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Why Model Guessing Attacks?

Choose a password: TTITTITITY Fassword strength:  Weak

binimum of & characters in length.

Re-enter password:




Can we guess more accurately?
Quicker?

With fewer resources?
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Our Approach: Neural Networks

Hello = 3opascTtByunTte

Handwriting recognition
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Outline: Guessing with Neural Networks

e Password guesser design
e Comparison to other methods

e Real-time, in-browser feedback
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Generating Passwords by Predicting

passw =g O Or maybe @ or O or ...
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Generating Passwords by Predicting
Next char is:
A: 3%
B: 1%
DaSSW . C: 0.6%
O: 55%
Z: 0.01%

0: 20%
1: ...
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Generating Passwords by Predicting

132/

P: 100%

Next char is:
A: 3%
B: 2%
C: 5%
O: 2%
Z: 0.2%
0: 1%
1:
END: 2%
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Generating Passwords by Predicting

132/

P: 100%

Next char is:
3%
2%
5%

—

o: QWx>

2%

0.2%
1%

Gy

© N
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Generating Passwords by Predicting

Next char is:
A: 3%
B: O/,

(1%} .

P: 100% O 2%
Z: 0.2%
0: 1%
1:
END: 2%
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Generating Passwords by Predicting

Next char is:

A: 10%

B: 1%

C: 4%
P: 5% O: 8%

Z: 0.02%

0: 3%

1:

END: 6%



Generating Passwords by

“C”
P: 5%

Predicting

B:

C: 4%
O: 8%

Z: 0.02%
0: 3%

1:
END: 6%
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Generating Passwords by Predicting

“CA”
P:0.5%

—

Next char is:
A: 3%

B: 10%
C: 7%
O: 1%

Z: 0.03%
0: 2%

1:
END: 12%
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Generating Passwords by Predicting
Next char is:

“CAB”
P: 0.05%

—

A L]

B: 10%

Q:

0

0

1%

0.03%
2%
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Generating Passwords by Predicting

Next char is:
A: 4%
B: 3%
C: 1%

‘CAB” —Pp ..

P: 0.05% O 2%
Z: 0.01%
0: 4%
1:
END: 12%
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Generating Passwords by Predicting

Next char is:
A: 4%
B: 3%
C: 1%
‘CAB” —Pp ..
P: 0.05% O 2%
Z: 0.01%
0: 4%



Generating Passwords by Predicting

“CAB”
P: 0.006%



Generating Passwords

cCAB - 0.006%
CAC - 0.0042%
ADD1 - 0.002%
CODE - 0.0013%
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Generating Passwords

CAI=EE)6%
CACEQf42%
ADD1 - 0.002%
CODE - 0.0013%

MVUST BE LONGER THAN
3 CHARACTERS

32



Password Policies: 1class8

1 character class and 8 characters minimum

passwordl23
12345678

monkey99
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Password Policies: 3class12

3 character class and 12 characters minimum

llamalovel23
Mypassword#3

N@rutO0 rOck5
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Outline: Guessing with Neural Networks

e Password guesser design
e Comparison to other methods

e Real-time, in-browser feedback
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We Had to Try Many Parameters

* Model size: 60MB, 3MB
* Transference learning
* Training data

* Model architecture

* Alphabet size

« Password context
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Testing Methodology

e Approach: measure # guessed passwords
e Training data: leaked password sets

e Testing data
o MTurk study passwords: 1class8, 4class8, 1class16, 3class12

o Real passwords: 000webhost password leak

e Estimate guess numbers with Monte-Carlo technique
(Dell Amico and Filippone, CCS ‘15)
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Comparison to other
approaches
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Percent guessed
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1class8: Comparison

90%:
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Percent guessed

Hashcat
JTR
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1class8: Neural Networks Guess Better
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1class8: Neural Networks Guess Better

MinGuess
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3class12: Neural Networks Guess Better

MinGuess
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3class12: Neural Networks Guess Better

MinGuess
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Outline: Guessing with Neural Networks

e Password guesser design
e Comparison to other methods

e Real-time, in-browser feedback
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Current password feedback:

Quick or accurate



Accurate Guessing Methods

100s MB to GBs!
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Accurate Guessing Methods

100s MB to GBs!
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Accurate Guessing Methods

100s MB to GBs!

- 9 ‘a

Neural networks: 60MB, 3MB
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Accurate Guessing Methods

Neural networks: 60MB, 3MB
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Accurate Guessing Methods

Hours to days!
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Can neural networks give
real-time feedback?



|deal Model Targets

e Small: < 1MB
e Fast: <0.1sec
e JavaScript

e Accurate
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Making Model Small

e Small version of neural network
e Quantize parameters of model

e |ossless compression

850KB <1MB
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Making Model Fast

e Pre-compute inexact mapping from prob to guess number
e (Cache intermediate results

e Run on separate thread

17 ms < 0.1 sec
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How Accurate Is the Small, Fast Model?



How Accurate Is the Small, Fast Model?
100%!

uessed

9 50%:

Percent
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How Accurate Is the Small, Fast Model?
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How Accurate Is the Small, Fast Model?

100%:

uessed
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Does Measuring Password Strength Help?

[Design and Evaluation of a Data-Driven Password Meter
B. Ur, F. Alfieri, M. Aung, L. Bauer, N. Christin, J. Colnago, L. Cranor, H. Dixon,
P. Emami Naeini, H. Habib, N. Johnson, and W. Melicher. CHI’17]
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We D

ieveloped and Tested a Meter GUI

Create Your Password

Username Your password could be better.

ase m Don't use dictionary words or (Why?)

words used on Wikipedia

Password _ _ : o
W Consider inserting digits into

the middle
. W Consider making your Why?]

password longer

Confirm Password Soe (5T P o
With Our Improvements

How to make strong passwords
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Provides Text Feedback

Create Your Password

Lsername
blase

Password

Confirm Password

Show Password & Detailed Feedback CJ

Continue

Your password could be better.

m Don't use di+:tir:1r!|aryr words or |

words used on Wikipedia

W Consider inserting digits into
the middle

m Consider making your
password longer

See Your Password
With Our Improvements

How to make strong passwords

W7
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Gives Detail (Password Shown)

Create Your Password

Username Your password could be better.

plase W Don’t use dictionary words

(Unicorn) or words used on
Password Wikipedia (Crypto)

CryptoUnicorn3| m Consider inserting digits into

the middle, not just at the end

Show Password & Detailed Feedback ¥
m Consider making your
password longer than 14

Confirm Password harictaes

A better choice: C3ryptoUniCorn@

Continue ) ) )
MOW IO Fy Wora




Offers Explanations

Username Your password could be better.

e m Don't use dictionary words
(Unicorn) or words used on

Password Wikipedia (Crypto)

CryptoUnicorn3| W Consider inserting digits into

the middle, not just at the en

Show Password & Detailed Feedback &
m Consider making your
password longer than 14

Confirm Password i rnilare

A better choice: C3ryptoUniCorn@

Continue
- How to make strong passwords




Does Measuring Strength Help”? Yes!
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Does Measuring Strength Help”? Yes!

60% No feedback
Bar feedback
840%-
@ Bar and text feedback
>
T
()]
o
L 20%-
00/0_

10"  10° 10° 10" 10° 10" 10™ 10"
Guesses



Modeling Passwords Using Neural Networks

e Neural networks guess passwords accurately

e Can be made small and fast for client-side feedback

github.com/cupslab

William Melicher, Blase Ur, Sean M. Segreti, Saranga Komanduri,
Lujo Bauer, Nicolas Christin, Lorrie Faith Cranor

Carnegie Mellon University
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