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Problem

In a geo-replicated system,
how to apply efficiently,
remote updates,
in causal order?



Why causal consistency?
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ABSTRACT

Modern replicated data stores aim to provide high availabil-
ity, by immediately responding to client requests, often by
implementing objects that expose concurrency. Such objects,
for example, multi-valued registers (MVRs), do not have se-
quential specifications. This paper explores a recent model
for replicated data stores that can be used to precisely spec-
ify causal consistency for such objects, and liveness prop-
erties like eventual consistency, without revealing details of
the underlying implementation. The model is used to prove
the following results:

e An eventually consistent data store implementing
MVRs cannot satisfy a consistency model strictly
stronger than observable causal consistency (OCC).
OCC is a model somewhat stronger than causal con-
sistency, which captures executions in which client ob-

servations can use causality to infer concurrency of op-
erations. This result holds under certain assumptions
about the data store.

Under the same assumptions, an eventually consistent
and causally consistent replicated data store must send
messages of unbounded size: If s objects are supported
by n replicas, then, for every k > 1, there is an execu-
tion in which an Q(min{n, s}k)-bit message is sent.

of data (i.e. accesses to data return without delay), and its
consistency, while tolerating message delays. The CAP the-
orem [8,18] demonstrates the difficulty of achieving this bal-
ance, showing that strong Consistency (i.e. atomicity) can-
not be satisfied together with high Availability and Partition
tolerance.

One aspect of data consistency is a safety property re-
stricting the possible values observed by clients accessing dif-
ferent replicas. The set of possible executions is called a con-
sistency model. For example, causal consistency [2] ensures
that the causes of an operation are visible at a replica no
later than the operation itself. (A precise definition appears
in Section 3.) A smaller set of possible executions means that
there is less uncertainty about the data. So, one consistency
model is strictly stronger than another if its executions are
a proper subset of the executions of the other.

Some weak consistency models can be trivially satisfied by
never updating the data. Therefore, another aspect of data
consistency is a liveness property, ensuring that updates are
applied at all replicas. The designers of many systems, e.g..
Dynamo [13] and Cassandra [1], opt for a very weak live-
n property called, somewhat confusingly, eventual con-
sistency [5,9,10,29]. Eventual consistency only ensures that
each replica eventually observes all updates to the object, a
property also referred to as update propagation [11].
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Why causal consistency?

Key ingredient
of several
consistency
criteria

Parallel Snapshot Isolation
[SOSP’11]

RedBlue Consistency
[OSDI'12]

Explicit Consistency
[EuroSys’15]

Session guarantees
[SOSP'97]
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Metadata

Needs a way

to compress metadata!

more metadata less metadata
precise false positives

expensive cheap



Metadata compression

Two main ways to compress and manage metadata

Global stabilization procedures

Serializers



Metadata compression

Global stabilization procedures

Updates are propagated concurrently
and later ordered at remote datacenters



Metadata compression

Updates are ordered before being applied
at the origin datacenter



Metadata compression

GentleRain and Cure use global stabilization!
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Metadata compression

Serializer (typically one per dc): SwiftCloud [Middleware'15],
ChainReaction [EuroSys'13], ...
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Metadata compresgsion
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Our

goal
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and the throughput of GentleRain
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FEunomia

aims at finding a novel way of
compressing metadata that allows
to pick a better spot in the
throughput-visibility tradeoff
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FEunomia

concelived to replace sequencers in geo-
replicated storage systems

totally orders—consistently with causality—
local updates, before shipping them to other dcs

the ordering is done in the background, out of
client’s critical path
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remote datacenters
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remote datacenters
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EunomiaKV: supporting geo-replication
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EunomiaKV: supporting geo-replication

remote |«
proxy

dc,

abstract
partitioning and
replication details
from clients

dc
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EunomiaKV: supporting geo-replication
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EunomiaKV: supporting geo-replication
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EunomiaKV: supporting geo-replication
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EunomiaKV: supporting geo-replication

] 4 dc,
remote |4 ~ ‘

receives
remote updates,
coming from remote
Eunomia services
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EunomiaKV: supporting geo-replication

remote
proxy

propagates to
local partitions when
dependencies are
satisfied




Implementation

Eunomia is implemented in C++ (200 LOC).
At its core, It uses a red-black tree

EunomiaKV is built as a variant of the open
source version of Riak (100 lines of Erlang code)

Our implementation uses hybrid logical clocks
(HLC) becoming resilient to both clock and
workload skew
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Evaluation: EunomiaKV vs. state-of-the-art

Three datacenter deployment, emulating Amazon
EC2 Virginia, Oregon, and Ireland regions

system that adds no overhead
due to consistency management

comparison to: global stabilisation solutions, GentleRain
(single scalar) and Cure (vector as EunomiaKV)
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Evaluation
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Evaluation

GentleRain . . EunomiaKV
significantly penalizes Ilty compar provides even better
visibility due to the amount results than Cure, using
of false positives the same amount of
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Evaluation

maximum throughput achievable by
Eunomia vs a classical sequencer
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Going back to the beginning

Visibility
latencies (ms)
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Going back to the beginning
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Evaluation Thanks!

take-away message

by taking the coordination with an ordering service out the
the client’s critical path, one can pick a sweet-spot in the
throughput vs. visibility tradeoff

check the paper!!!

fault-tolerant version of Eunomia
impact of stragglers

more experiments
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