
UNOBTRUSIVE DEFERRED
UPDATE STABILIZATION FOR
EFFICIENT GEO-REPLICATION

Chathuri Gunawardhana, Manuel Bravo, Luís Rodrigues

In a geo-replicated system,
how to apply efficiently,

remote updates,
in causal order?

2

Problem

Strongest 
without

compromising
availability

3

Why causal consistency?

Key ingredient
of several

consistency
criteria

Parallel Snapshot Isolation  
[SOSP’11]

RedBlue Consistency  
[OSDI’12]

Session guarantees  
[SOSP’97]

Explicit Consistency  
[EuroSys’15]

4

Why causal consistency?

5

Alice

Dan is in the  
hospital!

Dan is ok!

Bob

Dan is in the  
hospital! Dan is ok!

That’s great!

Dan

Dan is in the  
hospital!

That’s great!

Data center
should delay the

visibility of inconsistent
operations

Requires
maintaing

and exchanging
metadata!

6

Metadata

more metadata less metadata

precise

expensive

false positives

cheap

Needs a way
to compress metadata!

Metadata compression

Two main ways to compress and manage metadata

Global stabilization procedures

Serializers

Metadata compression

Global stabilization procedures

Updates are propagated concurrently
and later ordered at remote datacenters

Metadata compression

Serializers

Updates are ordered before being applied
at the origin datacenter

 0
 30
 60
 90

 120
 150

0 10 20 50 100

Vi
si

bi
lit

y
 la

te
nc

ie
s

(m
s)

GentleRain Cure

-50
-40
-30
-20
-10

 0

0 10 20 50 100

Th
pu

t (
%

)

Clock computation interval (ms)

GentleRain and Cure use global stabilization!

Metadata compression

global
stabilization forces

designers to either favor
throughput or

visibility

favors
visibility

latencies by using
a vector with an

entry per dc

favors
throughput by

using a single
scalar

 0
 30
 60
 90

 120
 150

0 10 20 50 100

Vi
si

bi
lit

y
 la

te
nc

ie
s

(m
s)

GentleRain Cure

-50
-40
-30
-20
-10

 0

0 10 20 50 100

Th
pu

t (
%

)

Clock computation interval (ms)

Metadata compression

Serializer (typically one per dc): SwiftCloud [Middleware’15],
ChainReaction [EuroSys’13], …

Serializer (typically one per dc): SwiftCloud [Middleware’15],
ChainReaction [EuroSys’13], …

 0
 30
 60
 90

 120
 150

0 10 20 50 100

Vi
si

bi
lit

y
 la

te
nc

ie
s

(m
s)

GentleRain Cure

-50
-40
-30
-20
-10

 0

0 10 20 50 100

Th
pu

t (
%

)

Clock computation interval (ms)

Sequencer

Metadata compression

abstracts
the complexity of

partitioned datacenters,
which enables trivial

dependency
checking thus, allowing

sequencer-based
systems to only slightly

add artificial delays

unfortunately,
coordination is on the

client’s critical path, which
significantly penalises

throughput (16%) an sequencers can
easily be overloaded for

medium-size clusters. In our
experiments, a  

max of 48 kops/s

To achieve the latency of a sequencer
and the throughput of GentleRain

 0
 30
 60
 90

 120
 150

0 10 20 50 100

Vi
si

bi
lit

y
 la

te
nc

ie
s

(m
s)

GentleRain Cure

-50
-40
-30
-20
-10

 0

0 10 20 50 100

Th
pu

t (
%

)

Clock computation interval (ms)

Sequencer

Our goal

aims at finding a novel way of
compressing metadata that allows

to pick a better spot in the
throughput-visibility tradeoff

14

Eunomia

conceived to replace sequencers in geo-
replicated storage systems

15

Eunomia

totally orders—consistently with causality—
local updates, before shipping them to other dcs

the ordering is done in the background, out of
client’s critical path

16

A CB

remote datacenters

Sequencer

17

A CB

remote datacenters

Eunomia

18

put(a) put(b)

1

1 1

1

A CB

19

put(c)

1 1

2

2

A CB

20

1 1

put(d)

1

12

A CB

21

1 1 12

put(e)

2

2

A CB

22

1 1 12 2

A CB

23

1 1 12 2

A CB

24

1 1 1 2 2

A CB

24

25

1

1

1

2 2

A CB

26

2 2

put(f)

3

3

A CB

27

EunomiaKV: supporting geo-replication

dc1 p1
1

p1
2

p1
3p1

5
p1
4

p1
n

front
end

front
end

...

remote
proxy

dc2

...

dcmEunomia

28

EunomiaKV: supporting geo-replication

dc1 p1
1

p1
2

p1
3

p1
5

p1
4

p1
n

front
end

front
end

...

remote
proxy

dc2

...

dcmEunomia

abstract
partitioning and

replication details
from clients

29

EunomiaKV: supporting geo-replication

dc1 p1
1

p1
2

p1
3

p1
5

p1
4

p1
n

front
end

front
end

...

remote
proxy

dc2

...

dcmEunomia

30

EunomiaKV: supporting geo-replication

dc1 p1
1

p1
2

p1
3

p1
5

p1
4

p1
n

front
end

front
end

...

remote
proxy

dc2

...

dcmEunomia

Eunomia
(as explained)

31

EunomiaKV: supporting geo-replication

dc1 p1
1

p1
2

p1
3

p1
5

p1
4

p1
n

front
end

front
end

...

remote
proxy

dc2

...

dcmEunomia

32

EunomiaKV: supporting geo-replication

dc1 p1
1

p1
2

p1
3

p1
5

p1
4

p1
n

front
end

front
end

...

remote
proxy

dc2

...

dcmEunomia

receives
remote updates,

coming from remote
Eunomia services

33

EunomiaKV: supporting geo-replication

dc1 p1
1

p1
2

p1
3

p1
5

p1
4

p1
n

front
end

front
end

...

remote
proxy

dc2

...

dcmEunomia

only
propagates to

local partitions when
dependencies are

satisfied

34

Implementation

Eunomia is implemented in C++ (200 LOC).
At its core, it uses a red-black tree

EunomiaKV is built as a variant of the open
source version of Riak (100 lines of Erlang code)

Our implementation uses hybrid logical clocks
(HLC) becoming resilient to both clock and

workload skew

35

Evaluation: EunomiaKV vs. state-of-the-art

Three datacenter deployment, emulating Amazon
EC2 Virginia, Oregon, and Ireland regions

baseline: system that adds no overhead
due to consistency management

comparison to: global stabilisation solutions, GentleRain
(single scalar) and Cure (vector as EunomiaKV)

36

Evaluation

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000

50:50 U 75:25 U 90:10 U 99:1 U 50:50 P 75:25 P 90:10 P 99:1 P

Th
ro

ug
hp

ut
 (o

ps
/s

ec
)

Eventual
EunomiaKV

GentleRain
Cure

throughput comparisonGlobal stabilisation
has a significant cost,

specially in Cure, that uses
more metadata

EunomiaKV
barely penalizes
throughput when
compared to the

baseline

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

C
D

F

Remote update visibility (milliseconds)

GentleRain
Cure

EunomiaKV

37

Evaluation

visibility comparisonGentleRain
significantly penalizes

visibility due to the amount
of false positives

EunomiaKV
provides even better

results than Cure, using
the same amount of

metadata

38

Evaluation

 0
 50

 100
 150
 200
 250
 300
 350
 400

Th
ro

ug
hp

ut
 (K

op
s/

se
c) Eunomia 15

Eunomia 30
Eunomia 45
Eunomia 60
Eunomia 75
Sequencer

maximum throughput achievable by
Eunomia vs a classical sequencer

x7.7

39

Going back to the beginning

 0
 30
 60
 90

 120
 150

0 10 20 50 100

Vi
si

bi
lit

y
 la

te
nc

ie
s

(m
s)

GentleRain Cure

-50
-40
-30
-20
-10

 0

0 10 20 50 100
Th

pu
t (

%
)

Clock computation interval (ms)

Sequencer

40

Going back to the beginning

 0
 30
 60
 90

 120
 150

0 10 20 50 100

Vi
si

bi
lit

y
 la

te
nc

ie
s

(m
s)

GentleRain Cure

-50
-40
-30
-20
-10

 0

0 10 20 50 100
Th

pu
t (

%
)

Clock computation interval (ms)

Eunomia Sequencer

EunomiaKV
only adds an slight

artificial delay,
matching the latency

observed in
sequencer-based

systems

EunomiaKV
adds negligible

throughput
penalty

take-away message
by taking the coordination with an ordering service out the
the client’s critical path, one can pick a sweet-spot in the
throughput vs. visibility tradeoff

check the paper!!!
fault-tolerant version of Eunomia
impact of stragglers

Thanks!

more experiments

41

Evaluation

