Graphene-SGX

A Practical Library OS for Unmodified
Applications on SGX

Chia-Che Tsai Donald E. Porter Mona Vij
/=3 | THE UNIVERSITY
| of NORTH CAROLINA
q\\\‘ Stony BrOok ”él LLLLLLLLLLLLL :intel

University

i Fortanix

Intel SGX: Trusted Execution on Untrusted Hosts

S

E Pr(c;cesl\s/:nzgj.Seln;itive:a;ta - . = 1 Public
x: Medical Records 1

- R Cloud

Ll o -

M

Ll

Ll

0

O

=

" Client

— Machines

App confidentiality & integrity on machines you have no control

Porting Apps to SGX is Not Exactly Painless

= OS functionality available but not trusted

= Porting: novice =2 hell

(Ex: WolfSSL) ? (Ex: lighttpd) (Ex: OpenlDK)

Crypto Functions m N Language Runtimes

Some SGX frameworks
(SCONE/Panoply) target here

Still “some” porting effort (Ex: recompiling)

An effortless option for wide-ranged Ubuntu apps?

Open SGX framework for Unmodified Linux Apps
= Graphene-SGX:

* No reprogramming or recompiling

* Servers / Command-line apps / Runtimes
(Apache, NGINX, GCC, R, Python, OpenJDK, Memcached, ...)

* Multi-process APIs (fork, IPC, ...)

* Not meant to be perfect, but a quick, practical option
(or to avoid app changes)

Talk Outline

" How does Graphene-SGX protect unmodified applications?
= Why should you try Graphene-SGX?

= What is the right way for porting applications to SGX?

The Graphene LibOS Project [Eurosys14]

" An open libOS for reusing Linux applications
(github.com/oscarlab/graphene)

Unmodified Application

* Inspired by Drawbridge[ASPLOS11]

and Haven[0SDI14] Process Process

145 Linux syscalls (growing)

* Gradually adopted by labs / industry
LibOS LibOS

e Active development & tech support
(doing our best!)

r

Easy to port to new OS/platform

Intel SGX (Software Guard Extensions)

Completely
“Enclave” isolated

Sensitive from OS
Data App

Process

SGX instructions
(ECREATE/EINIT)

% Untrusted
9 o

Intel SGX (Software Guard Extensions)

.
Encrypted .,

& signed ‘

Process

Untrusted
0S

Intel SGX (Software Guard Extensions)

Enclave app requirements:

“Enclave”

1. Signed initial code
BN | 2. No direct syscalls
Data App App _
3. Checking untrusted inputs

Process

Unmodified Linux app:
2 Untrusted (1) Dynamic linked
,.... 03 (2) Built with syscall usage

Running Unmodified App with Graphene-SGX

$ SGX=1 ./pal_loader httpd [args]

Graphene Loader

i Untrusted
)

Running Unmodified App with Graphene-SGX

-l httpd ‘ User Libs

GNU libc

Signed by developers
as a CPU-verifiable signature
(Signing tool provided)

% Untrusted

& o

Running Unmodified App with Graphene-SGX

Enclave app requirements:
1. Signed initial code \/

i httpd ‘ User Libs

GNU libc

Graphene LibOS

2. No direct syscalls \/

3. Checking untrusted inputs

key research problem

Enclave Interface (28 calls)

% Untrusted

& o

Checking Untrusted Inputs from the OS
" Checking untrusted syscalls is subtle [Checkoway, 2013]

" Graphene-SGX:

* Narrowing to a fixed interface (28 calls)
* Redefining an interface suitable for checking

= Examples:
* Reading an integrity-sensitive file (Ex: library/script/config)

* See paper: multi-process APls

Ex: Reading an Integrity-Sensitive File

L. httpd ‘ User Libs

GNU libc
read mmap dlopen

Linux syscalls Manifest

LibOS Check-
sums
FileMap(file,off,size)

Enclave Interface

2 Untrusted
(O 1)

= Ask for explicit inputs

= Checksums given
in a signed “manifest”

= Copy & verify in enclave

Checking All 28 Enclave Calls

Examples # Result Explanation
(1) Reading a file Full (1) File checksums
(2) Inter-proc 18 Y (2) CPU attest. + crypto:
.. Checked , _
coordination Inter-proc TLS connection
Yielding a thread 6 Benign Nothing to check
(1) Polling handles 4 Unchecked Future work

(2) File attributes

Summary

" Graphene-SGX turns an unmodified app into enclave app

* A app-specific signature authenticating all binaries
e Syscalls implemented inside enclaves

* Narrowing & redefining untrusted OS inputs to checkable values

Why (and When) You Should Try Graphene-SGX

» Unmodified apps / needs dynamic loading
= When alternatives don’t offer OS functionality you want

" Graphene-SGX:
e Rich OS functionality (145 syscalls so far)

* Blow up enclave size & TCB (trusted computing base)?

* Performance?

Comparison with Other SGX Frameworks

SCONE Panoply

Graphene-SGX (0SDI16] [INDSS17]

“Shim” Layers: redirect &

Approach LibOS check system APIs

Functionality gy grow without Using more system APIs
Vs .
extending checks = more checks

Trusted Computing Base

Graphene-SGX SCONE Panoply
[OSDI16] [NDSS17]
LibOS/shim 53 kLoC 97 kLoC 10kLoC
Choice of GNU libC musl No libc
libc (1.1 MLoC) (88 kLoC) in enclave

Not fundamental to libOS, but more by the choice of libc

Graphene-SGX Performance
= Baselines: Linux, Graphene (without SGX)

= \Workloads:

* Server: Apache with 5 worker processes

e Command-line: R benchmarks

= Evaluation Setup:
4-core 3.20 GHz Intel i5 CPU + 8 GB RAM

Apache with 5 Processes (w/ IPC Semaphore)
#Linux @Graphene (without SGX) ¢Graphene-SGX

Q 6

2 lbetter

O

o Graphene-SGX: Graphene:

o Impact by enclave exits little effect (~5%)

@ & checking OS inputs on top throughput

(G

Q

é O 1 1 1 1 1 1 1 ‘ bEtter
0 2 4 6 8 10 12

Throughput (k.req/S)

R Benchmarks

g ¥ Linux M Graphene (without SGX) Graphene-SGX

1OX' N
= -lbetter \
= j Graphene-SGX: \

Memory-intensive impact \ ~
= - ?azp bsh:vigr) ; § 1x
N
® \ \ overhead
() E E RENNRENRT L &’ E
< 0% {gg\gh N NN
Q
S S P S - SR SR N
SRR &%
AN

Graphene-SGX Performance Discussion
= Latency overhead less than ~1x unless memory-intensive
= LibOS memory cost only 5-15 MB

= Cause:

* Enclave exits & checks (can improve)

* App memory usage (reduce with configuration / partitioning)

In the End: A Developer’s Guide for SGX Porting

. Explore / POC with Graphene-SGX

= Compile out code & syscalls
. = SCONE / Panoply
= Other tools: Eleos, T-SGX

" Partitioning (Glamdring)
- = Optimize performance & security

= Keep safe interface to OS

= Reduce memory footprint
& enclave exits

= Take care of vulnerabilities
(side channels!)

Conclusion

Graphene-SGX — quick, practical Linux-to-SGX porting option
* Usability: Rich Linux functionality with multi-process

* Performance: Less than ~1x overheads (normal cases)

* Security: (1) Reduce OS interaction to checkable services
(2) LibOS TCB comparable to other options

Graphene library OS: github.com/oscarlab/graphene
(chitsai@cs.stonybrook.edu)

Stony Brook mn of NORTH CAROLINA |||i|I| Fort an ix i’n te I)

University @ 43 |« cuarer min

QF

