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Resource-Harvesting Datacenters

- Datacenters are under-utilized
* Provisioned for peak load, low tail latency

- Harvest spare resources
- Co-locate services + batch jobs [zhang, OSDI’16]
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Scaling Distributed File Systems

» More storage capacity demands

- Need bigger file system installations
- Limitations to horizontal scaling

- Bottleneck at centralized components
- Centralized metadata manager
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* Manages namespace and blocks

Average latency (ms)

o Simplifies design and maintenance T 20 30 40 50

Thousands of requests per second

» Saturation: 4000 servers, ~40k reqs/sec Throughput vs Latency




Resource-Harvesting Challenges

 Primary Tenants (PTs) own servers
» Interactive services (e.qg., Bing) are PTs

- Harvest resources from PTs
 Avoid performance impact to the PT

 Challenges for distributed file systems
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Resource-Harvesting Challenges

 Primary Tenants (PTs) own servers
» Interactive services (e.qg., Bing) are PTs

- Harvest resources from PTs
 Avoid performance impact to the PT

 Challenges for distributed file systems
- Busy servers fail accesses — lower availability
- Re-Image disks — lower durabillity

* Place replicas across P Ts [zhang,0sDr16]
* Need diversity of PT servers in filesystem
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Scaling Technique #1: ViewFS

- Partition of namespace on a subcluster

 Mitigate metadata manager bottleneck

» Users manually place data

« Unbalanced subclusters
« Complex rebalance

Metadata
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Storage servers

* Need global view of the hamespace,
automated management
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Scaling Technique #2: Multiple Metadata Managers

- Single cluster with multiple strongly
consistent metadata managers

» Global view of the namespace "
etadata

o MOre COmpIeX Managers . g"

* No isolation from bugs or failures M
‘ ........... ‘ ........... - ‘

Storage servers

* Need small independent subclusters
for isolation [verma, EuroSys'15]




Goals

1. Scale file systems to entire datacenter

* Run independent subclusters — isolation

 Federate subclusters transparently — global namespace

2. Enable resource-harvesting
- Promote behavioral diversity — improve durability and availability

3. Good performance for users
- Balance load and capacity




Our Solution: Datacenter-Harvesting File System
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Our Solution: Datacenter-Harvesting File System

O
\
" State Store @ \,OQQ Rebalancer
| 2

Subcluster 1 {f Metadata
’ manager .



Our Solution: Datacenter-Harvesting File System

Subcluster 1 {f Metadata
’ manager .



Our Solution: Datacenter-Harvesting File System
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Goal #1: Transparent Scaling of File Systems

- State Store /

- Mount table: path — subcluster (SC)
» Access load and capacity metrics

- Router and rebalancer state o (e
 Routers (2 TB, 15k) (2 TB, 10k)

- Expose global namespace Mount table

- Consult state store for path — sub cluster SC2

- Cache path resolutions




Goal #2: Enable Resource Harvesting
 Provide high availability and durabillity

» Exploit behavioral diversity [zhang,0SDI'16]
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Goal #2: Enable Resource Harvesting

- Provide high availability and durability ot P Tonante)
» Exploit behavioral diversity [zhang,0SDI'16]
Primary

» Manual: Primary Tenant — SC Tenant

» Less diversity in subclusters

Manual assignment

» Consistent hashing: racks — SC

- Randomization to promote diversity .=

- Promote network locality (racks — SC)

 Reduce data movement on SC add/remove | I!!

Consistent hashing




Goal #3: Ensure Good Performance for Users

- Rebalancer as a minimization problem
 Used capacity (< 80% of available capacity)
 Access load (< 40k regs/sec over a 5 minute period)
- Amount of data moved for rebalancing
- Mount table size
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Move to SC3 : St
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Goal #3: Ensure Good Performance for Users
SC1: 8 TB, 60k reqs/sec ! SC1: 4 TB, 35k reqs/sec

SC3: 6 TB, 30k reqgs/sec

- Rebalancer as a minimization problem
 Used capacity (< 80% of available capacity)
 Access load (< 40k regs/sec over a 5 minute period)
- Amount of data moved for rebalancing
- Mount table size
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- Implement federation architecture over HDFS @j
- Diversity-aware replica placement

* Run independent instances In subclusters
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Implementation

- Datacenter-Harvesting HDFS (DH-HDFS)

- Implement federation architecture over HDFS @j
- Diversity-aware replica placement

- Run independent instances in subclusters l{

- Load balancing for Routers

- ZOoOkeeper for State Store
» Rebalancer as a MapReduce job




Evaluation

- Real deployment

» 4k servers divided into 4 subclusters
- Deployment in production: 30k servers across 4 datacenters

» Large-scale simulation
» Traces from production datacenters at Microsoft

- Simulate full datacenters for 6 months

« HDFS trace from Yahoo!
- 700k files and 4 million accesses




Simulation: Availabllity (% Successful Accesses)

-
-
-

°

- . [ 1Baseline

§ I DH-HDFS
-2

810

o -4

210

3

©10°

4y

-

310-8 —

1 2 3 4 5 6 7 8 9 10
Datacenter

- Baseline system: Groups of primary tenants — subclusters
» Spectrum of primary tenant CPU utilization: low, mid and high
- Significantly higher availability with DH-HDFS

» Improvement in data durability (results in paper)
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» Improvement in data durability (results in paper)




Real Deployment: Router Performance
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- Worst-case scenario: metadata-only operations workload
» Block read latencies dominate in real-world workloads
» Negligible router overhead in real workloads
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Real Deployment: Router Performance
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Real Deployment: Rebalancer Performance
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* Average rebalance time: 6 mins
* 100 ms to determine data to move
 Primary tenant activity impacts data migration time (up to 4x)
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* Average rebalance time: 6 mins
- 100 ms to determine data to move
* Primary tenant activity impacts data migration time (up to 4x)




Lessons from Production Deployment

» 30k servers spread across 4 datacenter

- Bootstrapping server — subcluster assignment

» Switch to consistent hashing caused massive reshuffling of servers
» Restrict movement till servers are re-imaged or decommissioned

- Spread large data across subclusters
- Users wanted data of batch jobs in a single folder

- Create special folders with files distributed across subclusters
» More lessons In the paper




Conclusion

» Scale file systems to entire datacenter

- Datacenter-Harvesting HDFS

- Runs independent subclusters — isolation
 Federates subclusters transparently — global namespace
- Higher durability and availability on harvested resources

- Better file access performance via rebalancing

» Deployed In production datacenters
» 30k servers spread across 4 datacenters




Questions?

« Thanks!




