

#### The RCU-Reader Preemption Problem in VMs

#### Aravinda Prasad<sup>1</sup>, K Gopinath<sup>1</sup>, Paul E. McKenney<sup>2</sup>

<sup>1</sup>Indian Institute of Science (IISc), Bangalore <sup>2</sup>IBM Linux Technology Center, Beaverton

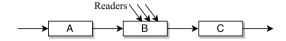
2017 USENIX Annual Technical Conference

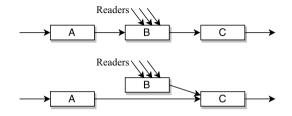
# Read-Copy-Update (RCU)

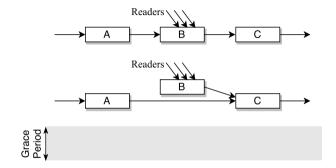
- RCU is a highly scalable synchronization technique
- RCU Readers
  - $-\,$  Do not directly synchronize with writers
  - Read-side primitives are exceedingly lightweight

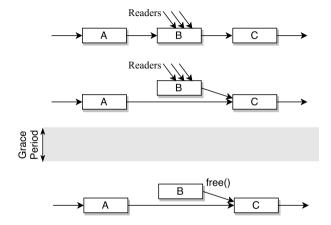
# Read-Copy-Update (RCU)

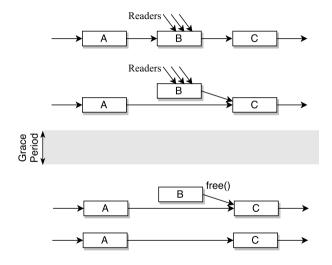
- RCU is a highly scalable synchronization technique
- RCU Readers
  - $-\,$  Do not directly synchronize with writers
  - Read-side primitives are exceedingly lightweight


```
/* non-preemptible kernels */
rcu_read_lock()
{
    /* no-op !! */
}
rcu_read_unlock()
{
    /* no-op !! */
}
```


# Read-Copy-Update (RCU)


- RCU is a highly scalable synchronization technique
- RCU Readers
  - $-\,$  Do not directly synchronize with writers
  - Read-side primitives are exceedingly lightweight


```
/* non-preemptible kernels */
rcu_read_lock()
{
    /* no-op !! */
}
rcu_read_unlock()
{
    /* no-op !! */
}
```


- RCU Writers
  - Must guarantee consistent view of data structures to readers

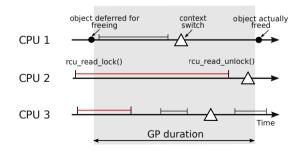











Removed object B is reclaimed after a grace period

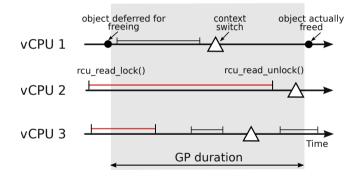
## RCU Grace Periods (Non-Preemptive Environment)

- Restriction on RCU readers:
  - 1. Referencing an object outside the read-side critical section is not allowed
  - 2. Blocking/sleeping/yielding is not permitted within a read-side critical section (same rule as for tasks holding spinlocks)

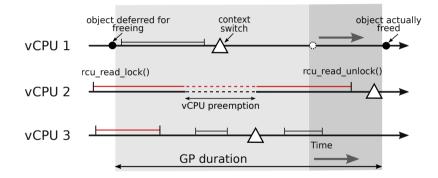
## RCU Grace Periods (Non-Preemptive Environment)

- Restriction on RCU readers:
  - 1. Referencing an object outside the read-side critical section is not allowed
  - 2. Blocking/sleeping/yielding is not permitted within a read-side critical section (same rule as for tasks holding spinlocks)
- A context switch on a CPU implies all readers on that CPU are done
- Grace period ends after all CPUs execute a context switch

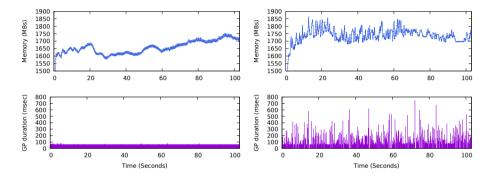



### The RCU-Reader Preemption Problem

Preemption of vCPUs executing RCU read-side critical sections


Preemption of vCPUs executing RCU read-side critical sections

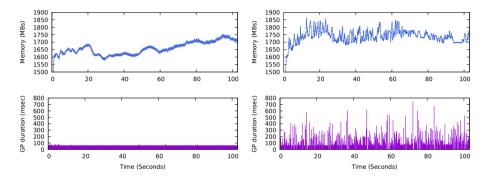
Grace periods cannot complete while a vCPU is preempted within an RCU read-side critical section


#### The RCU-Reader Preemption Problem



#### The RCU-Reader Preemption Problem



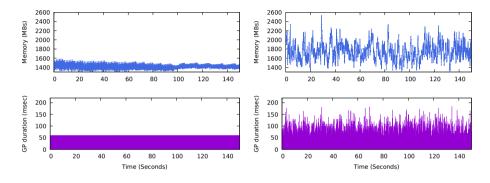

#### Evaluation 1: Postmark



Baseline

Overcommit

#### Evaluation 1: Postmark




#### Baseline

#### Overcommit

26.37× increase in max grace period duration 2.18× increase in the average grace period duration 2.9× increase in CPU consumed per grace period computation

#### Evaluation 2: Memory microbenchmark



Baseline

#### Overcommit

3.62× increase in max grace period duration 30.26% increase in the average grace period duration ~50% increase in peak memory footprint

#### Impact

- Latency: spikes when synchronously waiting for grace periods
- Memory: footprint spikes and increased peak memory footprint
  - Increased fragmentation
  - $-\,$  Can trigger swapping and ballooning
- Increased CPU utilization
- Cross-VM interaction: CPU-consumption spike in one VM might cause a grace period duration spike in another VM

#### Impact

- Latency: spikes when synchronously waiting for grace periods
- Memory: footprint spikes and increased peak memory footprint
  - Increased fragmentation
  - $-\,$  Can trigger swapping and ballooning
- Increased CPU utilization
- Cross-VM interaction: CPU-consumption spike in one VM might cause a grace period duration spike in another VM

RCU-reader preemption can impact VM density and consolidation



- First evaluation of vCPU preemption within RCU readers
- Demonstrate that RCU-reader preemption has significant performance impacts
- Techniques to handle lock-holder preemption cannot be applied directly to RCU
- Currently investigating a holistic solution for the RCU-reader preemption problem

### Legal Statement

- This work represents the view of the author and does not necessarily represent the view of IBM.
- IBM and IBM (logo) are trademarks or registered trademarks of International Business Machines Corporation in the United States and/or other countries.
- Linux is a registered trademark of Linus Torvalds.
- Other company, product, and service names may be trademarks or service marks of others.

Thank you !!

# Questions?



#### The RCU-Reader Preemption Problem in VMs

#### Aravinda Prasad<sup>1</sup>, K Gopinath<sup>1</sup>, Paul E. McKenney<sup>2</sup>

<sup>1</sup>Indian Institute of Science (IISc), Bangalore <sup>2</sup>IBM Linux Technology Center, Beaverton

2017 USENIX Annual Technical Conference