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Dictionary word + Rules
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Dictionary word + Rules

password + append 2 digits
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Dictionary word + Rules

password + append 2 digits

 password11
password12
...
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Guessing Methods
● John the Ripper +

Hashcat

● Markov Models

● PCFGs
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L8D2 L6S2

password12
password11
...

monkey!!
qwerty..
...

...



Guessing Methods
● John the Ripper +

Hashcat

● Markov Models

● PCFGs
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Why Model Guessing Attacks?



Can we guess more accurately?

 Quicker? 

With fewer resources?
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Our Approach: Neural Networks
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Hello = Здравствуйте

Handwriting Recognition → 

Handwriting recognition



Outline: Guessing with Neural Networks
● Password guesser design

● Comparison to other methods

● Real-time, in-browser feedback 
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Generating Passwords by Predicting
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Generating Passwords by Predicting
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passw o or maybe 0 or O or ...



Generating Passwords by Predicting
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passw

Next char is:
A: 3%
B: 1%
C: 0.6%
…
O: 55%
…
Z: 0.01%
0: 20%
1: ...



Generating Passwords by Predicting
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“”
P: 100%



Generating Passwords by Predicting
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Next char is:
A: 3%
B: 2%
C: 5%
…
O: 2%
…
Z: 0.2%
0: 1%
1: …
END: 2%

“”
P: 100%
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Generating Passwords by Predicting
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“”
P: 100%

Next char is:
A: 3%
B: 2%
C: 5%
…
O: 2%
…
Z: 0.2%
0: 1%
1: …
END: 2%



Generating Passwords by Predicting
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“C”
P: 5%



Generating Passwords by Predicting
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Next char is:
A: 10%
B: 1%
C: 4%
…
O: 8%
…
Z: 0.02%
0: 3%
1: …
END: 6%

“C”
P: 5%



Generating Passwords by Predicting
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Next char is:
A: 10%
B: 1%
C: 4%
…
O: 8%
…
Z: 0.02%
0: 3%
1: …
END: 6%

“C”
P: 5%



Generating Passwords by Predicting
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“CA”
P: 0.5%

Next char is:
A: 3%
B: 10%
C: 7%
…
O: 1%
…
Z: 0.03%
0: 2%
1: …
END: 12%



Generating Passwords by Predicting
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“CAB”
P: 0.05%

Next char is:
A: 3%
B: 10%
C: 7%
…
O: 1%
…
Z: 0.03%
0: 2%
1: …
END: 3%



Generating Passwords by Predicting
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“CAB”
P: 0.05%

Next char is:
A: 4%
B: 3%
C: 1%
…
O: 2%
…
Z: 0.01%
0: 4%
1: …
END: 12%



Generating Passwords by Predicting
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“CAB”
P: 0.05%

Next char is:
A: 4%
B: 3%
C: 1%
…
O: 2%
…
Z: 0.01%
0: 4%
1: …
END: 12%



Generating Passwords by Predicting
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“CAB”
P: 0.006%



Generating Passwords
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CAB - 0.006%
CAC - 0.0042%
ADD1 - 0.002%
CODE - 0.0013%
...



Generating Passwords
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CAB - 0.006%
CAC - 0.0042%
ADD1 - 0.002%
CODE - 0.0013%
...

Must be longer than 

3 characters



Password Policies: 1class8
1 character class and 8 characters minimum

password123

12345678

monkey99
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Password Policies: 3class12
3 character class and 12 characters minimum

llamalove123

Mypassword#3

N@rut0_r0ck5
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Outline: Guessing with Neural Networks
● Password guesser design

● Comparison to other methods

● Real-time, in-browser feedback 

35



We Had to Try Many Parameters
• Model size: 60MB, 3MB
• Transference learning 
• Training data 
• Model architecture
• Alphabet size
• Password context
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Testing Methodology
● Approach: measure # guessed passwords

● Training data: leaked password sets

● Testing data
○ MTurk study passwords: 1class8, 4class8, 1class16, 3class12

○ Real passwords: 000webhost password leak

● Estimate guess numbers with Monte-Carlo technique
(Dell’Amico and Filippone, CCS ‘15)

37



38

Comparison to other 
approaches
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More 
accurate 
guessing
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More 
accurate 
guessing



1class8: Comparison
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1class8: Neural Networks Guess Better
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1class8: Neural Networks Guess Better
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3class12: Neural Networks Guess Better
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3class12: Neural Networks Guess Better
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30% → 45%



Outline: Guessing with Neural Networks
● Password guesser design

● Comparison to other methods

● Real-time, in-browser feedback 
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Current password feedback:

Quick or accurate
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Accurate Guessing Methods

100s MB to GBs!
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Accurate Guessing Methods

100s MB to GBs!
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Accurate Guessing Methods

100s MB to GBs!
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Neural networks: 60MB, 3MB



Accurate Guessing Methods

54

Neural networks: 60MB, 3MB

  ?



Accurate Guessing Methods
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Hours to days!



Can neural networks give 
real-time feedback?
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Ideal Model Targets
● Small: < 1MB

● Fast: < 0.1 sec

● JavaScript

● Accurate 
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Making Model Small
● Small version of neural network

● Quantize parameters of model

● Lossless compression 
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850KB < 1MB



Making Model Fast
● Pre-compute inexact mapping from prob to guess number

● Cache intermediate results

● Run on separate thread
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17 ms < 0.1 sec



How Accurate Is the Small, Fast Model?
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How Accurate Is the Small, Fast Model?
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How Accurate Is the Small, Fast Model?
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How Accurate Is the Small, Fast Model?
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Does Measuring Password Strength Help?
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[Design and Evaluation of a Data-Driven Password Meter
B. Ur, F. Alfieri, M. Aung, L. Bauer, N. Christin, J. Colnago, L. Cranor, H. Dixon, 
P. Emami Naeini, H. Habib, N. Johnson, and W. Melicher.  CHI’17]



We Developed and Tested a Meter GUI
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Provides Text Feedback
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Gives Detail (Password Shown)
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Offers Explanations
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Does Measuring Strength Help?  Yes!
No feedback

Bar feedback



Does Measuring Strength Help?  Yes!
No feedback

Bar feedback

Bar and text feedback



Modeling Passwords Using Neural Networks

● Neural networks guess passwords accurately

● Can be made small and fast for client-side feedback

github.com/cupslab
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