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;| tndexing services 1n cloud storage

s Large amounts of data

> From small hand-held devices to large-scale data centers
> 447B 1n total, 5.2TB for each user in 2020 (IDC' 2014)

s Fast query services are important to both users and systems
> Returning accurate results 1n a real-time manner

> Improving system performance and storage efficiency



iT he importance of hash tables

= Hash tables are widely used 1n data stores and caches

> Key-value stores, e.g., Memcached, Redis
> Relational databases, e.g., MonetDB, HyPer
> In-cache index (ICS 2014, MICRO 2015)

= Strengths:
> Constant-scale addressing complexity ~O(1)
> Fast query response

= Weakness:
> Risk of high-latency for handling hashing collisions

m Cuckoo hashing



iCuckoo hashing

Kick-out operations: like cuckoo birds

= Open addressing
= Supporting fast lookups: O(1) time complexity

= However, msertion latency can be very high and
unpredictable, especially

> when an endless loop occurs!



iﬂow 1s an endless loop formed?
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ilow 1s an endless loop formed?
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i@ow 1s an endless loop formed?

o

= An endless loop 1s formed.

= Endless kickouts for any
insertion within the loop.
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i)bservations

= Endless loops widely exist in the Cuckoo hashing structures.
> More than 25% (cuckoo hashing with a stash)
= Loop ratio: the percentage of insertion failures due to loops
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:-Hjlxisting works

» ChunkStash @USENIX ATC’10

> Collisions: resursive strategy to relocate one of keys in candidates
> Loops: an auxiliary linked list (or, hash table)

= MemC3 @NSDI’13
> Collisions: random and repeat relocation (500 times)
> Loops: an expansion process
> Stand-alone implementation: libcuckoo @ EuroSys’14

= Horton tables @USENIX ATC’16
> Recursively evicting keys within a certain search tree height
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i/lotivations

= Due to endless loops:
> Substantial resources consumption
¢ A large number of step-by-step kick-out operations
> Unbounded performance
¢ Fruitless effort

m Design Goal:

> Predetermining and avoiding occurrence of endless loops
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i)ur approach: SmartCuckoo

» Tracking item placements in the hash table

> Representing the hashing relationship as a directed pseudoforest
> Classifying item 1nsertions into three cases

> Predetermining and avoiding loops during insertion without any
kick-out attempts.
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i@ow to 1dentify loop(s)?

= Pseudoforest:
> A graph: each vertex has an outdegree of at most one
> Each connected component (subgraph) has at most one cycle (loop)

> In a subgraph:
Loop 4= #Vertices = #Edges  No loop 4= #Vertices = #Edges + 1
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iClasmﬁcatlon and predetermination

Three cases depending on the number of vertices added to the graph
v+0, v+1, and v+2
= v+0: 5 possible scenarios based on the status of corresponding subgraph(s)

Two insert Same subgraph Different subgraphs Anew  Two new
positions of a key one ones

Subgraph status Non- Maximal Bothnon- A maximal Both maximal
maximal maximal  and a non- - -
maximal
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iV—I_O: (a) One non-maximal subgraph

= One empty bucket
m Success!
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iﬂ): (b) Two non-maximal subgraphs

= Two empty buckets
m Success!
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iﬂ): (¢) One maximal and one non-maximal

= One loop and one empty bucket

= Conventional cuckoo hashing: taking a random walk
> T,: executing extra useless kick-out operations
> T,: making a success
> SmartCuckoo: directly selecting to enter from T,

m Success!
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iﬂ): (d) Two maximal subgraphs

s Two loops!

= Execution:
> Conventional cuckoo hashing: sufficient attempts, then reporting a failure
> SmartCuckoo: reporting a failure without any kick-out operations.

m) Failure!
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iVJrO: (¢) One maximal subgraph

= One loop!
T, T,
a
HlV b
X5 C
o~ e = Failure!
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iCase: v+1

s A new vertex after the item's insertion
m Success!

Pseudoforest
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iCase: v+2

= Two new vertices after the insertion
m Success! i
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il}valuation methodology

s Comparisons:

> Baseline (Cuckoo hashing with a stash (@ SIAM Journal on Computing'09)
> libcuckoo @ EuroSys'14
> BCHT (bucketized cuckoo hash table)

= Traces:
> Randomlnteger: random integer generator (@ TOMACS'98
> MacOS: http://tracer.filesystems.org
> DocWords: http://archive.ics.uci.edu/ml/datasets/Bag+of+Words
> YCSB: https://github.com/brianfrankcooper/YCSB @ SOCC'11

= Metrics: in millions of operations per second
>  Insertion throughput

>  Lookup throughput: positive/negative
>  Throughput of workload with mixed queries (YCSB)
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nsertion throughput

@ Baseline
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m 0.5X to 5 X' speedups compared to Baseline.
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iLookup throughput

@ Baseline ® libcuckoo B BCHT B SmartCuckoo
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Percentage of Existent Keys in the Lookup Requests

= 0%: all candidate positions for a key have to be accessed.
= Almost the same lookup throughput with Baseline.
= Significantly higher than libcuckoo and BCHT.
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Throughput of workload with mixed queries
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= With the decrease of the percentage of insertions, all schemes increase the
throughputs.
= In each workload, SmartCuckoo produces higher throughput than other

three schemes.
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iConclusmn and future work

Cuckoo hashing 1s cost-efficient to offer O(1) query

performance.

= We address the problem of potential endless loops 1n 1tem
insertion.

s SmartCuckoo helps improve predictable performance 1n

storage systems.

s To-do-list:
=  SmartCuckoo in hash tables with more than two hash functions:
= The use of multiple slots in each bucket.
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+

Thanks and questions?

Open-source code: https.//github.com/syy804123097/SmartCuckoo
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