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Cloud Frameworks

Cloud frameworks abstract away the complexities of the cloud

infrastructure from the application developers:
Automatic distribution

Elastic scalability

Multitenant applications

Load balancing

Fault tolerance

e wWwNPE



Cloud Frameworks

Control Plane

Task

* Job is an instance of the application running in the framework.
* Task is the unit of computation for the job.
 Control plane partitions job in to tasks, schedules task, and recovers from faults.
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Evolution of Cloud Frameworks
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Evolution of Cloud Frameworks

2016
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Individual tasks are getting faster.

But does it necessarily mean that
job completion time is getting shorter?



Control Plane
The New Bottleneck
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* Logistic regression over a data set of size 100GB.
* Classic Spark used to be CPU-bound.
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* Logistic regression over a data set of size 100GB.
 Spark 2.0 with Scala implementation is already control-bound.
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* Logistic regression over a data set of size 100GB.
 Spark-opt: hypothetical case where Spark runs tasks as fast as C++.



Control plane is the emerging bottleneck
for the cloud computing frameworks.



Control Plane Design Scope

Control Plane Example Task Throughput Scheduling Cost
Design Framework (task per sec) (per task)
MapReduce
Centralized Hadoop ~ 1,000 ~ 100us
Spark
o Naiad
Distributed TensorFlow ~ 100, 000 ~ 100, 000us

* Centralized controller adapts to scheduling changes reactively with a low cost,
but has limited task throughput and bottlenecks at scale.

* Distributed controller scales well, but any scheduling change requires stopping
all nodes and installing new data flow with high latency.



Execution Templates is an abstraction for the control plane of cloud computing
frameworks, that enables orders of magnitude higher task throughput, while
keeping the fine-grained, flexible scheduling with low cost.
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* Logistic regression over a data set of size 100GB.
* Nimbus with execution templates scales almost linearly, with low cost scheduling.



Repetitive Patterns

* Advanced data analytics are iterative in nature.
— Machine learning, graph processing, image recognition, etc.

* This results in repetitive patterns in the control plane.

— Similar tasks execute with minor differences.
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Repetitive Patterns
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Execution Templates

e Tasks are cached as parameterizable blocks on nodes.

* |nstead of assigning the tasks from scratch, templates
are instantiated by filling in only changing parameters.

~




Execution Templates

e Tasks are cached as parameterizable blocks on nodes.

* |nstead of assigning the tasks from scratch, templates
are instantiated by filling in only changing parameters.




Execution Templates
Mechanisms Summary

Instantiation: spawn a block of tasks without processing each task
individually from scratch. It helps increase the task throughput.

Edits: modifies the content of each template at the granularity of tasks. It
enables fine-grained, dynamic scheduling.

Patches: In case the state of the worker does not match the preconditions of
the template. It enables dynamic control flow.



Execution Templates

Instantiation

Controller

)
Task Graph

Data Objects Data Objects
oo} { oo}

Worker

Worker



Execution Templates
Instantiation

Controller

PR

-1

I

Task Graph

Data Objects Data Objects

Worker Worker



Execution Templates
Instantiation

Controller

PR

-1

I

Task Graph

Data Objects Data Objects

Worker Worker



Execution Templates
Instantiation

Controller

PR

-1

I

Task Graph

Instantiate<params> Instantiate<params>

Data Objects

Worker Worker



Execution Templates

Instantiation
Controller
- ;
o
©
w
Y4
s EE%
i . /
Data Objects Data Objects
g
) g_;;_ ....)
kS

Worker Worker



Execution Templates

Caching tasks implies static behavior; how could
templates allow dynamic scheduling?

* Reactive scheduling changes for load balancing.

* Scheduling changes at the task granularity.



Execution Templates
Edits

* If scheduling changes, even slightly, the templates are obsolete.

— For example rescheduling a task from one worker to another.

* Instead of paying the substantial cost of installing templates for every changes,
templates allow edit, to change their structure.

* Edits enable adding or removing tasks from the template and modifying the
template content, in-place.

 Controller has the general view of the task graph so it can update the
dependencies properly, needed by the edits.
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Execution Templates

Caching tasks implies static behavior; how could
templates allow dynamic control flow?

* Need to support nested loops.

* Need to support data dependent branches.



Execution Templates
Patching

* Execution templates operates at the granularity of basic blocks:
— A code block with single entry and no branches except at the end.
* Each template has a set of preconditions that need to be satisfied.

— For example the set of data objects in memory, accessed by the tasks.

* Worker state might not match the preconditions of the template in all
circumstances.

 Controller patches the worker state before template instantiation, to satisfy
the preconditions.
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Execution Templates
Mechanisms Summary

Instantiation: spawn a block of tasks without processing each task
individually from scratch. It helps increase the task throughput.

Edits: modifies the content of each template at the granularity of tasks. It
enables fine-grained, dynamic scheduling.

Patches: In case the state of the worker does not match the preconditions of
the template. It enables dynamic control flow.



Nimbus

Nimbus is designed for low latency, fast computations in the cloud.
Nimbus embeds execution templates for its control plane.

Nimbus supports traditional data analytics as well as Eulerian and hybrid
graphical simulations; for the first time in a cloud framework.

— Supervised/unsupervised learning algorithms.
— Graph processing.

— Physical simulation: water, smoke, etc. (PhysBAM library)



‘ﬁ? nimbus.stanford.edu

O https://github.com/omidm/nimbus



Evaluation
Strong Scalability with Templates
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* Logistic regression over data set of size 100GB.

 Spark-opt and Naiad-opt, runs tasks as fast as C++ implementation.

* Nimbus centralized controller with execution templates matches the
performance of Naiad with a distributed control plane.



Evaluation

Reactive, Fine-Grained Scheduling with Templates
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* Logistic regression over data set of size 100GB, on 100 workers.

* Naiad-opt curve is simulated (migrations every 5 iterations).

* Execution templates allow low cost, reactive scheduling changes.
* Single edit overhead is only 41us (in average).



Evaluation
High Task Throughput with Templates
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» Spark and Nimbus both have centralized controller.
* Nimbus task throughput scales super linearly with more workers.
* O(N2): more tasks and shorter tasks, simultaneously.
* For a task graphs with single stage:
* Instantiation cost is <2ps per task (500,000 tasks per second).



Evaluation

Graphical Simulations Distributed in Nimbus

* To show the generality of execution templates, we considered
graphical simulations in Nimbus:

— Complex, and memory intensive from PhysBAM library.

— High tasks throughput requirements (400,000 tasks per second).
— Nested loops and data dependent branches.

— Require patching in very subtle cases.

— Traditionally in the HPC domain.



Evaluation

Graphical Simulations Distributed in Nimbus
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Conclusion

Control Plane Example Task Throughput Scheduling Cost
Design Framework (task per sec) (per task)
MapReduce
Centralized Hadoop ~ 1,000 ~ 100us
Spark
L Naiad
e TeworFlow P
( .
 Centralized w/ Nimbus ~ 100, 000 ~ 100s

I Execution Templates
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Thank you!

‘ﬁ nimbus.stanford.edu

O https://github.com/omidm/nimbus



