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Debugging nondeterminism



Deterministic hardware



Sources of nondeterminism



Record inputs



Replay execution



“Old idea”
Nirvana

ReVirt

Chronomancer

PinPlay

Jockey ReSpec

PANDA
Scribe

ODR

Echo

FlashBackCLAP
QuickRec

ReTrace



rr goals
l Easy to deploy: stock hardware, OS
l Low overhead
l Works on Firefox
l Small investment



rr design
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No code instrumentation

mov EDX, tls.ebp
mov ECX, tls
call MemReadCallback
mov EAX, [EDX]



Use modern HW/OS features
System call results ptrace

Signals ptrace

Shared memory data races Limit to single core

Asynchronous event timing HW performance counters

Trap on a subset of system calls seccomp-bpf

Notification when system call 
blocks in the kernel

DESCHED perf events

Cheap block copies FIOCLONERANGE



ptrace

rr
before_syscall

after_syscall
Kernel read()

... record results ...
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Event timing: HW perf counters
alarm()

SIGALRM

Measure progress

Instructions executed!

Retired conditional 
branches (Intel)

Zero overhead

Instructions executed!



Use modern HW/OS features
System call results ptrace

Signals ptrace
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Accelerating system calls
rr

before_syscall

after_syscall
Kernel read()

... record results ...



Use seccomp-bpf 
predicates

Avoid context switches

librrpreload.so
shim_read()

... record results ...

Kernel read() Suppress ptrace trap



Blocking system calls

librrpreload.so
shim_read()

... record results ...

Kernel read() Blocks?Kernel read()Kernel read()



Blocking system calls

read() ...

kernel
DESCHED perf event

rr

thread 2

thread 1



Other issues

RDTSC
RDRAND
XBEGIN/XEND
CPUID



rr Overhead
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Reverse-execution Debugging



Lessons
Replay performance matters

Session-cloning performance matters
 → Cloning processes via fork() seems cheaper than e.g. 

cloning VM state



Lessons
In-process system-call interception is fragile

 → applications make syscalls in strange states (bad TLS, 
insufficient stack, etc)

 → in-process interception code could be accidentally or 
maliciously subverted

 → move this part into kernel?



OS design implications
Recording boundary should:

 → be stable, simple, documented API boundary
 → also be a boundary for hardware performance 

counter measurement

Linux kernel/user boundary is this (mostly)
Windows kernel/user boundary is not



ARM

retry:
LDREX r0,[addr]
ADD r0,1
hardware interrupt???
STREX r1,r0,[addr]
CMP r1,0
BNE retry

 → Need hardware support to detect/compensate
 → Or binary rewriting



Related work
VM-level replay … heavyweight

 → ReVirt, VMWare, QEMU (PANDA), Xen
Kernel-supported replay … hard to maintain

 → Scribe, dOS, Arnold
Pure user-space replay … instrumentation, higher overhead

 → PinPlay, iDNA, UndoDB
Higher-level replay … more limited scope

 → Chronon, Dolos, Chakra, R2
Parallel replay … more limited scope, higher overhead

 → SMP-ReVirt, DoublePlay, ODR, Castor
Hardware-supported parallel replay … nonexistent hardware

 → FDR, BugNet, DeLorean, QuickRec



Conclusions

rr’s approach delivers a lot of value

More research needed for multicore approaches

Lots of unexplored applications of record+replay



http://rr-project.org        
https://github.com/mozilla/rr


