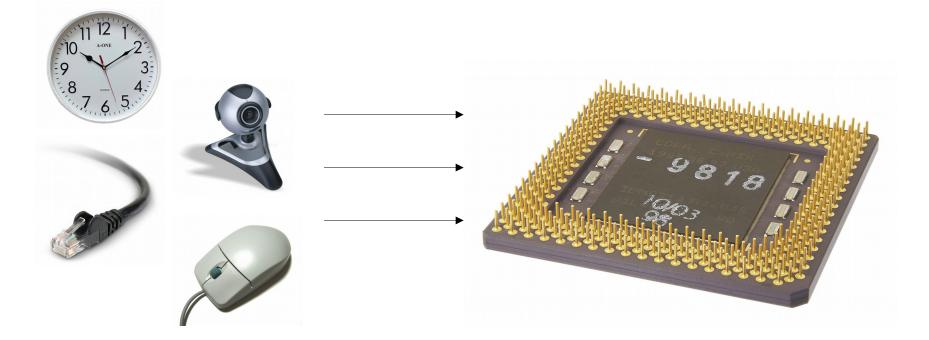
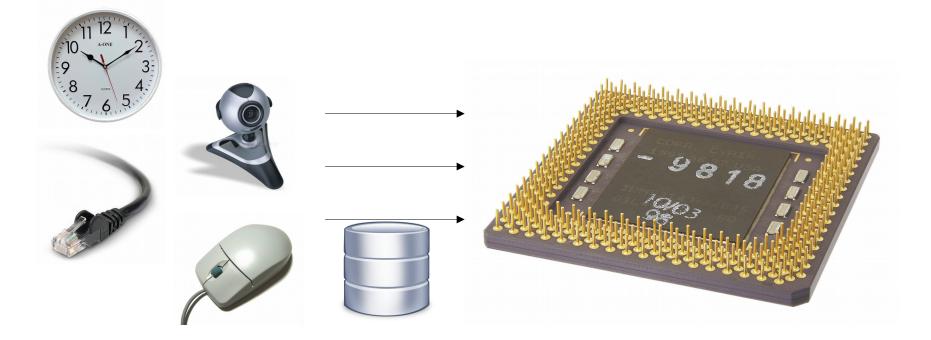

Practical Record And Replay Debugging With rr

Robert O'Callahan

Debugging nondeterminism

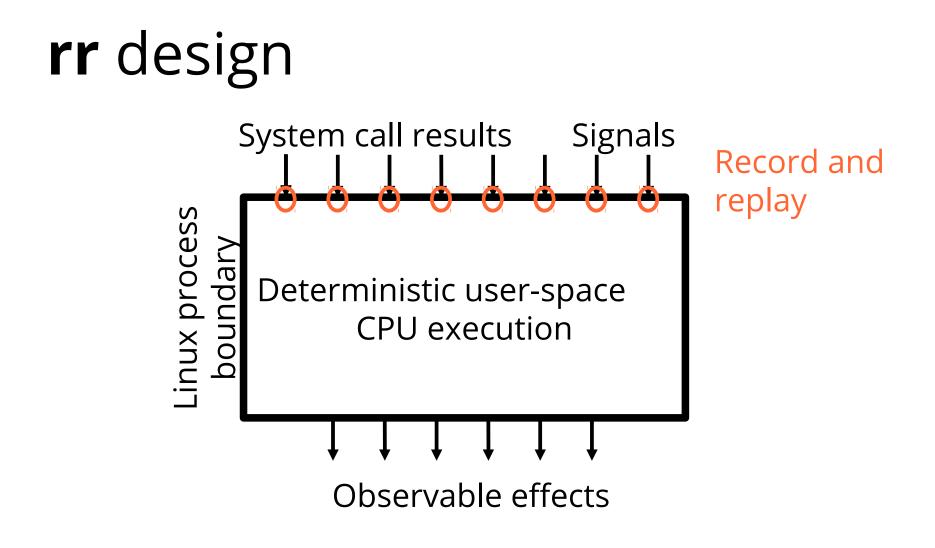

Linux opt	B Cpp Jit1 Jit2 Mn Mn-e10s Wr X M(12345 JP bc1 bc2 bc3 dt gl oth p) M-e10s(12345 bc1 bc2 bc3 dt) R(C J R1 R2 Ru) R-e10s(C R-e10s) T(c d g1 g2 o s tp) W(1234)
Linux pgo	B Cpp Jit1 Jit2 Mn Mn-e10s Wr X M(12345 JP bc1 bc2 bc3 dt gl oth p) M-e10s(12345 bc1 bc2 bc3 dt) R(C J R1 R2 Ru) R-e10s(C R-e10s) T(c d g1 g2 o s tp) W(1234)
Linux debug	B Cpp Jit1 Jit2 Mn X M(12345 JP bc1 bc2 bc3 dt1* dt2 dt3 dt4 gl oth* p) M-e10s(12345 bc1* bc1 bc2* bc3) R(C J R1 R2) R-e10s(R-e10s1 R-e10s2)
Linux x64 opt	B Cpp H Jit1 Jit2 Ld Mn V Wr X M(1 2 3 4 5 JP bc1 bc2 bc3 dt gl oth p) M-e10s(1 2 3 4 5 bc1 bc2 bc3 dt) R(C J R) R-e10s(C R-e10s)) T(c d g1 g2 o s tp) W(1 2 3 4)
Linux x64 pgo	B Cpp Jit1 Jit2 Ld Mn Wr X M(1 2 3 4 5 JP bc1 bc2 bc3 dt gl oth p) M-e10s(1 2 3 4 5 bc1 bc2 bc3 dt) R(C J R) R-e10s(C R-e10s) T(c d g1 g2 o s tp) W(1 2 3 4)
Linux x64 asan	Bd Bo Cpp Jit1 Jit2 M(12345 JP bc1* bc2 bc3 dt* gl oth p) M-e10s(12*2345 bc1* bc2 bc3) R(C J R*)
Linux x64 debug	B Cpp Jit1 Jit2 Mn S X M(12345 JP bc1 bc2 bc3 dt1 dt2 dt3 dt4 gl oth p) M-e10s(12345 bc1 bc2 bc3) R(C J R1 R2) R-e10s(R-e10s1 R-e10s2)

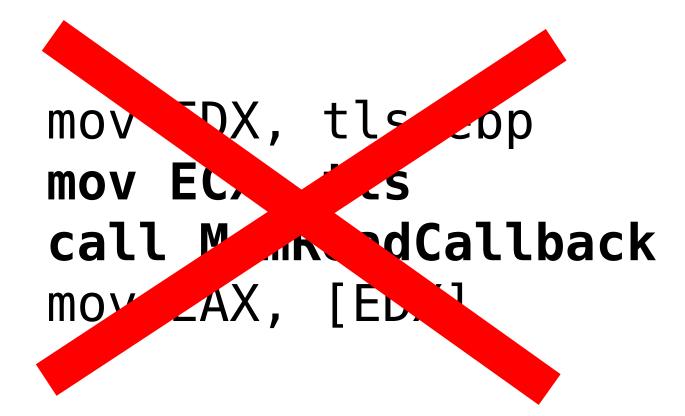
Deterministic hardware



Sources of nondeterminism

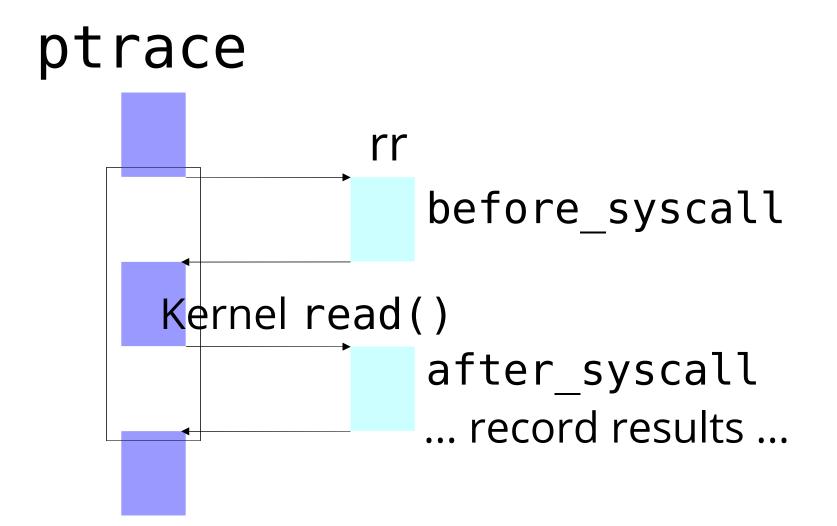
Record inputs


Replay execution


"Old idea"		
N 1 '	PinPlay	ReVirt
Nirvana	Jockey	ReSpec
Chronomancer		ODR
PANDA Scribe		Echo
CLAP F	lashBack	QuickRec
ReTrace		

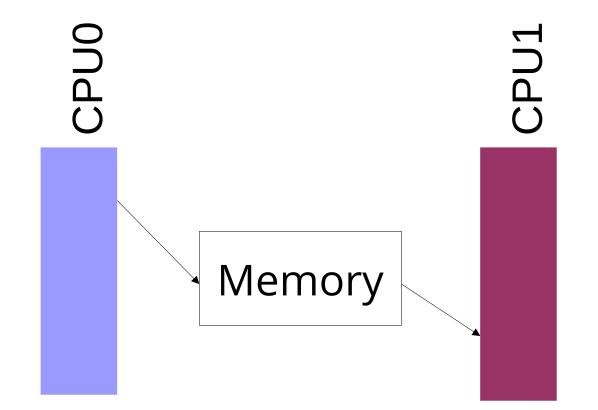
rr goals

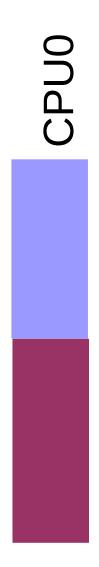
- Easy to deploy: stock hardware, OS
- Low overhead
- Works on Firefox
- Small investment



No code instrumentation

Use modern HW/OS features

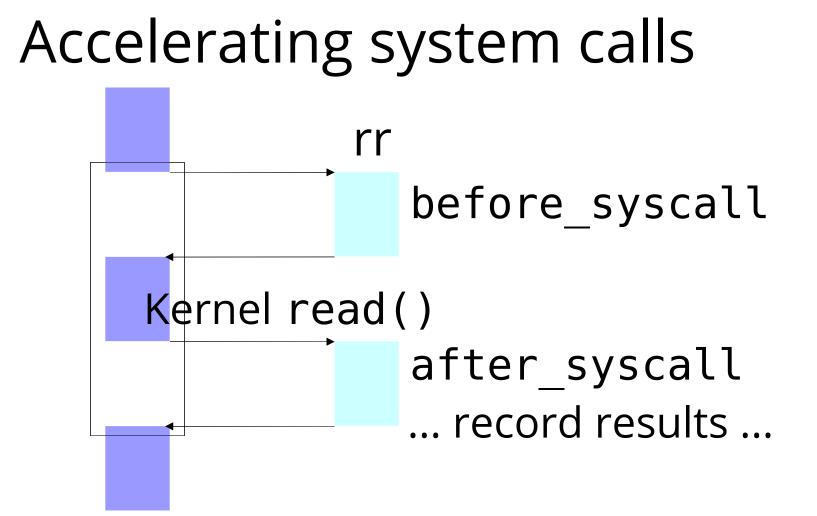

System call results	ptrace
Signals	ptrace
Shared memory data races	Limit to single core
Asynchronous event timing	HW performance counters
Trap on a subset of system calls	seccomp-bpf
Notification when system call blocks in the kernel	DESCHED perf events
Cheap block copies	FIOCLONERANGE


Use modern HW/OS features

System call results	ptrace
Signals	ptrace
Shared memory data races	Limit to single core
Asynchronous event timing	HW performance counters
Trap on a subset of system calls	seccomp-bpf
Notification when system call	DESCHED perf events
blocks in the kernel	
Cheap block copies	FIOCLONERANGE

Data races

Data races


Use modern HW/OS features

System call results	ptrace
Signals	ptrace
Shared memory data races	Limit to single core
Asynchronous event timing	HW performance counters
Trap on a subset of system calls	seccomp-bpf
Notification when system call	DESCHED perf events
blocks in the kernel	
Cheap block copies	FIOCLONERANGE

Event timing: HW perf counters alarm() Measure progress Instructions executed Retired conditional branches (Intel) SIGALRM Zero overhead

Use modern HW/OS features

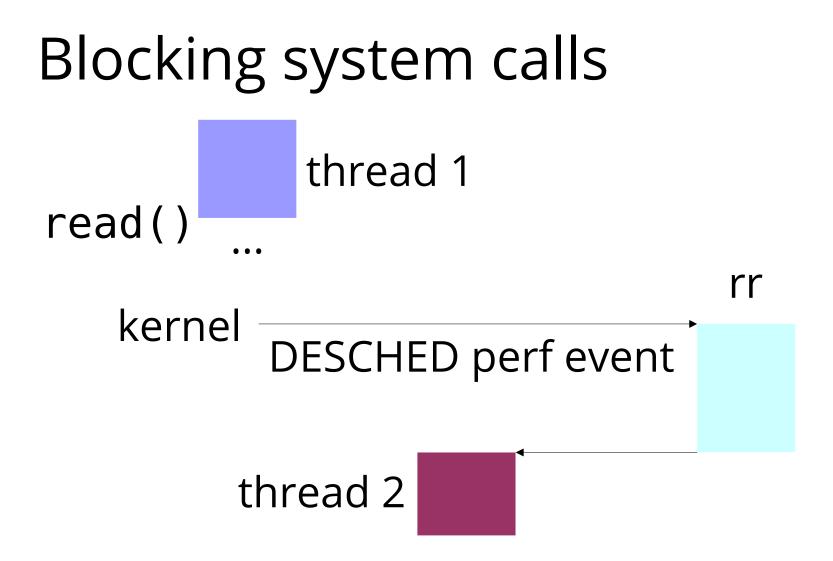
System call results	ptrace
Signals	ptrace
Shared memory data races	Limit to single core
Asynchronous event timing	HW performance counters
Trap on a subset of system calls	seccomp-bpf
Notification when system call blocks in the kernel	DESCHED perf events
Cheap block copies	FIOCLONERANGE

Avoid context switches

librrpreload.so shim_read()

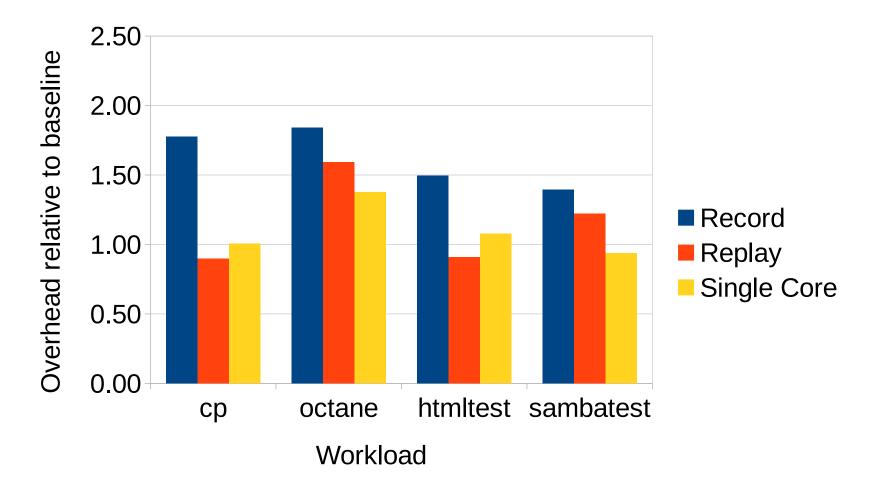
Kernel read()

... record results ...


Suppress ptrace trap Use seccomp-bpf predicates

librrpreload.so shim_read()

Kernel read() - Blocks?


... record results ...

Other issues

RDTSC RDRAND XBEGIN/XEND **CPUID**

rr Overhead

Reverse-execution Debugging

Debug on Linux at all? Stop and go get `rr` *RIGHT NOW*. Biggest improv. to debugging for me ever. H/T Justin Lebar.

Lessons

Replay performance matters

Session-cloning performance matters → Cloning processes via fork() seems cheaper than e.g. cloning VM state

Lessons

In-process system-call interception is fragile
 → applications make syscalls in strange states (bad TLS, insufficient stack, etc)
 → in-process interception code could be accidentally or maliciously subverted
 → move this part into kernel?

OS design implications

Recording boundary should:

→ be stable, simple, documented API boundary
 → also be a boundary for hardware performance counter measurement

Linux kernel/user boundary is this (mostly) Windows kernel/user boundary is not

ARM

```
retry:
LDREX r0,[addr]
ADD r0,1
hardware interrupt???
STREX r1,r0,[addr]
CMP r1,0
BNE retry
```

→ Need hardware support to detect/compensate
→ Or binary rewriting

Related work

VM-level replay ... heavyweight → ReVirt, VMWare, QEMU (PANDA), Xen Kernel-supported replay ... hard to maintain \rightarrow Scribe, dOS, Arnold Pure user-space replay ... instrumentation, higher overhead \rightarrow PinPlay, iDNA, UndoDB Higher-level replay ... more limited scope \rightarrow Chronon, Dolos, Chakra, R2 Parallel replay ... more limited scope, higher overhead \rightarrow SMP-ReVirt, DoublePlay, ODR, Castor Hardware-supported parallel replay ... nonexistent hardware \rightarrow FDR, BugNet, DeLorean, QuickRec

Conclusions

rr's approach delivers a lot of value

More research needed for multicore approaches

Lots of unexplored applications of record+replay

http://rr-project.org https://github.com/mozilla/rr