graphene)

• Inspired by Drawbridge[ASPLOS11]

and Haven[OSDI14]

• Gradually adopted by labs / industry

• Active development & tech support
(doing our best!)

Unmodified Application

Process Process

LibOS LibOS

145 Linux syscalls (growing)

Easy to port to new OS/platform

Intel SGX (Software Guard Extensions)

Untrusted
OS

App
Process

SGX instructions
(ECREATE/EINIT)

“Enclave”

Signed
App

Sensitive
Data

Completely
isolated
from OS

Intel SGX (Software Guard Extensions)

Untrusted
OS

“Enclave”

Signed
App

Sensitive
Data

Secret
Key

Encrypted
& signed
in DRAM App

Process

Intel SGX (Software Guard Extensions)

Enclave app requirements:

1. Signed initial code

2. No direct syscalls

3. Checking untrusted inputs

Untrusted
OS

“Enclave”

Signed
App

Sensitive
Data App

Process

Unmodified Linux app:
(1) Dynamic linked
(2) Built with syscall usage

Running Unmodified App with Graphene-SGX

Graphene Loader

Untrusted
OS

$ SGX=1 ./pal_loader httpd [args]

Running Unmodified App with Graphene-SGX

Untrusted
OS

Graphene LibOS

GNU libc

httpd User Libs

Linux syscalls

Enclave Interface (28 calls)

Signed by developers
as a CPU-verifiable signature
(Signing tool provided)

Running Unmodified App with Graphene-SGX

Enclave app requirements:

1. Signed initial code

2. No direct syscalls

3. Checking untrusted inputs

Untrusted
OS

Graphene LibOS

GNU libc

httpd User Libs

Linux syscalls

Enclave Interface (28 calls)

✓

✓

key research problem

Checking Untrusted Inputs from the OS

▪ Checking untrusted syscalls is subtle [Checkoway, 2013]

▪ Graphene-SGX:

• Narrowing to a fixed interface (28 calls)

• Redefining an interface suitable for checking

▪ Examples:

• Reading an integrity-sensitive file (Ex: library/script/config)

• See paper: multi-process APIs

Ex: Reading an Integrity-Sensitive File

▪ Ask for explicit inputs

▪ Checksums given

in a signed “manifest”

▪ Copy & verify in enclave

Untrusted
OS

LibOS

Enclave Interface

GNU libc

httpd User Libs

read mmap dlopen

FileMap(file,off,size)

File
Chunk

Check-
sums

ManifestLinux syscalls

Checking All 28 Enclave Calls

Examples # Result Explanation

(1) Reading a file
(2) Inter-proc

coordination
18

Fully
Checked

(1) File checksums
(2) CPU attest. + crypto:

inter-proc TLS connection

Yielding a thread 6 Benign Nothing to check

(1) Polling handles
(2) File attributes

4 Unchecked Future work

Summary

▪ Graphene-SGX turns an unmodified app into enclave app

• A app-specific signature authenticating all binaries

• Syscalls implemented inside enclaves

• Narrowing & redefining untrusted OS inputs to checkable values

Why (and When) You Should Try Graphene-SGX

▪ Unmodified apps / needs dynamic loading

▪ When alternatives don’t offer OS functionality you want

▪ Graphene-SGX:

• Rich OS functionality (145 syscalls so far)

• Blow up enclave size & TCB (trusted computing base)?

• Performance?

Comparison with Other SGX Frameworks

Graphene-SGX SCONE
[OSDI16]

Panoply
[NDSS17]

Approach LibOS
“Shim” Layers: redirect &

check system APIs

Functionality
vs

checks

Can grow without
extending checks

Using more system APIs
= more checks

Trusted Computing Base

Not fundamental to libOS, but more by the choice of libc

LibOS/shim 53 kLoC 97 kLoC 10kLoC

Choice of
libc

GNU libC
(1.1 MLoC)

musl
(88 kLoC)

No libc
in enclave

Graphene-SGX SCONE
[OSDI16]

Panoply
[NDSS17]

Graphene-SGX Performance

▪ Baselines: Linux, Graphene (without SGX)

▪ Workloads:

• Server: Apache with 5 worker processes

• Command-line: R benchmarks

▪ Evaluation Setup:

4-core 3.20 GHz Intel i5 CPU + 8 GB RAM

Apache with 5 Processes (w/ IPC Semaphore)

0

2

4

6

0 2 4 6 8 10 12

A
ve

ra
ge

 R
e

sp
o

n
se

Ti

m
e

 (
S)

Throughput (k.req/S)

Linux Graphene (without SGX) Graphene-SGX

30%
loss

better

better

Graphene:
little effect (~5%)

on top throughput

Graphene-SGX:
Impact by enclave exits
& checking OS inputs

R Benchmarks
O

ve
rh

e
ad

 t
o

 L
in

u
x

Workloads

Linux Graphene (without SGX) Graphene-SGX
10x

0%

~1x
overhead

better

Graphene: ~0% overhead

Graphene-SGX:
Memory-intensive impact

(app behavior)

Graphene-SGX Performance Discussion

▪ Latency overhead less than ~1x unless memory-intensive

▪ LibOS memory cost only 5-15 MB

▪ Cause:

• Enclave exits & checks (can improve)

• App memory usage (reduce with configuration / partitioning)

In the End: A Developer’s Guide for SGX Porting

1. Explore / POC with Graphene-SGX

2.
▪ Compile out code & syscalls
▪ SCONE / Panoply
▪ Other tools: Eleos, T-SGX

3.
▪ Partitioning (Glamdring)
▪ Optimize performance & security

▪ Keep safe interface to OS

▪ Reduce memory footprint
& enclave exits

▪ Take care of vulnerabilities
(side channels!)

Conclusion

Graphene-SGX — quick, practical Linux-to-SGX porting option

• Usability: Rich Linux functionality with multi-process

• Performance: Less than ~1x overheads (normal cases)

• Security: (1) Reduce OS interaction to checkable services
(2) LibOS TCB comparable to other options

Graphene library OS: github.com/oscarlab/graphene
(chitsai@cs.stonybrook.edu)

