Scaling Distributed Filesystems in
Resource-Harvesting Datacenters

Pulkit A. Misra, Ifiigo Goiri, Jason Kace, Ricardo Bianchini

Microsoft:

Research

Resource-Harvesting Datacenters

- Datacenters are under-utilized
* Provisioned for peak load, low tail latency

- Harvest spare resources
- Co-locate services + batch jobs [zhang, OSDI’16]

at Average Utilization

Fraction of Time

d — e

0 0.2 0.4 0.6 0.8 |

» Enable datacenter-wide harvesting Server utilization distribution

of a Google cluster

> B

» Scale distributed file systems

=t

R Rl

Scaling Distributed File Systems

» More storage capacity demands

- Need bigger file system installations
- Limitations to horizontal scaling

- Bottleneck at centralized components
- Centralized metadata manager

A

o N B OO 0 O

* Manages namespace and blocks

Average latency (ms)

o Simplifies design and maintenance T 20 30 40 50

Thousands of requests per second

» Saturation: 4000 servers, ~40k reqs/sec Throughput vs Latency

Resource-Harvesting Challenges

 Primary Tenants (PTs) own servers
» Interactive services (e.qg., Bing) are PTs

- Harvest resources from PTs
 Avoid performance impact to the PT

 Challenges for distributed file systems

Resource-Harvesting Challenges

 Primary Tenants (PTs) own servers

» Interactive services (e.qg., Bing) are PTs
- Harvest resources from PTs

 Avoid performance impact to the PT

 Challenges for distributed file systems
- Busy servers fail accesses — lower availability

Busy
Threshold

PT CPU Utilizatio

Resource-Harvesting Challenges

 Primary Tenants (PTs) own servers
» Interactive services (e.qg., Bing) are PTs

- Harvest resources from PTs
 Avoid performance impact to the PT

 Challenges for distributed file systems
- Busy servers fail accesses — lower availability
- Re-Image disks — lower durabillity

Busy
Threshold

O
D]
S
N
=
-
-
o
O
|_
o

Resource-Harvesting Challenges

 Primary Tenants (PTs) own servers
» Interactive services (e.qg., Bing) are PTs

- Harvest resources from PTs
 Avoid performance impact to the PT

 Challenges for distributed file systems
- Busy servers fail accesses — lower availability
- Re-Image disks — lower durabillity

* Place replicas across P Ts [zhang,0sDr16]
* Need diversity of PT servers in filesystem

Busy
Threshold

O
D]
S
N
=
-
-
o
O
|_
o

Scaling Technique #1: ViewFS

- Partition of namespace on a subcluster

 Mitigate metadata manager bottleneck

» Users manually place data

« Unbalanced subclusters
« Complex rebalance

Metadata

Manager/‘\
o

Storage servers

* Need global view of the hamespace,
automated management

Subcluster 1

e

& NS
\S’/{'H"'%‘

o

Metadata
Manager

Storage servers

Subcluster s

Scaling Technique #2: Multiple Metadata Managers

- Single cluster with multiple strongly
consistent metadata managers

» Global view of the namespace "
etadata

o MOre COmpIeX Managers . g"

* No isolation from bugs or failures M
‘ ‘ - ‘

Storage servers

* Need small independent subclusters
for isolation [verma, EuroSys'15]

Goals

1. Scale file systems to entire datacenter

* Run independent subclusters — isolation

 Federate subclusters transparently — global namespace

2. Enable resource-harvesting
- Promote behavioral diversity — improve durability and availability

3. Good performance for users
- Balance load and capacity

Our Solution: Datacenter-Harvesting File System

Our Solution: Datacenter-Harvesting File System

éSubcluster 1 {f Metadata Subcluster s §f Metadata

Our Solution: Datacenter-Harvesting File System

éSubcluster 1 {f Metadata Subcluster s §f Metadata

Our Solution: Datacenter-Harvesting File System

==

éSubcluster 1 {f Metadata Subcluster s §f Metadataé

Our Solution: Datacenter-Harvesting File System

==

éSubcluster 1 {f Metadata Subcluster s §f Metadata

Our Solution: Datacenter-Harvesting File System

==

éSubcluster 1 {f Metadata Subcluster s §f Metadata

Our Solution: Datacenter-Harvesting File System

Q>
" \
>tate >tore \beQ Rebalancer
| 2

éSubcluster 1 {f Metadata Subcluster s §f Metadata

Our Solution: Datacenter-Harvesting File System

S
\
=3l

éSubcluster 1 {f Metadata Subcluster s §f Metadata

Our Solution: Datacenter-Harvesting File System

O
\
" State Store @ \,OQQ Rebalancer
| 2

Subcluster 1 {f Metadata
’ manager .

Our Solution: Datacenter-Harvesting File System

Subcluster 1 {f Metadata
’ manager .

Our Solution: Datacenter-Harvesting File System

/5
<
(s 3 NO
State Store @ \,OQ @ % Rebalancer

i @ er‘/er ...
éSubcluster1 Metadatag Subc ster s gi Metadata

| manager manager

Goal #1: Transparent Scaling of File Systems

- State Store /

- Mount table: path — subcluster (SC)
» Access load and capacity metrics

- Router and rebalancer state o (e
 Routers (2 TB, 15k) (2 TB, 10k)

- Expose global namespace Mount table

- Consult state store for path — sub cluster SC2

- Cache path resolutions

Goal #2: Enable Resource Harvesting
 Provide high availability and durabillity

» Exploit behavioral diversity [zhang,0SDI'16]

Goal #2: Enable Resource Harvesting

: : : rs rs i ity | lust
- Provide high availability and durability ot P Tonante)
» Exploit behavioral diversity [zhang,0SDI'16]
Primary

» Manual: Primary Tenant — SC Tenant

» Less diversity in subclusters

Manual assignment

Goal #2: Enable Resource Harvesting

- Provide high availability and durability ot P Tonante)
» Exploit behavioral diversity [zhang,0SDI'16]
Primary

» Manual: Primary Tenant — SC Tenant

» Less diversity in subclusters

Manual assignment

» Consistent hashing: racks — SC

- Randomization to promote diversity .=

- Promote network locality (racks — SC)

 Reduce data movement on SC add/remove | I!!

Consistent hashing

Goal #3: Ensure Good Performance for Users

- Rebalancer as a minimization problem
 Used capacity (< 80% of available capacity)
 Access load (< 40k regs/sec over a 5 minute period)
- Amount of data moved for rebalancing
- Mount table size

Goal #3: Ensure Good Performance for Users

/

(1 TB, 15k)

- Rebalancer as a minimization problem
 Used capacity (< 80% of available capacity)
 Access load (< 40k regs/sec over a 5 minute period)
- Amount of data moved for rebalancing
- Mount table size

Goal #3: Ensure Good Performance for Users
SC1: 8 TB, 60k reqgs/sec /

\‘

- Rebalancer as a minimization problem)
 Used capacity (< 80% of available capacity)

 Access load (< 40k regs/sec over a 5 minute period)
- Amount of data moved for rebalancing
- Mount table size

Goal #3: Ensure Good Performance for Users
SC1: 8 TB, 60k reqgs/sec /

(1 TB, 15k)

Move to SC3 : St

- Rebalancer as a minimization problem
 Used capacity (< 80% of available capacity)
 Access load (< 40k regs/sec over a 5 minute period)
- Amount of data moved for rebalancing
- Mount table size

Goal #3: Ensure Good Performance for Users
SC1: 8 TB, 60k reqs/sec ! SC1: 4 TB, 35k reqs/sec

SC3: 6 TB, 30k reqgs/sec

- Rebalancer as a minimization problem
 Used capacity (< 80% of available capacity)
 Access load (< 40k regs/sec over a 5 minute period)
- Amount of data moved for rebalancing
- Mount table size

Implementation

Implementation

- Datacenter-Harvesting HDFS (DH-HDFS)

- Implement federation architecture over HDFS @j
- Diversity-aware replica placement

* Run independent instances In subclusters

Implementation

- Datacenter-Harvesting HDFS (DH-HDFS)

- Implement federation architecture over HDFS @j
- Diversity-aware replica placement

* Run independent instances In subclusters

- Load balancing for Routers

Implementation

- Datacenter-Harvesting HDFS (DH-HDFS)

- Implement federation architecture over HDFS @j
- Diversity-aware replica placement

- Run independent instances Iin subclusters l{

- Load balancing for Routers

- ZOoOkeeper for State Store

Implementation

- Datacenter-Harvesting HDFS (DH-HDFS)

- Implement federation architecture over HDFS @j
- Diversity-aware replica placement

- Run independent instances in subclusters l{

- Load balancing for Routers

- ZOoOkeeper for State Store
» Rebalancer as a MapReduce job

Evaluation

- Real deployment

» 4k servers divided into 4 subclusters
- Deployment in production: 30k servers across 4 datacenters

» Large-scale simulation
» Traces from production datacenters at Microsoft

- Simulate full datacenters for 6 months

« HDFS trace from Yahoo!
- 700k files and 4 million accesses

Simulation: Availabllity (% Successful Accesses)

-
-
-

°

- . [1Baseline

§ I DH-HDFS
-2

810

o -4

210

3

©10°

4y

-

310-8 —

1 2 3 4 5 6 7 8 9 10
Datacenter

- Baseline system: Groups of primary tenants — subclusters
» Spectrum of primary tenant CPU utilization: low, mid and high
- Significantly higher availability with DH-HDFS

» Improvement in data durability (results in paper)

Simulation: Availabllity (% Successful Accesses)

-
-
-

[1Baseline

R N

Lower is B DH-HDFS
better ..
Low
v -4 :
10 : utilization
:(up to 25%)

Unavailable accesses (%)
— —
o o
®))

N
=

.................................. 3. 4 5 6 7 8 9 10
Datacenter

- Baseline system: Groups of primary tenants — subclusters
» Spectrum of primary tenant CPU utilization: low, mid and high
- Significantly higher availability with DH-HDFS

» Improvement in data durability (results in paper)

Simulation: Avallablllly (% SuccessfuIAccesses)

-
-
-

[1 Basellne

R N

Lower iIs I DH- HDFS
better Mid
! 9494 utilization
(up to 50%)

N
-
=2

Unavailable accesses (%)
—
(-
N

N
=
o

Datacenter

- Baseline system: Groups of primary tenants — subclusters
» Spectrum of primary tenant CPU utilization: low, mid and high
- Significantly higher availability with DH-HDFS

» Improvement in data durability (results in paper)

Simulation: Availability (% Successful Accesses)

-
-
-

R N

Lower is
better

Unavailable accesses (%)
—
(-
N

[1Baseline
B DH-HDFS
High
utilization
(up to 75%)

v 240
10°°
-8
10 1 2 3 6 - YT - O | 10..... 5
Datacenter

- Baseline system: Groups of primary tenants — subclusters
» Spectrum of primary tenant CPU utilization: low, mid and high
- Significantly higher availability with DH-HDFS

» Improvement in data durability (results in paper)

Real Deployment: Router Performance

10

1R + 1NN
1NN
12R + 4NN
4NN

S o O

Average latency (ms)

N

0 50 100 150 200
Thousands of requests per second

- Worst-case scenario: metadata-only operations workload
» Block read latencies dominate in real-world workloads
» Negligible router overhead in real workloads

Real Deployment: Router Performance

10

1R + 1NN
1NN
12R + 4NN
4NN

S o O

Average latency (ms)

N

4x throughput
4

0 50 100 150 200
Thousands of requests per second

- Worst-case scenario: metadata-only operations workload
» Block read latencies dominate in real-world workloads
» Negligible router overhead in real workloads

Real Deployment: Router Performance

10

1R + 1NN
1NN
12R + 4NN
4NN

S o O

Average latency (ms)

N

0 50 100 150 200
Thousands of requests per second

- Worst-case scenario: metadata-only operations workload
» Block read latencies dominate in real-world workloads
» Negligible router overhead in real workloads

Real Deployment: Router Performance

10

1R + 1NN
1NN
12R + 4NN
4NN

Qo

o))

150k rea/sec

o

4

Average latency (ms)

N

170k reqg/sec

-

0 50 100 150 200
Thousands of requests per second

- Worst-case scenario: metadata-only operations workload
» Block read latencies dominate in real-world workloads
» Negligible router overhead in real workloads

Real Deployment: Rebalancer Performance

2000

1l Subcluster 3 TGS
— | Subcluster 2 —

Subcluster 1 N
— Subcluster 0 —

L‘M .I
- v

\
0 2000 4000 -_.6006 8000 —10000 12000
Time (seconds)

« 13 TB data moved to balance subcluster O

=l
&)
-
(-

Requests per second
—
&) -
- -
(- (-

"y
)

* Average rebalance time: 6 mins
* 100 ms to determine data to move
 Primary tenant activity impacts data migration time (up to 4x)

Real Deployment: Rebalancer Performance

2000—————1——F T T—T——T—— T watermark: 2000 reqs/s
1| Subcluster 3 TGS

l

— "A Subcluster 2 —

oveﬁggded Subcluster 1 I
B U Subcluster 0 _

] | |

- "

0 2000 4000 6000 8000 1 0000 12000
Time (seconds)

=l
&)
-
(-

Requests per second
=
- -
(- (-

- 13 TB data moved to balance subcluster O
* Average rebalance time: 6 mins
- 100 ms to determine data to move
* Primary tenant activity impacts data migration time (up to 4x)

Lessons from Production Deployment

» 30k servers spread across 4 datacenter

- Bootstrapping server — subcluster assignment

» Switch to consistent hashing caused massive reshuffling of servers
» Restrict movement till servers are re-imaged or decommissioned

- Spread large data across subclusters
- Users wanted data of batch jobs in a single folder

- Create special folders with files distributed across subclusters
» More lessons In the paper

Conclusion

» Scale file systems to entire datacenter

- Datacenter-Harvesting HDFS

- Runs independent subclusters — isolation
 Federates subclusters transparently — global namespace
- Higher durability and availability on harvested resources

- Better file access performance via rebalancing

» Deployed In production datacenters
» 30k servers spread across 4 datacenters

Questions?

« Thanks!

