
Practical Record And Replay
Debugging With rr

Robert O'Callahan

Debugging nondeterminism

Deterministic hardware

Sources of nondeterminism

Record inputs

Replay execution

“Old idea”
Nirvana

ReVirt

Chronomancer

PinPlay

Jockey ReSpec

PANDA
Scribe

ODR

Echo

FlashBackCLAP
QuickRec

ReTrace

rr goals
l Easy to deploy: stock hardware, OS
l Low overhead
l Works on Firefox
l Small investment

rr design

Deterministic user-space
CPU execution

Li
nu

x
pr

oc
es

s
bo

un
da

ry
System call results

Observable effects

Record and
replay

Signals

No code instrumentation

mov EDX, tls.ebp
mov ECX, tls
call MemReadCallback
mov EAX, [EDX]

Use modern HW/OS features
System call results ptrace

Signals ptrace

Shared memory data races Limit to single core

Asynchronous event timing HW performance counters

Trap on a subset of system calls seccomp-bpf

Notification when system call
blocks in the kernel

DESCHED perf events

Cheap block copies FIOCLONERANGE

ptrace

rr
before_syscall

after_syscall
Kernel read()

... record results ...

Use modern HW/OS features
System call results ptrace

Signals ptrace

Shared memory data races Limit to single core

Asynchronous event timing HW performance counters

Trap on a subset of system calls seccomp-bpf

Notification when system call
blocks in the kernel

DESCHED perf events

Cheap block copies FIOCLONERANGE

Data races
C

P
U

0

C
P

U
1

Memory

Data races

C
P

U
0

Use modern HW/OS features
System call results ptrace

Signals ptrace

Shared memory data races Limit to single core

Asynchronous event timing HW performance counters

Trap on a subset of system calls seccomp-bpf

Notification when system call
blocks in the kernel

DESCHED perf events

Cheap block copies FIOCLONERANGE

Event timing: HW perf counters
alarm()

SIGALRM

Measure progress

Instructions executed!

Retired conditional
branches (Intel)

Zero overhead

Instructions executed!

Use modern HW/OS features
System call results ptrace

Signals ptrace

Shared memory data races Limit to single core

Asynchronous event timing HW performance counters

Trap on a subset of system calls seccomp-bpf

Notification when system call
blocks in the kernel

DESCHED perf events

Cheap block copies FIOCLONERANGE

Accelerating system calls
rr

before_syscall

after_syscall
Kernel read()

... record results ...

Use seccomp-bpf
predicates

Avoid context switches

librrpreload.so
shim_read()

... record results ...

Kernel read() Suppress ptrace trap

Blocking system calls

librrpreload.so
shim_read()

... record results ...

Kernel read() Blocks?Kernel read()Kernel read()

Blocking system calls

read() ...

kernel
DESCHED perf event

rr

thread 2

thread 1

Other issues

RDTSC
RDRAND
XBEGIN/XEND
CPUID

rr Overhead

cp octane htmltest sambatest
0.00

0.50

1.00

1.50

2.00

2.50

Record
Replay
Single Core

Workload

O
ve

rh
ea

d
re

la
tiv

e
to

 b
as

el
in

e

Reverse-execution Debugging

Lessons
Replay performance matters

Session-cloning performance matters
 → Cloning processes via fork() seems cheaper than e.g.

cloning VM state

Lessons
In-process system-call interception is fragile

 → applications make syscalls in strange states (bad TLS,
insufficient stack, etc)

 → in-process interception code could be accidentally or
maliciously subverted

 → move this part into kernel?

OS design implications
Recording boundary should:

 → be stable, simple, documented API boundary
 → also be a boundary for hardware performance

counter measurement

Linux kernel/user boundary is this (mostly)
Windows kernel/user boundary is not

ARM

retry:
LDREX r0,[addr]
ADD r0,1
hardware interrupt???
STREX r1,r0,[addr]
CMP r1,0
BNE retry

 → Need hardware support to detect/compensate
 → Or binary rewriting

Related work
VM-level replay … heavyweight

 → ReVirt, VMWare, QEMU (PANDA), Xen
Kernel-supported replay … hard to maintain

 → Scribe, dOS, Arnold
Pure user-space replay … instrumentation, higher overhead

 → PinPlay, iDNA, UndoDB
Higher-level replay … more limited scope

 → Chronon, Dolos, Chakra, R2
Parallel replay … more limited scope, higher overhead

 → SMP-ReVirt, DoublePlay, ODR, Castor
Hardware-supported parallel replay … nonexistent hardware

 → FDR, BugNet, DeLorean, QuickRec

Conclusions

rr’s approach delivers a lot of value

More research needed for multicore approaches

Lots of unexplored applications of record+replay

http://rr-project.org
https://github.com/mozilla/rr

