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Data Center Network Monitoring

• Failures are the norm rather than exception
– Typical first year for a new cluster (Jeff Dean, Google)
• 8 network maintenances
• 15 router reloads/failures
• 26 rack failures/moves
• Dozens of blips of DNS
• 1000 individual machine failures

• SLA violation (99.999%)
– Packet losses and latency spikes
– Difficult to troubleshoot (up to days to fix the issues)
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A network monitoring system for 
rapid failure recovery



Challenges

• Clean failures
– Easy to detect, e.g., server down.

• Gray failures
– Not reported by the device (SNMP/CLI)

• Low-rate losses
– Covered up by ECMP

• Transient failures
– Difficult to play back and pinpoint
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Exhaustive detection



Existing Solutions
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• Existing systems
– Passive: CLI/SNMP
– Active: Pingmesh, NetNORAD

• Limitations
– Fail to detect at least one type of losses
– High overhead
– Can not pinpoint failures without other tools (e.g., tracert)
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– Active: Pingmesh, NetNORAD

• Limitations
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– High overhead
– Can not pinpoint failures without other tools (e.g., tracert)

Can we design a better network 
monitoring system by exploiting 

network topology?



deTector in One Slide
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Phase I: Path Computation
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Path Selection Problem
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Path 1
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Path 3

Link 1 Link 2 Link 3
• Given a routing matrix, select 

probing paths to send 
probes:
– path number minimizing
– α-coverage
– β-identifiability



α-coverage

• Ensure even and enough
path coverage of each link

Each link is covered by at least α paths

• w[link]: track the number of 
paths through it.

• If w[link] > α, then the link 
has enough paths through it.
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β-identifiability

• Any β failed links can be 
identified correctly

• Probe matrix: path1 + path2 
1-identifiability but not 2-
identifiability

1,2 1 2
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Path 2

Path 3

Link 1 Link 2 Link 3



Algorithm for 1-identifiability

• Select the minimum number 
of paths so that each link has 
a different set of probe paths.

• Greedily select the path 
which splits the largest 
number of link sets in each 
iteration.

L



Algorithm for 1-identifiability

• Select the minimum number 
of paths so that each link has 
a different set of probe paths.

• Greedily select the path 
which splits the largest 
number of link sets in each 
iteration.

L

L2L1

Select a path



Algorithm for 1-identifiability

• Select the minimum number 
of paths so that each link has 
a different set of probe paths.

• Greedily select the path 
which splits the largest 
number of link sets in each 
iteration.

L

L2L1

L11 L12 L21 L22

Select a path

Select a path



1-identifiability => β-identifiability

1 1 0

1 0 1

0 0 1

• Extend routing 
matrix with 
virtual links.

• If a virtual link is 
down, we say its 
corresponding 
physical links 
have failed.Physical links
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Link 1 Link 2 Link 3



1-identifiability => β-identifiability
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Link 
23 • Extend routing 

matrix with 
virtual links.

• If a virtual link is 
down, we say its 
corresponding 
physical links 
have failed.ORPhysical links Virtual links
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Path 3

Link 1 Link 2 Link 3



Probe Matrix Construction (PMC) Algorithm

• Select a path with minimal score in each iteration
• Stop when achieving α-coverage and β-identifiability

• Extend the routing matrix with virtual links
• Define a score for each path Quantify 

coverage

Quantify 
identifiability



PMC Algorithm

• Achieve 63% approximation ratio.

• Time complexity O(n2) where n is the number of 
paths.

• A Fattree(64) DCN has more than 232 paths, running 
time > 24 hours
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• Achieve 63% approximation ratio.

• Time complexity O(n2) where n is the number of 
paths.

• A Fattree(64) DCN has more than 232 paths, running 
time > 24 hours

Optimizations for speedup



Optimization I: Routing Matrix Decomposition
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Share no links 
and paths



Optimization II: Lazy Update

• Defer the score update of a 
path as much as possible 
until we have to.

• Correctness guaranteed by 
the submodularity of the 
objective function.

path 1

path 3

Score heap

Only update the 
score of the top 

element

path 2

path 5

path 4



Optimization III: Symmetry Reduction

• Most DCN topologies 
are symmetric!



PMC Algorithm Results of Fattree
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• Running time on one Xeon E5-2620 CPU
From days to 

seconds



PMC Algorithm Results of Fattree
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• Running time on one Xeon E5-2620 CPU

• The number of probe paths
The optimal needs 

at least 52428 
paths

From days to 
seconds



Phase II: Network Probing
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Network Probing

• Source routing: IP-in-IP encapsulation and 
decapsulation

• UDP probes: varying packet length, DSCP, source 
port

• Responders: simply echo probes back



Phase III: Loss Localization
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Loss Localization Problem

1 1 0

1 0 1

0 0 1

Path 1

Path 2

Path 3

Link 1 Link 2 Link 3 • Given the probe matrix and 
loss measurements, select 
the least number of links 
to explain the observation.

• NP-hard

Loss 
measurements

4

1

3
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Packet Loss Localization (PLL) Algorithm

• In each iteration we select a link that can explain the largest 
number of probe losses until all are explained
– If a link lies in the packet path, then the link can explain the loss.

• Two simple improvements
– Matrix decomposition to speedup computation
– Use threshold to filter false positives
• The ratio of # of lossy paths over # of all probe paths through the link
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Experiment

• A 4-ary Fattree testbed with 20 SDN switches
• Install OpenFlow rules to emulate losses caused by various 

failures
– Full packet loss: link down etc.
– Deterministic partial loss: packet blackhole etc.
– Random partial loss: bit flips etc.

• Performance metric
– Accuracy
– False positive ratio
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Experiment
• Sensitivity test of sending frequency

Overhead of pingersAccuracy and false positives
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Experiment
• Sensitivity test of sending frequency

Overhead of pingersAccuracy and false positives

10 pkts/s => 95% 
accuracy

10 pkts/s => 0.3% 
CPU, 13MB, 50Kbps
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Experiment
• Accuracy and false positives of three monitoring systems
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Experiment
• Accuracy and false positives of three monitoring systems

Same # of probes, 98%, 89%, 
78% accuracy respectively

Same # of probes, 1%, 8%, 1% 
false positives respectively 25



Simulation
• Accuracy in a 18-radix Fattree, with probe matrices of 

different levels of α-coverage and β-identifiability
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Identifiability is more 
effective than coverage 
for failure localization.



Simulation
• Accuracy in a 18-radix Fattree, with probe matrices of 

different levels of α-coverage and β-identifiability
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2-identifiability 
is enough.



Summary

• The core of deTector is a carefully designed probe matrix, 
enabling fast and accurate loss detection and localization.

• deTector is practically deployable.
• Discussions
– Packet entropy: limited destination IP addresses
– Loss diagnosis: do not know why packets are dropped
– Beyond deTector: apply probe matrix to optimize in-band 

techniques
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Thanks
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