A DSL Approach to Reconcile Equivalent Divergent Program

Executions
Luis Daniel Anastasios Cristian
Pina Grumberg Andronidis Cadar

{l.pina / daniel.grumbergl4 / a.andronidis15 / c.cadar}@imperial.ac.uk
Imperial College London
London, UK

July 13th, 2017

2017 USENIX Annual Technical Conference (ATC)

What are
“Equivalent Divergent Program Executions”?

And why should | care about reconciling them?

Equivalent Divergent Program Executions

>./hellol >./hello2
Hello world Hello world

Equivalent Divergent Program Executions

>./hellol >./hello2
Hello world Hello world
>1dd hellol >1dd hello2
libc.so.6 libc.so.6

jemalloc.so0.6

Equivalent Divergent Program Executions

>./hellol
Hello world
>1dd hellol
libc.so.6

>strace hellol
write(l, "Hello world", 11)

>./hello2

Hello world

>1dd hello2
libc.so.6
jemalloc.so0.6
>strace hello2
write(1, "Hello ", 6)
write(1, "world" , 5)

Multi-Version Execution (MVE)

Run multiple versions as one

Multi-Version Execution (MVE)

Run multiple versions as one

> Improves reliability
malloc (WEIRD_NUMBER) jemalloc (WEIRD_NUMBER)
SEGFAULT OK

Multi-Version Execution (MVE)

Run multiple versions as one

> Improves reliability
malloc (WEIRD_NUMBER) jemalloc (WEIRD_NUMBER)

SEGFAULT 0K

> Improves security

>strace hellol >strace hello2
write(1l,"Hello world") write(1,"Hello, ")
fork()

execve("/bin/sh")
write(1,"world!'")

Multi-Version Execution (MVE)

Run multiple versions as one

> Improves reliability
malloc (WEIRD_NUMBER) jemalloc (WEIRD_NUMBER)

SEGFAULT 0K

> Improves security

>strace hellol >strace hello2
write(1l,"Hello world") write(1,"Hello, ")
fork()

execve("/bin/sh")
write(1,"world!'")

Versions should be diverse but equivalent

Versions should be diverse but equivalent

What about equivalent executions that issue divergent sequences
of system calls?

>strace hellol >strace hello2
write(1,"Hello world", 11) write(1,"Hello ", 6)
write(1,"world" , 5)

10

Versions should be diverse but equivalent

What about equivalent executions that issue divergent sequences
of system calls?

>strace hellol >strace hello2
write(1,"Hello world", 11) write(1,"Hello ", 6)
write(1,"world" , 5)

Describe the divergences with a
Domain Specific Language (DSL)

11

write(1,"Hello world", 11)

write(1,"Hello ", 6)
write(1l,"world" , 5)

12

write(1,"Hello world", 11)

write(1,"Hello ",
, B)

write(1,"world"

6)

13

MVE Architecture

Varan

Varan Shared
Memory
P9 eader Follower
User
0OS Kernel

14

MVE Architecture

Varan

User

Varan Shared
Memory

Leader

read(0,_,128)

Follower

0OS Kernel

15

MVE Architecture

Varan

User

Varan Shared
Memory

___» read(0,_,128)
Leader

read(0,_,128)

Follower

0OS Kernel

16

MVE Architecture

Varan

User

Varan Shared
Memory

read(0,_,128)

Lead
eacer | —0 6, "foobar"

read(0,_,128) = 6 // "foobar"

Follower

0OS Kernel

17

MVE Architecture

Varan

Varan Shared
Memory
o [.., read(0,_,128) ol
eader ollower
e 6, "foobar" .
User
0OS Kernel

18

MVE Architecture

Varan

Varan Shared
Memory
o [.., read(0,_,128) ol
eader ollower
e 6, "foobar" .
User
0OS Kernel

19

MVE Architecture

Varan

User

Varan

Leader

Shared
Memory

read(0,_,128)
6, "foobar" —

Follower

0OS Kernel

20

MVE Architecture

Varan

Varan Shared
Memory
o [.., read(0,_,128) ol
eader ollower
e 6, "foobar" .
User
0OS Kernel

21

MVE Architecture

Varan

Varan Shared
Memory
o [.., read(0,_,128) ol
eader ollower
a 6, "foobar" W
User
DSL
0OS Kernel

22

MVE Architecture

Varan

Varan Shared
Memory
Recorded
Replayed
o [.., read(0,_,128) ol
eader ollower
e 6, "foobar" W
User
DSL
0OS Kernel

23

DSL Architecture

Recorded

read
"foobar"

Replayed

. [DsL] <

read
"foobar"

24

DSL Architecture

Recorded

read
"foobar"

Replayed

~[DsL |«

match match

read
"foobar"

25

DSL Architecture

Recorded

read
"foobar"

Replayed

read
"foobar"

26

DSL Rules

» Default rule: read(_,_

» Actions

MATCH
NOP
SKIP
EXECUTE
STORE

vV vy VYT VvVYy

» Further examples

» Hello world
» nothing keyword
» C predicates

,.) as r =>r

27

Hello World Rule

write(1l, "Hello world", 11)

=> ywrite(1l, "Hello ", 6),
write(1, "world" , 5)

28

Hello World Rule

Recorded

read
"foobar"

write

Replayed

read
"foobar"

"Hello world"

write(l, "Hello world", 11)

~[DsL]<

write
"Hello "

write
"world"

=> ywrite(1,
write(1,

"Hello ", 6),

"world" , 5)
29

Hello World Rule

Recorded

read
"foobar"

write
"Hello world"

nop

write(l, "Hello world", 11)

DSL [«~——

=>

Replayed

read
"foobar"

write
"Hello "

exec

write
"world"

write(1,
write(1,

"Hello ", 6),

"world" , 5)
30

Hello World Rule

Recorded

read
"foobar"

write
"Hello world"

write(l, "Hello world", 11)

=>

Replayed

read
"foobar"

write
"Hello "

write
"world"

write(1,
write(1,

"Hello ", 6),

"world" , 5)
31

Hello World Rule

Recorded

read
"foobar"

write
"Hello world"

Replayed

read
"foobar"

write
"Hello "

—’\

write
"world"

write(1, "Hello world", 11) => write(1,

write(1,

"Hello ", 6),

"world" , 5)
32

Hello World Rule

Recorded

read
"foobar"

write
"Hello world"

skip

write(l, "Hello world", 11)

DSL

=>

Replayed

read
"foobar"

write
"Hello "

exec

write
"world"

write(1,
write(1,

"Hello ", 6),

"world" , 5)
33

Hello World Rule

Recorded

read
"foobar"

write
"Hello world"

write(l, "Hello world", 11)

=>

Replayed

read
"foobar"

write
"Hello "

write
"world"

write(1,
write(1,

"Hello ", 6),

"world" , 5)
34

Hello World Rule

Recorded

read
"foobar"

Replayed

write
"Hello world"

read
"foobar"

?

write
"Hello "

write
"world"

sched_yield

35

nothing Keyword

nothing => sched_yield()

36

nothing Keyword

Recorded

read
"foobar"

write
"Hello world"

?

nothing

_’\

=> sched_yield()

Replayed

read
"foobar"

write
"Hello "

write
"world"

sched_yield

37

nothing Keyword

Recorded

read
"foobar"

write
"Hello world"

?

nothing

«_—[DSL|

nop

=> sched_yield()

N

exec

Replayed

read
"foobar"

write
"Hello "

write
"world"

sched_yield

38

nothing Keyword

Recorded

read
"foobar"

Replayed

write
"Hello world"

read
"foobar"

?

write
"Hello "

nothing

write
"world"

sched_yield

sched_yield()

39

nothing Keyword

Recorded

read
"foobar"

Replayed

write
"Hello world"

read
"foobar"

sigaction
sigl

write
"Hello "

write
"world"

sigaction
sig2

sched_yield

?

sigaction
sig2

sigaction
sigl

40

C Predicates

and multiple left-hand side

// extern int sigl, sig2;
sigact(sig,_,_) { $(sig) ==
sigact(sig, ,) { $(sig) ==

sigl; } as sli,
sig2; } as s2

=> s2 sl

41

C Predicates

Recorded Replayed
read read
"foobar" "foobar"
write write
"Hello world" "Hello "
sigaction write
sigl "world"
sigaction sched_ yield
sig2
sigaction
? sig2
sigaction
sigl
sigact(sig,_,_) { $(sig) == sigl; } as si,
sigact(sig,_,_) { $(sig) == sig2; } as s2 => s2, sl

C Predicates

Recorded

read
"foobar"

Replayed

write
"Hello world"

read
"foobar'

sigaction
sigl

write
"Hello "

write
"world"

sigaction
sig2

sched_yield

?

sigaction
sig2

sigact(sig, _,
sigact(sig,_,

2
2

sigaction
sigl

{ $(sig)
{ $(sig)

sigl; } as si,
sig2; } as s2 => g2, sl

C Predicates

sigact(sig, _,
sigact(sig,_,

Recorded

read
"foobar"

write
"Hello world"

sigaction
sigl

sigaction
sig2

?

24
24

$(sig)
$(sig)

store \

nop

Replayed

read
"foobar'

write
"Hello "

write
"world"

sched_ yield

sigaction
sig2

sigaction
sigl

sigl; } as si,

== sig2; } as s2 => g2, sl

44

C Predicates

sigact(sig, _,
sigact(sig,_,

Recorded

read
"foobar"

"Hello world"

write

sigaction

sigl
sigaction
sig2

$(sig)

ARt
) { $(sig)

match 2

match

sigl; } as
sig2; } as

Replayed

read
"foobar'

write
"Hello "

write
"world"

sched_ yield

sigaction
sig2

sigaction
sigl

si,

s2 => 32 sl

45

C Predicates

sigact(sig,_,_
sigact(sig,_,_

Recorded

read
"foobar"

write
"Hello world"

sigaction
sigl

sigaction

N S
A
©
~
n
=
09
p—g

match 1

Replayed

read
"foobar'

write
"Hello "

write
"world"

sched_ yield

sigaction
sig2

sigaction
sigl

sigl; } as si,
sig2; } as s2 => g2, sl

46

C Predicates

Recorded Replayed
read read
"foobar" "foobar"
write write
"Hello world" "Hello "
sigaction write
sigl "world"
sigaction sched_yield
sig2
sigaction
? sig2
sigaction
sigl
sigact(sig,_,_) { $(sig) == sigl; } as si,
sigact(sig,_,_) { $(sig) == sig2; } as s2 => s2, sl

Deployment scenarios

» Different configurations
» Different releases

» Different dynamic analyses

48

Deployment scenarios

Different configurations

Recorded Redis minimal config
Replayed 1 Redis with persistency (3 rules)
Replayed 2 Redis with verbose logs (4 rules)
Replayed 3 Redis with persistency and verbose logs (7 rules)

49

Deployment scenarios

Different releases

Redis Versions

ID Recorded — Replayed Commits | Rules
1 1.3.8-1.3.10 40 0
2 1.3.10 - 1.3.12 105 0
3 1.3.12-2.0.0 92 1 6
4 2.0.0-2.05 34 1
5 2.05-2.2.0 730 3
6 2.2.0-2.2.15 110 2

50

Deployment scenarios

Analyses

Recorded Native
Replayed 1 Asan (3 rules)
Replayed 2 Msan (1 rule)
Replayed 3 Tsan (5 rules)
Replayed 4 Valgrind (14 rules)?

'Expands to 31 rules through group syntatic-sugar

51

Deployment scenarios

Analyses

Recorded Native
Replayed 1 Asan (3 rules)
Replayed 2 Msan (1 rule)
Replayed 3 Tsan (5 rules)
Replayed 4 Valgrind (14 rules)?

v

git (log, blame, diff, tag)

v

openssh (ssh, ssh-keygen)
» htop

> vim

'Expands to 31 rules through group syntatic-sugar

52

Deployment scenarios

Analyses

Recorded Native

Replayed 1 Asan (3 rules)

Replayed 2 Msan (1 rule) ><
Replayed 3 Tsan (5 rules)

Replayed 4 Valgrind (14 rules)?

v

git (log, blame, diff, tag)

v

openssh (ssh, ssh-keygen)

v

htop

> vim

'Expands to 31 rules through group syntatic-sugar

53

Finding these rules must be hard. ..

Finding these rules must be hard. ..

It isn't

Finding Rules

1. strace -o native.log native
2. strace -o valgrind.log valgrind

3. vimdiff native.log valgrind.log

56

Finding Rules

native.log

read(3, ..., 4096)

lseek(3, -2347, SEEK_CUR)

read(3, ..., 4096)

close(3)

valgrind.log

gettid ()

write(1029, "D", 1)
sigprocmask([], ~[...1)
read(3, ..., 4096)
sigprocmask(~[...], NULL)
gettid()

read (1028, "D", 1)
lseek(3, -2347, SEEK_CUR)
gettid()

write(1029, "E", 1)
sigprocmask([], ~[...])
read(3, ..., 4096)
sigprocmask([...], NULL)
gettid ()

read (1028, "E", 1)
close(3)

57

Finding Rules

vimdiff

read(3,

read(3,

native.log

., 4096)

., 4096)

valgrind.log

gettid ()

write(1029, "D", 1)
sigprocmask([], ~[...1)
read(3, ..., 4096)
sigprocmask(~[...], NULL)
gettid()

read (1028, "D", 1)

gettid()

write(1029, "E", 1)
sigprocmask([], ~[...])
read(3, ..., 4096)
sigprocmask([...], NULL)
gettid ()

read (1028, "E", 1)

58

Finding Rules

vimdiff

native.log

read(=,=,=)

read(3, ., 4096)

valgrind.log
gettidOpgy
write (1029, pmy, g
sigprocmask (py. g’
sigprocmask (g g’ N
gettidOpgy

read (1028, = 1)

gettid ()
write(1029, "E", 1)
sigprocmask([], ~[...1)

read(3, ., 4096)
sigprocmask([...], NULL)
gettid ()

read(1028, "E", 1)

59

Rule synthesis algorithm

v

Rules with the shape: syscall as s => ..., s,

» Input: recorded and replayed traces

v

Output: set of candidate rules
Was able to find 16 out of 19 applicable rules
> Non-determinism and infrequent syscalls impact quality of rules

v

v

Details in the paper

60

Conclusion

> Increases the applicability of multi-version execution
» For reliability and security
» State-of-the-art MVE struggles with divergences
» Simple expressive language for reconciling system call sequences
» Recorded and replayed
» DSL provides the required action to tolerate divergences
» Necessary rules are easy to identify
» vimdiff of strace logs
» Automatic algorithm to synthethize rules

» From equivalent strace logs

61

We're hiring!

v

Post-doc position in Software Systems and Program Analysis
Starting in November 2017, apply until August 2017

v

v

Up to 17 months, possibly extendable to 24

v

Details: https://srg.ic.ac.uk/vacancies

62

https://srg.ic.ac.uk/vacancies

v

v

v

v

A DSL Approach to Reconcile Equivalent
Divergent Program Executions

Increases the applicability of multi-version execution
» For reliability and security
» State-of-the-art MVE struggles with divergences
Simple expressive language for reconciling system call sequences
» Recorded and replayed
» DSL provides the required action to tolerate divergences
Necessary rules are easy to identify
» vimdiff of strace logs
Automatic algorithm to synthethize rules
» From equivalent strace logs

Luis Pina, Daniel Grumberg, Anastasios Andronidis, Cristian Cadar
Imperial College London

63

