UNOBTRUSIVE DEFERRED
UPDATE STABILIZATION FOR
EFFICIENT GEO-REPLICATION

Chathuri Gunawardhana, Manuel Bravo, Luis Rodrigues

| UCL
Jnescia ([THACE e

Problem

In a geo-replicated system,
how to apply efficiently,
remote updates,
in causal order?

Why causal consistency?

Limitations of Highly-Available
Eventually-Consistent Data Stores

Hagit Attiya Faith Ellen Adam Morrison
Computer Science Department Department of Computer Science Computer Science Department
Technion University of Toronto Technion

ABSTRACT

Modern replicated data stores aim to provide high availabil-
ity, by immediately responding to client requests, often by
implementing objects that expose concurrency. Such objects,
for example, multi-valued registers (MVRs), do not have se-
quential specifications. This paper explores a recent model
for replicated data stores that can be used to precisely spec-
ify causal consistency for such objects, and liveness prop-
erties like eventual consistency, without revealing details of
the underlying implementation. The model is used to prove
the following results:

e An eventually consistent data store implementing
MVRs cannot satisfy a consistency model strictly
stronger than observable causal consistency (OCC).
OCC is a model somewhat stronger than causal con-
sistency, which captures executions in which client ob-

servations can use causality to infer concurrency of op-
erations. This result holds under certain assumptions
about the data store.

Under the same assumptions, an eventually consistent
and causally consistent replicated data store must send
messages of unbounded size: If s objects are supported
by n replicas, then, for every k > 1, there is an execu-
tion in which an Q(min{n, s}k)-bit message is sent.

of data (i.e. accesses to data return without delay), and its
consistency, while tolerating message delays. The CAP the-
orem [8,18] demonstrates the difficulty of achieving this bal-
ance, showing that strong Consistency (i.e. atomicity) can-
not be satisfied together with high Availability and Partition
tolerance.

One aspect of data consistency is a safety property re-
stricting the possible values observed by clients accessing dif-
ferent replicas. The set of possible executions is called a con-
sistency model. For example, causal consistency [2] ensures
that the causes of an operation are visible at a replica no
later than the operation itself. (A precise definition appears
in Section 3.) A smaller set of possible executions means that
there is less uncertainty about the data. So, one consistency
model is strictly stronger than another if its executions are
a proper subset of the executions of the other.

Some weak consistency models can be trivially satisfied by
never updating the data. Therefore, another aspect of data
consistency is a liveness property, ensuring that updates are
applied at all replicas. The designers of many systems, e.g..
Dynamo [13] and Cassandra [1], opt for a very weak live-
n property called, somewhat confusingly, eventual con-
sistency [5,9,10,29]. Eventual consistency only ensures that
each replica eventually observes all updates to the object, a
property also referred to as update propagation [11].

Strongest
without
compromisin
availability

Why causal consistency?

Key ingredient
of several
consistency
criteria

Parallel Snapshot Isolation
[SOSP’11]

RedBlue Consistency
[OSDI'12]

Explicit Consistency
[EuroSys’15]

Session guarantees
[SOSP'97]

Dan is in the
hospital!

—» Dan is ok! — That’s great!

Alice

Requires rea, R %

Dan is in the

hospital! maintaing
and exchanging
l metadata!

IS in the

hospital! — That’s great!

5

Dan is ok!

Metadata

Needs a way

to compress metadata!

more metadata less metadata
precise false positives

expensive cheap

Metadata compression

Two main ways to compress and manage metadata

Global stabilization procedures

Serializers

Metadata compression

Global stabilization procedures

Updates are propagated concurrently
and later ordered at remote datacenters

Metadata compression

Updates are ordered before being applied
at the origin datacenter

Metadata compression

GentleRain and Cure use global stabilization!

_fa.vo_r§ global favors
visibility stabilization forces throughput by

latencies by using designers to either favor, ,qinq"5 single
a vector with an throughput or
entry per dc visibility

150

Visibility
latencies (ms)

—h
W O © N
o O O O

o

0 1020 50 100 0 1020 50 100
Clock computation interval (ms)

Metadata compression

Serializer (typically one per dc): SwiftCloud [Middleware'15],
ChainReaction [EuroSys'13], ...

GentleRain —6— Cure —#&—

150 0 _ — -
e 120 S [0 o S — — T
2= ©
=2 90 -2, -
22 60 B30 :
T 30 L __T——Y<»$! -
O I | _50 |
0 1020 50 100 01020 50 100

Clock computation interval (ms)

Metadata compresgsion

)
SE
58
n O
S5 60

T 30

Serializer (typicé AL L oud [Middleware'15],

abstracts
the complexity of
partitioned datacenters,
which enables trivial
dependency
checking

coordination is on the
client’s critical path, which
significantly penalises
throughput (16%) an sequencers can
easily be overloaded for
medium-size clusters. In our

2N [EuroS

thus, allowing experiments, a
sequencer-based max of 48 kops/s
tystems to only slightly |

0 1020 50 100 0 1020 50 100
Clock computation interval (ms)

Our

goal

Visibility
latencies (ms)

To achieve the latency of a sequencer
and the throughput of GentleRain

0 1020 50 100 0 1020 50 100
Clock computation interval (ms)

FEunomia

aims at finding a novel way of
compressing metadata that allows
to pick a better spot in the
throughput-visibility tradeoff

14

FEunomia

concelived to replace sequencers in geo-
replicated storage systems

totally orders—consistently with causality—
local updates, before shipping them to other dcs

the ordering is done in the background, out of
client’s critical path

15

remote datacenters

/TN

0 0
N1/

Sequencer

/

!
0 0

\
S

16

remote datacenters

17

18

19

20

21

22

23

24

25

20

EunomiaKV: supporting geo-replication

!

I:: l

{o

9

2

2

dc,

(D

&3

dc

m

(D

3

27

EunomiaKV: supporting geo-replication

remote |«
proxy

dc,

abstract
partitioning and
replication details
from clients

dc

28

EunomiaKV: supporting geo-replication

)

remote
proxy

<

gal- g

29

EunomiaKV: supporting geo-replication

] _ 4 dc,
remote < — ‘ D
rox
proxy e

&8

Eunomia
(as explained)

EunomiaKV: supporting geo-replication

dc,

-

5

dc,,

-

=

31

EunomiaKV: supporting geo-replication

] 4 dc,
remote |4 ~ ‘

receives
remote updates,
coming from remote
Eunomia services

32

EunomiaKV: supporting geo-replication

remote
proxy

propagates to
local partitions when
dependencies are
satisfied

Implementation

Eunomia is implemented in C++ (200 LOC).
At its core, It uses a red-black tree

EunomiaKV is built as a variant of the open
source version of Riak (100 lines of Erlang code)

Our implementation uses hybrid logical clocks
(HLC) becoming resilient to both clock and
workload skew

34

Evaluation: EunomiaKV vs. state-of-the-art

Three datacenter deployment, emulating Amazon
EC2 Virginia, Oregon, and Ireland regions

system that adds no overhead
due to consistency management

comparison to: global stabilisation solutions, GentleRain
(single scalar) and Cure (vector as EunomiaKV)

35

Evaluation

—~ 14000
12000
10000
8000
6000
4000
2000

Throughput (ops/sec

roughput compagcl LIRS e

Eventual =3 GentleRain
unomiaKV I Cure

50:50U 75:25U 90:10U 99:11U 50:50P 7525P 90:10P 9911 P

Evaluation

GentleRain . . EunomiaKV
significantly penalizes Ilty compar provides even better
visibility due to the amount results than Cure, using
of false positives the same amount of

metadata

o SR GentleRain —o—

- Cure —#—
117 Y ——— | N — EunomiaKV —e— -
0.2 ff o7 .
0 &—66—06—06—0C—0—06=C L L L
0 20 40 60 80 100 120

Remote update visibility (milliseconds)

37

Evaluation

maximum throughput achievable by
Eunomia vs a classical sequencer

<o 400 . :

O 350 b A rtA Eunomia 15 === |
P 0} A0 1T Eunomia 30 E===0
o) Eunomia 45
¥ 200 Bl ol 77 Eunomia 60 ===
5 200 T SEE | X/-f Eunomia75 =3
2 150 . e Sequencer —
%’ 100 | =TI 2 v
S 50 : —r
|-E O N—

38

Going back to the beginning

Visibility
latencies (ms)

Sequencer GentleRain —o— Cure —=—
~10 & CE— T
2
:_20 © —]
>
30 .
— _40 ,,, _
O [| _50 |
0 1020 50 100 0 1020 50 100

Clock computation interval (ms)

39

Going back to the beginning

Eunomia —e— Sequencer GentleRain —o— Cure —=—
150 L | O

—h
W O © N
o O O O

Visibility
latencies (ms)

100 0 1020
Clock computation interve

EunomiaKV
adds negligible
throughput
penalty

EunomiaKV
only adds an slight
artificial delay,
matching the latency
(o] o L-T-TV/=To Ty

sequencer-based
systems
Y 40

Evaluation Thanks!

take-away message

by taking the coordination with an ordering service out the
the client’s critical path, one can pick a sweet-spot in the
throughput vs. visibility tradeoff

check the paper!!!

fault-tolerant version of Eunomia
impact of stragglers

more experiments

41

