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Read-Copy-Update (RCU)

• RCU is a highly scalable synchronization technique

• RCU Readers

− Do not directly synchronize with writers
− Read-side primitives are exceedingly lightweight

/* non -preemptible kernels */

rcu_read_lock ()

{

/* no -op !! */

}

rcu_read_unlock ()

{

/* no -op !! */

}

• RCU Writers

− Must guarantee consistent view of data structures to readers
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Example: Linked List Delete Operation

Removed object B is reclaimed after a grace period
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RCU Grace Periods (Non-Preemptive Environment)

• Restriction on RCU readers:
1. Referencing an object outside the read-side critical section is not allowed
2. Blocking/sleeping/yielding is not permitted within a read-side critical section

(same rule as for tasks holding spinlocks)

• A context switch on a CPU implies all readers on that CPU are done

• Grace period ends after all CPUs execute a context switch
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The RCU-Reader Preemption Problem

Preemption of vCPUs executing RCU read-side critical sections

Grace periods cannot complete while a vCPU is preempted within an RCU
read-side critical section
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The RCU-Reader Preemption Problem
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The RCU-Reader Preemption Problem

vCPU preemption
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Evaluation 1: Postmark
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26.37× increase in max grace period duration
2.18× increase in the average grace period duration

2.9× increase in CPU consumed per grace period computation
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Evaluation 2: Memory microbenchmark
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∼50% increase in peak memory footprint
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Impact

• Latency: spikes when synchronously waiting for grace periods

• Memory: footprint spikes and increased peak memory footprint

− Increased fragmentation
− Can trigger swapping and ballooning

• Increased CPU utilization

• Cross-VM interaction: CPU-consumption spike in one VM might cause a grace period
duration spike in another VM

RCU-reader preemption can impact VM density and consolidation
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Summary

• First evaluation of vCPU preemption within RCU readers

• Demonstrate that RCU-reader preemption has significant performance impacts

• Techniques to handle lock-holder preemption cannot be applied directly to RCU

• Currently investigating a holistic solution for the RCU-reader preemption problem
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Legal Statement

• This work represents the view of the author and does not necessarily represent the view of
IBM.

• IBM and IBM (logo) are trademarks or registered trademarks of International Business
Machines Corporation in the United States and/or other countries.

• Linux is a registered trademark of Linus Torvalds.

• Other company, product, and service names may be trademarks or service marks of others.
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Thank you !!

Questions?
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