£,
e

UNIVERSITY OF

TEXAS

ARLINGTON

SmartCuckoo: A Fast and Cost-Efficient Hashing

!l_ Index Scheme for Cloud Storage Systems

Yuanyuan Sun, Yu Hua, Song Jiang*, Qiuyu Li,
Shunde Cao, Pengfe1 Zuo

Huazhong University of Science and Technology
*University of Texas, Arlington

Presented in the USENIX ATC 2017

;| tndexing services 1n cloud storage

s Large amounts of data

> From small hand-held devices to large-scale data centers
> 447B 1n total, 5.2TB for each user in 2020 (IDC' 2014)

s Fast query services are important to both users and systems
> Returning accurate results 1n a real-time manner

> Improving system performance and storage efficiency

iT he importance of hash tables

= Hash tables are widely used 1n data stores and caches

> Key-value stores, e.g., Memcached, Redis
> Relational databases, e.g., MonetDB, HyPer
> In-cache index (ICS 2014, MICRO 2015)

= Strengths:
> Constant-scale addressing complexity ~O(1)
> Fast query response

= Weakness:
> Risk of high-latency for handling hashing collisions

m Cuckoo hashing

iCuckoo hashing

Kick-out operations: like cuckoo birds

= Open addressing
= Supporting fast lookups: O(1) time complexity

= However, msertion latency can be very high and
unpredictable, especially

> when an endless loop occurs!

iﬂow 1s an endless loop formed?

Hl(/v

N O D»n R~ W NN = O

iﬂow 1s an endless loop formed?

iﬂow 1s an endless loop formed?

i@ow 1s an endless loop formed?

-

ijow 1s an endless loop formed?

2~
-

ilow 1s an endless loop formed?

-

My alternative location

10

ilow 1s an endless loop formed?

Kickout for empty buckets

o

_
b
l
d
l
_
l

My alternative location

11

ilow 1s an endless loop formed?

Kickout for empty buckets

o

_
b
l
d
l
_
l

My alternative location

12

i@ow 1s an endless loop formed?

o

= An endless loop 1s formed.

= Endless kickouts for any
insertion within the loop.

_
b
l
d
l
_
l

My alternative location

13

i)bservations

= Endless loops widely exist in the Cuckoo hashing structures.
> More than 25% (cuckoo hashing with a stash)
= Loop ratio: the percentage of insertion failures due to loops

50
45 @ RandomInteger
40
m
~ 35 MacOS
30 ® DocWords

Loop Ratios (%
(\®)
-

g e A

0.10 0.15 020 025 030 0.35 0.40 0.45 0.50 0.55 0.60 065 070 075 080 0.85 tl
Load Factor

:-Hjlxisting works

» ChunkStash @USENIX ATC’10

> Collisions: resursive strategy to relocate one of keys in candidates
> Loops: an auxiliary linked list (or, hash table)

= MemC3 @NSDI’13
> Collisions: random and repeat relocation (500 times)
> Loops: an expansion process
> Stand-alone implementation: libcuckoo @ EuroSys’14

= Horton tables @USENIX ATC’16
> Recursively evicting keys within a certain search tree height

15

i/lotivations

= Due to endless loops:
> Substantial resources consumption
¢ A large number of step-by-step kick-out operations
> Unbounded performance
¢ Fruitless effort

m Design Goal:

> Predetermining and avoiding occurrence of endless loops

16

i)ur approach: SmartCuckoo

» Tracking item placements in the hash table

> Representing the hashing relationship as a directed pseudoforest
> Classifying item 1nsertions into three cases

> Predetermining and avoiding loops during insertion without any
kick-out attempts.

17

i@ow to 1dentify loop(s)?

= Pseudoforest:
> A graph: each vertex has an outdegree of at most one
> Each connected component (subgraph) has at most one cycle (loop)

> In a subgraph:
Loop 4= #Vertices = #Edges No loop 4= #Vertices = #Edges + 1

OO
& (m)

L O
0‘@@ !

Maximal Non-maximal

18

iClasmﬁcatlon and predetermination

Three cases depending on the number of vertices added to the graph
v+0, v+1, and v+2
= v+0: 5 possible scenarios based on the status of corresponding subgraph(s)

Two insert Same subgraph Different subgraphs Anew Two new
positions of a key one ones

Subgraph status Non- Maximal Bothnon- A maximal Both maximal
maximal maximal and a non- - -
maximal

19

iV—I_O: (a) One non-maximal subgraph

= One empty bucket
m Success!

T, T, T, T,
Hl(/)v alo a|o0
X1 1 b 1 b
Hy() }\ c|2
3 ‘ 3 X]
4 4
5 d 5 d
6 6
7 7

Pseudoforest

20

iﬂ): (b) Two non-maximal subgraphs

= Two empty buckets
m Success!

T1 T2 T1 T2
alo alo
1 b 1 b
Cc|2 Cc|2
w [- [
X2 4
T lE d X5 d
6 g 6 g
f17 f17

Pseudoforest

21

iﬂ): (¢) One maximal and one non-maximal

= One loop and one empty bucket

= Conventional cuckoo hashing: taking a random walk
> T,: executing extra useless kick-out operations
> T,: making a success
> SmartCuckoo: directly selecting to enter from T,

m Success!
T1 T2 T1 T2 i
a|o a|o0 |
1 b I b|
2 |
Hi() 7 - |
| 3 e ‘ 3 e|
X3 4 '
~| [4 |
Hy() TS d g5 d{
i\ g 6 X3| ! Pseudoforest
f |7 f|7 i 22

iﬂ): (d) Two maximal subgraphs

s Two loops!

= Execution:
> Conventional cuckoo hashing: sufficient attempts, then reporting a failure
> SmartCuckoo: reporting a failure without any kick-out operations.

m) Failure!

Hi(x4) Q.@
O=0

Pseudoforest

ﬂomh\jwwo
o

23

iVJrO: (¢) One maximal subgraph

= One loop!
T, T,
a
HlV b
X5 C
o~ e = Failure!

\lo\u]/wt\)_o
o,

Pseudoforest

24

iCase: v+1

s A new vertex after the item's insertion
m Success!

Pseudoforest

|

|

|

|

T T, T, T i
alo al0 |

|

1 b 1 b i

cl2 cl2 i

3 # 3 |
Xe | |4 4 |
5 Xe |5 d|
Hy() d : :
6 6 |

|

7 7 |

|

|

|

|

|

|

|

|

|

|

|

25

iCase: v+2

= Two new vertices after the insertion
m Success! i

T1 T2 Tl T2
alo alo
1 b 1 b
cl2 c|2
3 3
Hy() =)
X7 T > 4
5 X5 d
H;() d /
6 6
7 7

Pseudoforest

26

il}valuation methodology

s Comparisons:

> Baseline (Cuckoo hashing with a stash (@ SIAM Journal on Computing'09)
> libcuckoo @ EuroSys'14
> BCHT (bucketized cuckoo hash table)

= Traces:
> Randomlnteger: random integer generator (@ TOMACS'98
> MacOS: http://tracer.filesystems.org
> DocWords: http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
> YCSB: https://github.com/brianfrankcooper/YCSB @ SOCC'11

= Metrics: in millions of operations per second
> Insertion throughput

> Lookup throughput: positive/negative
> Throughput of workload with mixed queries (YCSB)

27

nsertion throughput

@ Baseline
® libcuckoo
B BCHT

B SmartCuckoo

| | | | | |
v (o) w @\l V) — v -}
N @\ — O
ﬁﬁcoom

19d SUOTIASU JO SUOI[IA

@ =0

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

Load Factor
ficantly increases insertion throughputs.

1gni

s SmartCuckoo s

m 0.5X to 5 X' speedups compared to Baseline.

28

iLookup throughput

@ Baseline ® libcuckoo B BCHT B SmartCuckoo

2.5

[\

[Em—"
(V)]

[E—

Millions of Lookups Per
Second
o
N

-

0
Percentage of Existent Keys in the Lookup Requests

= 0%: all candidate positions for a key have to be accessed.
= Almost the same lookup throughput with Baseline.
= Significantly higher than libcuckoo and BCHT.

29

Throughput of workload with mixed queries

24

S

o B Baseline

@ 2

g = 1.6
YCSB-1 100 0 0 3 = " BCHT

2 % 12 k| ®SmartCuckoo
YCSB-2 75 25 0 e "

=

£ 08 f
YCSB-3 50 50 0 = U

=
YCSB-4 25 75 0 04 1
YCSB-5 o V 95 5 0 =

YCSB-1 YCSB-2 YCSB-3
Workloads

= With the decrease of the percentage of insertions, all schemes increase the
throughputs.
= In each workload, SmartCuckoo produces higher throughput than other

three schemes.
30

iConclusmn and future work

Cuckoo hashing 1s cost-efficient to offer O(1) query

performance.

= We address the problem of potential endless loops 1n 1tem
insertion.

s SmartCuckoo helps improve predictable performance 1n

storage systems.

s To-do-list:
= SmartCuckoo in hash tables with more than two hash functions:
= The use of multiple slots in each bucket.

31

+

Thanks and questions?

Open-source code: https.//github.com/syy804123097/SmartCuckoo

32

