Titan: Fair Packet Scheduling for
Commodity Multigueue NICs

Brent Stephens, Arjun Singhvi, Aditya Akella, and Mike Swift
July 13, 2017

)W)

%77;7 R
I

THE UNIVERSITY

WISCONSIN

MADIS ON

Ethernet line-rates
are increasing!

ethernet alliance

ETHERNET SPEEDS

m 400GbE
400G %—
100GbE 200GbE
~ 100G
L"2)
N et | 506hE
9 S 10GbE %GbE
10G 40GbE — ——
I i A () s5GhE
) / Q 2.5GbE
Q 1G N\
4 Mb/ v
100Mb/s
'E Ett]ernet £
5 100M s
Etherne

10M
1980 1990 2000 2010 2020

Standard Completed

iEthernet Sieed i isieed in Develoiment

2

Servers need:

To drive increasing Low CPU utilization
line-rates networking

Underlying mechanisms:

T

T~
Segmentation Multiqueue NICs
Offload

TCP Segmentation Offload (TSO)

* Many operations performed by
the OS are per-packet, not per-
byte

* TSO allows the OS to send large
segments to the NIC

e TSO NIC hardware generates
packets from segments

Wire Wire

Using large segments (64KB) instead
of packets can reduce CPU load

Multigueue NICs

Core 1l Core 2

Locking/Polling

{

N

=

Wire

Core l
TXQ-1

r N
Core 2

TXQ-2

\ y
(;\ Packet Scheduler Z}

h--____+____——

Multiqueue NICs enable parallelism

Pr—

Fairness Problems Fair l

=

-n
(W

T L
N N

packet &
r N\ ™
Core 1 Core 2 SChEdU|€I ———
TXQ-1 TXQ-2 W Ire
Multiqueue
unfairness unfalrness
Actual
\ Packet S*cheduler / p a C ket |
Wire schedule:
ere

TSO and multiqueue cause pervasive unfairness

7

* Fairness is needed so competing
applications can share the network

* Fairness is needed for predictability

* Unfairness leads to unpredictable
completion times across runs

* Perfect fairness - perfect predictability

~alrness Is * Fairness can improve application
- performance
m pO rtant * Ex: Weighted Coflow Scheduling

e [Chowdhury SIGCOMM11, Chowdhury
SIGCOMM14]

] \

/| \

] |

i |

i i

\ Work '

Drive Low CPU | Per-flow orkon f

. . . . \ . ' 4
Increasing utilization \\falrness commod|ty/
line-rates NICs -

Multigueue Fairness in Linux:

* Flow arrivals to each transmit queue are dynamic

* The OS statically uses a per-flow hash to assign
flows to queues

* The NIC scheduler statically uses deficit round-robin
(DRR) to provide per-queue fairness

* |n the datacenter, the OS statically chooses a TSO
size

10

Titan Design:

As flows dynamically arrive and
complete, in Titan:

The OS dynamically:

* Assigns weights to flows

* Tracks the flow occupancy of queues
* Picks queues for flows

 Updates the NIC with queue weights

The NIC dynamically:
* Applies queue weights from the OS

Causes of Unfairness:

T

T~

Multiqueue unfairness

TSO unfairness

12

Problem: Hash collisions

TXQ-1

TXQ-2 TXQ-3

e

T~

Packet Scheduler /

W*lre

Multiqueue

—>

unfairness

N

-n
N

ﬁ

T TIgTIITIRT
N NI |NE-

Wire

13

Problem: Hash collisions
Solution: Dynamic Queue Assignment (DQA)

TXQ-1 TXQ-2

-

TXQ-3

-

\ Packet Scheduler /

W*|re

* OS assigns a weight to each flow

* DQA picks the queue with the
lowest occupancy when a flow starts

* Queue occupancies are updated:
* Any time a flow starts enqueuing data

* Any time a flow has no enqueued bytes
(at most each TX interrupt)

14

Problem: Hash collisions
Solution: Dynamic Queue Assignment (DQA)

TXQ-1 TXQ-2 TXQ-3

@ o —

i

\ Packet Scheduler /

W*lre

15

Problem: Asymmetric Oversubscription

F1 and F2 receive
half throughput

T™XQ-1 TXQ-2 TXQ-3
W:1 W:1

/

—>

-

Sy

-

\ Packet Scheduler / Wire

W*|re

Problem: Asymmetric Oversubscription
Solution: Dynamic Queue Weight Assignment (DQWA)

TXQ-1 TXQ-2 T™Q-3 * OS assigns weights to flows
W: 2 W:1 W:1 * OS updates the NIC scheduler

with queue occupancies as

flows start and stop (at most
This is implementable on existing commodity NICs

each TX interrupt)
* NIC updates DRR weights

because it only needs to update DRR weights!

Problem: Asymmetric Oversubscription
Solution: Dynamic Queue Weight Assignment (DQWA)

DQA and DQWA provide

™@Q-1 TXQ-2 ™@Q:-3 long-term falrness
W: 2 W: 1 W: 1 B
- —> __sissses
m ere

%

This is implementable on existing commodity NICs

because it only needs to update DRR weights!

Problem: TSO Unfairness

TXQ-1 T™XQ-2
W: 1

 \

%

e Short-term unfairness can
cause bursts of congestion in
the network

e Short-term unfairness can

TXQ-3)
increase latency
W: 1
Short-term
unfairness

-

\ Packet Scheduler

/~

W*|re

Problem: TSO Unfairness
Solution: Dynamic Segmentation Offload Sizing (DSOS)

TXQ-1

T™XQ-2
W:1

 \

%

TXQ-3
W:1

-

T~

Packet Scheduler /

W*|re

* DSOS dynamically changes the
segment size during oversubscription

 Same implementation as GSO

e CPU vs fairness tradeoff

* Segmenting after the TCP/IP stack
reduces CPU costs

- N e — -
N

)
Ni-

“

20

Implementation

e DQA, DQWA, and DSOS are
implemented in Linux 4.4.6

e Support for
ndo set tx weightis
implemented in the Intel
ixgbe driver for the Intel
82599 10Gbps NIC

* Titan is open source!

https://github.com/bestephe/titan

21

Evaluation

e Microbenchmarks
e 2 servers, 1 switch
* 8 queue NICs

e Vary number of flows (level of
oversubscription)

 |ncremental fairness benefits of
DQA, DQWA, and DSOS

* DQA and DQWA: expected to
improve long-term fairness

 DSOS: expected to improve
short-term fairness

Evaluation — Fairness Metric

Bytes (FalrShair)

Metrics: I |dea|
. . 1
* Normalized fairness metric
(SNhFMZjir:\spireg\t/)y) I paCkEt
ree arar.w farg ese: | schedule:
e NFM =0 is fair I
* NFM > 1is very unfair : NFM =0
| :
NFM = 1 Unfair
(Bytes (MaxFlow) - : packet
Bytes (MinFlow)) / ' schedule:
[

NFM =1

Microbenchmarks — 1s Timescale

* Linux is unfair at all
subscription levels E

* DQA often significantly

(Vs
T 15
improves fairness S
* At 48 flows, flow churn = 1
prevents DQA from evenly 0.5
spreading flows ' I I I I
* DQWA improves fairness 0 -
6 12 24 48

when DQA cannot evenly
spread flows across queues

* DSOS does not have a
significant impact on long- M Linux @ DQA ¥ DQA + DQWA B DQA + DQWA + DSOS (16KB)

term fairness

Number of Flows

24

Microbenchmarks — 1ms Timescale

B _|I-III“|
6 12 24 48

Number of Flows

e At short timescales and
under oversubscription,
DQA and DQWA do not
significantly improve
fairness

* TSO is the primary cause of
unfairness

NFM -1ms
o - N w H ol (@)

e DSOS (16KB) often

reduces unfairness by >2x H Linux B DQA ¥ DQA + DQWA B DQA + DQWA + DSOS (16KB)

25

Cluster Experiments 2 10—
CDF of completion timesina 1GB 5§ gl -
all-to-all shuffle (24 servers) re !
g 0.6} -
. o /
ldeal CDF would be a vertical line é’ 0.4l p)
* Titan makes performance more ‘_g 05 ’
: 2 / -
predictable g ‘/.
* Titan improves tail performance O 00—

(>90t" percentile) 1012141618 20 22 24

Titan improves fairness without changing the network core!

Additional Evaluation

Additional performance metrics:
 Throughput: line-rate
e Latency: no significant change
e CPU Utilization:
* DQA and DQWA: increase < 10%

e DSOS is better than statically decreasing
the TSO size

DSOS motivates creating a better TSO
implementation (zero-copy)

Linux network configuration trade-off study
* See paper

Summary

* Multi queue NICs can lead to
significant flow-level unfairness

 Titan significantly improves fairness by
allowing the OS to dynamically interact
with the NIC packet scheduler

* Titan is implementable on commodity
NICs!

https://github.com/bestephe/titan

28

