
The RCU-Reader Preemption Problem in VMs

Aravinda Prasad1, K Gopinath1, Paul E. McKenney2

1Indian Institute of Science (IISc), Bangalore
2IBM Linux Technology Center, Beaverton

2017 USENIX Annual Technical Conference

Read-Copy-Update (RCU)

• RCU is a highly scalable synchronization technique

• RCU Readers

− Do not directly synchronize with writers
− Read-side primitives are exceedingly lightweight

/* non -preemptible kernels */

rcu_read_lock ()

{

/* no -op !! */

}

rcu_read_unlock ()

{

/* no -op !! */

}

• RCU Writers

− Must guarantee consistent view of data structures to readers

1

Read-Copy-Update (RCU)

• RCU is a highly scalable synchronization technique

• RCU Readers

− Do not directly synchronize with writers
− Read-side primitives are exceedingly lightweight

/* non -preemptible kernels */

rcu_read_lock ()

{

/* no -op !! */

}

rcu_read_unlock ()

{

/* no -op !! */

}

• RCU Writers

− Must guarantee consistent view of data structures to readers

1

Read-Copy-Update (RCU)

• RCU is a highly scalable synchronization technique

• RCU Readers

− Do not directly synchronize with writers
− Read-side primitives are exceedingly lightweight

/* non -preemptible kernels */

rcu_read_lock ()

{

/* no -op !! */

}

rcu_read_unlock ()

{

/* no -op !! */

}

• RCU Writers

− Must guarantee consistent view of data structures to readers

1

Example: Linked List Delete Operation

Removed object B is reclaimed after a grace period

2

Example: Linked List Delete Operation

Removed object B is reclaimed after a grace period

2

Example: Linked List Delete Operation

Removed object B is reclaimed after a grace period

2

Example: Linked List Delete Operation

Removed object B is reclaimed after a grace period

2

Example: Linked List Delete Operation

Removed object B is reclaimed after a grace period
2

RCU Grace Periods (Non-Preemptive Environment)

• Restriction on RCU readers:
1. Referencing an object outside the read-side critical section is not allowed
2. Blocking/sleeping/yielding is not permitted within a read-side critical section

(same rule as for tasks holding spinlocks)

• A context switch on a CPU implies all readers on that CPU are done

• Grace period ends after all CPUs execute a context switch

Time

CPU 1

CPU 2

CPU 3

rcu_read_lock() rcu_read_unlock()

context
switch

object deferred for
freeing

object actually
freed

GP duration

3

RCU Grace Periods (Non-Preemptive Environment)

• Restriction on RCU readers:
1. Referencing an object outside the read-side critical section is not allowed
2. Blocking/sleeping/yielding is not permitted within a read-side critical section

(same rule as for tasks holding spinlocks)

• A context switch on a CPU implies all readers on that CPU are done

• Grace period ends after all CPUs execute a context switch

Time

CPU 1

CPU 2

CPU 3

rcu_read_lock() rcu_read_unlock()

context
switch

object deferred for
freeing

object actually
freed

GP duration

3

The RCU-Reader Preemption Problem

Preemption of vCPUs executing RCU read-side critical sections

Grace periods cannot complete while a vCPU is preempted within an RCU
read-side critical section

4

The RCU-Reader Preemption Problem

Preemption of vCPUs executing RCU read-side critical sections

Grace periods cannot complete while a vCPU is preempted within an RCU
read-side critical section

4

The RCU-Reader Preemption Problem

5

The RCU-Reader Preemption Problem

vCPU preemption

Time

vCPU 1

vCPU 2

vCPU 3

rcu_read_lock() rcu_read_unlock()

context
switch

object deferred for
freeing

object actually
freed

GP duration

6

Evaluation 1: Postmark

 1500
 1550
 1600
 1650
 1700
 1750
 1800
 1850
 1900

 0 20 40 60 80 100

M
e
m

o
ry

 (
M

B
s)

 1500
 1550
 1600
 1650
 1700
 1750
 1800
 1850
 1900

 0 20 40 60 80 100

M
e
m

o
ry

 (
M

B
s)

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 20 40 60 80 100

G
P
 d

u
ra

ti
o
n
 (

m
se

c)

Time (Seconds)

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 20 40 60 80 100

G
P
 d

u
ra

ti
o
n
 (

m
se

c)

Time (Seconds)

Baseline Overcommit

26.37× increase in max grace period duration
2.18× increase in the average grace period duration

2.9× increase in CPU consumed per grace period computation

7

Evaluation 1: Postmark

 1500
 1550
 1600
 1650
 1700
 1750
 1800
 1850
 1900

 0 20 40 60 80 100

M
e
m

o
ry

 (
M

B
s)

 1500
 1550
 1600
 1650
 1700
 1750
 1800
 1850
 1900

 0 20 40 60 80 100

M
e
m

o
ry

 (
M

B
s)

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 20 40 60 80 100

G
P
 d

u
ra

ti
o
n
 (

m
se

c)

Time (Seconds)

 0
 100
 200
 300
 400
 500
 600
 700
 800

 0 20 40 60 80 100

G
P
 d

u
ra

ti
o
n
 (

m
se

c)

Time (Seconds)

Baseline Overcommit

26.37× increase in max grace period duration
2.18× increase in the average grace period duration

2.9× increase in CPU consumed per grace period computation

7

Evaluation 2: Memory microbenchmark

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 20 40 60 80 100 120 140

M
e
m

o
ry

 (
M

B
s)

 1400

 1600

 1800

 2000

 2200

 2400

 2600

 0 20 40 60 80 100 120 140

M
e
m

o
ry

 (
M

B
s)

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140

G
P
 d

u
ra

ti
o
n
 (

m
se

c)

Time (Seconds)

 0

 50

 100

 150

 200

 0 20 40 60 80 100 120 140

G
P
 d

u
ra

ti
o
n
 (

m
se

c)

Time (Seconds)

Baseline Overcommit

3.62× increase in max grace period duration
30.26% increase in the average grace period duration

∼50% increase in peak memory footprint

8

Impact

• Latency: spikes when synchronously waiting for grace periods

• Memory: footprint spikes and increased peak memory footprint

− Increased fragmentation
− Can trigger swapping and ballooning

• Increased CPU utilization

• Cross-VM interaction: CPU-consumption spike in one VM might cause a grace period
duration spike in another VM

RCU-reader preemption can impact VM density and consolidation

9

Impact

• Latency: spikes when synchronously waiting for grace periods

• Memory: footprint spikes and increased peak memory footprint

− Increased fragmentation
− Can trigger swapping and ballooning

• Increased CPU utilization

• Cross-VM interaction: CPU-consumption spike in one VM might cause a grace period
duration spike in another VM

RCU-reader preemption can impact VM density and consolidation

9

Summary

• First evaluation of vCPU preemption within RCU readers

• Demonstrate that RCU-reader preemption has significant performance impacts

• Techniques to handle lock-holder preemption cannot be applied directly to RCU

• Currently investigating a holistic solution for the RCU-reader preemption problem

10

Legal Statement

• This work represents the view of the author and does not necessarily represent the view of
IBM.

• IBM and IBM (logo) are trademarks or registered trademarks of International Business
Machines Corporation in the United States and/or other countries.

• Linux is a registered trademark of Linus Torvalds.

• Other company, product, and service names may be trademarks or service marks of others.

11

Thank you !!

Questions?

The RCU-Reader Preemption Problem in VMs

Aravinda Prasad1, K Gopinath1, Paul E. McKenney2

1Indian Institute of Science (IISc), Bangalore
2IBM Linux Technology Center, Beaverton

2017 USENIX Annual Technical Conference

