Protego: Cloud-Scale Multitenant IPsec Gateway

Jeongseok Son, Yongqiang Xiong, Kun Tan, Paul Wang, Ze Gan, Sue Moon

Microsoft[®] Research

Enterprises are Moving to the Cloud

\$ 58B → \$ 202B

Public cloud services revenue from 2009 to 2016

48 out of 50

Fortune Global 50 companies have announced cloud adoption

1. Forecast: Public Cloud Services, Worldwide and Regions, Industry Sectors, 2009-2014, Gartner 2. Global Cloud Spending Predicted To Reach \$390B By 2020, Forbes

Current IPsec GW Deployment: Assign VM to Each Virtual Network

Advantages:

- No additional HW installation
- Performance isolation
- Dynamic scaling

Problem: IPsec GW VMs Are Under-utilized

How to serve multiple tunnels with shared resources for elasticity?

Current IPsec GW Deployment

Cloud-Scale Multitenant IPsec Gateway

Seamless Migration of IPsec Tunnel is the Key to Elasticity

To achieve elasticity

- When GWs are overloaded as the IPsec traffic increases
- \rightarrow Add more VMs and <u>migrate</u> some tunnels to new VMs
- When GWs are under-utilized as the IPsec traffic decreases
- \rightarrow <u>Migrate</u> tunnels from some VMs and return the idle VMs

Quick migration scheme with minimal overhead is a key enabler of elasticity

Statefulness of IPsec Hinders Seamless Migration

• Strawman approach: Redirect IPsec packets to a different GW

Leads to tunnel destruction

How to move or share state between gateways?

Core Ideas of Protego

Separation of control and data planes

- Control Plane: Single control node
- Data Plane: Set of data nodes

 \rightarrow Make IPsec (nearly) stateless in the data plane

Tunnel migration by IPsec rekeying

→ Migrate tunnels without packet loss and buffering Elastic provisioning algorithm

Breakdown of IPsec Protocol

Internet Key Exchange

 Setup Shared Attributes (Security Association)
→ Carries control traffic

Encapsulating Security Payload

Encryption/Decryption
→ Carries data traffic

Separation of Control and Data Plane

Rationale Behind the Separation

Infrequent IKE state update and tiny IKE traffic compared to ESP traffic

- Stored in a central control node
 - \rightarrow Data nodes do not maintain IKE state

Frequent ESP state changes (every packet sent/received) but quick re-initialization

- Reconstructed whenever necessary by rekeying
 - \rightarrow Data nodes do not have to preserve ESP state

Any data node can process any IPsec tunnel traffic

Protego Architecture Overview

Gateway Management Node

Gateway Management Node

IKE packet processing

- Negotiate a shared symmetric key for ESP
- Distribute the key to one of GPNs
- Save updated state to the standby GMN (High availability)

Resource management

• Adjust the number of GPNs by migrating tunnels

Traffic steering

• Insert forwarding rules to load balancers (GIN and GEN)

Gateway Ingress and Egress Node

Gateway Ingress and Egress Node

Traffic forwarding

• Rewrite the destination address to the address of a GPN

Rate limiting

• Enforce per-tunnel performance isolation

GPN failure detection

• Adaptive heartbeat by sampling and tagging

Gateway Processing Node

Gateway Processing Node

ESP packet processing

• Encryption and decryption of ESP packets

ESP processing is tricky to parallelize due to sequence number → Designed lock-free ESP processor (Check out the paper)

Leverage Rekeying Process to Migrate IPsec Tunnels Seamlessly

Original purpose of rekeying

- IPsec gateways use keys for a limited amount of time/data
- Quickly re-negotiates ESP SA in single RTT

Leverage rekeying to quickly construct ESP state

- Create new ESP SA in the destination node
- Old ESP SA is alive until new ESP SA is used

 \rightarrow No packet loss and buffering during migration process

1. GMN sends the CREATE_CHILD_SA request

1. GMN sends the CREATE_CHILD_SA request

2.GMN receives the CREATE_CHILD_SA response. (New CHILD_SAs are created)

- 1. GMN sends the CREATE_CHILD_SA request
- 2.GMN receives the CREATE_CHILD_SA response. (New CHILD_SAs are created)
- 3.GMN hands the new SAs over to a GPN, and inserts forwarding rules

- 1. GMN sends the CREATE_CHILD_SA request
- 2.GMN receives the CREATE_CHILD_SA response. (New CHILD_SAs are created)
- 3.GMN hands the new SAs over to a GPN, and inserts forwarding rules

4.GPN starts to use the new outbound SA

- 1. GMN sends the CREATE_CHILD_SA request
- 2.GMN receives the CREATE_CHILD_SA response. (New CHILD_SAs are created)
- 3.GMN hands the new SAs over to a GPN, and inserts forwarding rules
- 4.GPN starts to use the new outbound SA
- 5.GIN forwards the new ESP packets to the new GPN

Elastic Resource Provisioning Algorithm

Objectives

- Minimize the resource usage
- Satisfying the throughput requirement of tenants

Model: 1-D bin packing (CPU usage)

- Item: IPsec tunnel
- Bin: GPN

Consolidation & Load Balancing

- Periodically consolidate GPNs (Consolidation interval)
- Instantly mitigate hotspots by migrating tunnels

Implementation

Gateway Ingress & Egress Node

- Extended Mux of Ananta load balancer (SIGCOMM '13)
- Packet filtering based on Windows NDIS Lightweight filter driver

Gateway Management Node

• Based on the IPsec service module of the Routing and Remote Access Service in Windows Server 2012 R2.

Gateway Processing Node

Refer to the paper for details

Evaluation

Server specification

- 16-core Intel Xeon E5-2650 v2 at 2.6Ghz
- Mellanox Connect-3 Pro 40Gbps
- Windows Server 2012 R2
- Hyper-V

Migration Does Not Degrade Throughput

32

GPN Throughput Scales Linearly

Provisioning Simulation

- Measured the average throughput of IPsec gateways every minute in one data center for a day
- Collected the throughput trace of 170 tunnels and injected to our simulator, which replay the traffic trace
- Simulated our provisioning algorithm with different consolidation intervals

Protego Saves a Large Amount of Resources

Consolidation Interval:

• Resource Saving:

3 min – 60 min

• Throughput Guarantee (99% of tunnels):

90.21 % - 98.63 % **81.72 % - 88.00 %**

35

Summary

- IPsec gateway is an essential and common component for cloud providers to offer virtual network services
- Protego is a software IPsec Gateway that serves multiple IPsec tunnels using shared resources for better resource utilization
- Protego saves a significant amount of resources with the separation of control and data plane and seamless tunnel migration by rekeying

Microsoft[®] Research

