Imperial College (&) LSDS

London L

Large-Scale Distributed Systems Group

Automatic Application Partitioning for Intel SGX

Joshua Lind, Christian Priebe, Divya Muthukumaran,
Dan O’Keeffe, Pierre-Louis Aublin, Florian Kelbert
Imperial College London

Tobias Reiher David Goltzsche David Eyers
TU Dresden TU Braunschweig University of Otago
Rudiger Kapitza Christof Fetzer Peter Pietzuch
TU Braunschweig TU Dresden Imperial College London

dmuthuku@imperial.ac.uk

USENIX Annual Technical Conference 17

Application

'y

@Iambrtng

Trust in Cloud Services

g
(.’?rackspace@

-- Oab
E] Azure

amazon

webservices

USENIX Annual Technical Conference '17 ¢ 2

Trust in Cloud Services

Application

Threats

* Insider Attacks
- Human error despite best practices
- Vulnerabilities in large code bases

2

@Id:nbring USENIX Annual Technical Conference '17 € 3

Trust in Cloud Services

Application

Traditional Security Models
* Protect privileged code from untrusted user-level code

-

@Ia;ﬁbring USENIX Annual Technical Conference 17 @ 4

Trusted Execution Environments

Application

Flips Security Model

- Secure area of a processor
* Provides protection from higher privileged code

* Trusted environment on top of untrusted cloud
2

«

@Ia:ﬁbring USENIX Annual Technical Conference 17 @ 5

Intel Software Guard Extensions (SGX)

On commodity processors starting with Skylake

TEE’s are called enclaves

18 CPU instructions to manage enclave lifecycle

Code & data reside in Enclave Page Cache (EPC)
Cache lines encrypted when written to memory
Restricted to 128MB

Intel provides an SDK for Windows and Linux

USENIX Annual Technical Conference ’17 6

Enclave Application Lifecycle

Untrusted Code Enclave

{1 Start Enclave 3 Trusted function

Ocall
2 ' Ecall
5 ' Return

GEmdring USENIX Annual Technical Conference '17 @ 7

Enclave Application Lifecycle

Untrusted Code Enclave

{1 Start Enclave 3 Trusted function

4 ' Ocall
2 ' Ecall
5 ' Return

Gi@mbdring USENIX Annual Technical Conference '17 @ 8

Enclave Application Lifecycle

Untrusted Code Enclave

{1 Start Enclave 3 Trusted function

4 ' Ocall
2 ' Ecall
5 ' Return

Enclave crossings through ecalls and ocalls
, iIncur a performance penalty
@Idinbring USENIX Annual Technical Conference '17 @ 9

Porting applications to Enclaves

Get/Update M
m<—
Response

Client

How do you port a key-value store to run in an enclave?

USENIX Annual Technical Conference 17 10

Library OS Inside Enclaves

Pros
- Run unmodified applications
* Fixed shielded interface

M

mEm[Z.P.IEHED Cons

* TCB is millions LoC!
- Performance overhead

Standard Haven [OSDI’14]

Libraries

Library OS

Minimal system calls

Host OS

«

@Ia;tbring USENIX Annual Technical Conference '17 @ 11

Standard Library Inside Enclaves

Pros
« Smaller TCB than Haven
* Fixed shielded interface

Cons

« TCB = 0.6x—2x of
application size

- Recompilation needed

Enhanced C
Library
System calls ¢

Host OS

SCONE [0SDI'16]

@Idinbring USENIX Annual Technical Conference '17 € 12

Minimum TCB Inside Enclaves

Principle of Least Privilege
Only move the code needed to enforce security policy

M

mEmE.H.[HED
Application
(Sensitive)

Policy: Confidentiality and
Integrity of key-value pairs

<

@Ia;itbring USENIX Annual Technical Conference '17 @ 13

Minimum TCB Inside Enclaves

Principle of Least Privilege
Only move the code needed to enforce security policy

Application
(Sensitive)

Application
(Sensitive)

Policy: Confidentiality and
Integrity of key-value pairs

2

@Idinbring USENIX Annual Technical Conference '17 € 14

Application Partitioning to Minimise TCB

Prior work has manually partitioned applications

SecureKeeper: Confidential ZooKeeper using Intel SGX

Stefan Brenner Colin Wulf David Goltzsche
TU Braunschweig, Germany TU Braunschweig, Germany TU Braunschweig, Germany
brenner@ibr.cs.tu-bs.de cwulf@ibr.cs.tu-bs.de goltzsche@ibr.cs.tu-bs.de
Nico Weichbrodt Matthias Lorenz Christof Fetzer
TU Braunschweig, Germany TU Braunschweig, Germany TU Dresden, Germany
weichbr@ibr.cs.tu-bs.de mlorenz@ibr.cs.tu-bs.de christof.fetzer@tu-dresden.de
Peter Pietzuch Rldiger Kapitza
Imperial College London, UK TU Brannschweia. Garmanv i
Prp@Impertal.ac.uk rkag 2015 IEEE Symposium on Security and Privacy
ABSTRACT 1. IN
Cloud computing, while ubiquitous, still suffers from trust Cloug . : . :
issues, especially for applications managing sensitive data. fitsto b VC3' TmStworthy Data AnalythS 1n the CIOUd usmg SGX

Felix Schuster*, Manuel Costa, Cédric Fournet, Christos Gkantsidis
Marcus Peinado, Gloria Mainar-Ruiz, Mark Russinovich
Microsoft Research

Abstract—We present VC3, the first system that allows users data [22]. However, FHE is not efficient for most com-
to run distributed MapReduce computations in the cloud while putations [23], [65]. The computation can also be shared
keeping their code and data secret, and ensuring the correctness p.i00n independent parties while guaranteeing confidential-

and completeness of their results. VC3 runs on unmodified . g e . . .
Hadoop, but crucially keeps Hadoop, the operating system and 1% for u.1d'1v1dual inputs (us!ng e.g., garbled circuits [29])
the hvpervisor out of the TCB; thus, confidentiality and integrity and providing protection against corrupted parties (see e.g.,

USENIX Annual Technical Conference 17

Application Partitioning to Minimise TCB

“Automatically determine the minimum
functionality to be run inside an enclave
in order to enforce a security policy”

USENIX Annual Technical Conference ’17 16

Challenges in Automated Partitioning

» ldentifying security-sensitive code relevant to a security policy
 Preventing interfaces from violating security policy
» Avoiding performance degradation

M Application
(Sensitive)

mEmE.F.IEHED
Application
(Sensitive)

Policy: Confidentiality and
Integrity of key-value pairs

«

@Ia;tbring USENIX Annual Technical Conference '17 @ 17

Challenges in Automated Partitioning

ldentifying security-sensitive code relevant to a security policy

Application Application
(Sensitive) (Untrusted)

Policy: Confidentiality and
Integrity of key-value pairs

USENIX Annual Technical Conference ’17 18

Challenges in Automated Partitioning

» ldentifying security-sensitive code relevant to a security policy
* Preventing interfaces from violating security policy

» Avoiding performance degradation

M

MEMCHCHED
Application
(Sensitive)

Policy: Confidentiality and
Integrity of key-value pairs

2

Application
(Sensitive)

Application
(Untrusted)

Standard Libraries

Host OS

@Idinbring USENIX Annual Technical Conference '17 € 19

Challenges in Automated Partitioning

» ldentifying security-sensitive code relevant to a security policy
 Preventing interfaces from violating security policy
- Avoiding performance degradation

M Application
..l (Sensitive)
MEMCHCHED

Interface
Application
(Sensitive) *
Application
(Untrusted)
Policy: Confidentiality and Standard Libraries
Integrity of key-value pairs Host OS

<

C

@Ia;nbring USENIX Annual Technical Conference '17 € 20

Glamdring Partitioning Framework

Annotation Application Code

=

Static Analysis

Backward
Analysis

Forward
Analysis

u.‘“‘

WEAaMmoring

Partition
specificatio

- Boundary

Relocation

18

—_—|=

\
l Enclave l e

Source-Source

Transformation

Instrumentation of

Runtime Invariants

| o Invariants 3)

Enclave
Code

Interface
Spec

USENIX Annual Technical Conference 17 21

1. Identify Security-Sensitive Code

Static Analysis conservatively identifies subset of code
dependent on programmer annotated security-sensitive
data

Annotation Application Code

-8
Static Analysis

Partition
Forward Rl specification
Analysis Analysis

USENIX Annual Technical Conference 17 22

Annotation of Security-Sensitive Data

" read()

Client

What to Annotate
* Indicate where security-sensitive
data enters or leaves the program

3

Dispatch(cmd)

v

If (cmd

Get() Update()

M

USENIX Annual Technical Conference ’17

23

Annotation of Security-Sensitive Data

e — 0T [

M ' emd
Client
What to Annotate

* Indicate where security-sensitive
data enters or leaves the program

gcmd

Dispatch(cmd)

M

Get()

v

If (cmd

SN

Update()

USENIX Annual Technical Conference ’17

24

Annotation of Security-Sensitive Data

" cmd B4,

m - read()

Client

What to Annotate

* Indicate where security-sensitive
data enters or leaves the program

- Sensitive data can be encrypted
and signed until first use

gcmd v //"

Dispatch(cmd)

v

If (cmd

SR

Get() Update()

M

USENIX Annual Technical Conference ’17

25

Annotation of Security-Sensitive Data

M " cmd B4

e E— T |

Client

#pragma glamdring sensitive source(cmd)

void Dispatch(char *cmd) {

¥

giCﬂﬂ1C|:ﬁg&

Dispatch(cmd)

M

Get()

v

If (cmd

SN

Update()

USENIX Annual Technical Conference ’17

26

Static Analysis Goals

e Enforcing Confidentiality: Identify all functions that
depend on sensitive data.

e Enforcing Integrity: Identify all functions on which
the value of sensitive data depends

e \Why Static Analysis?

e Static Analysis is conservative, independent of
the input to the program

USENIX Annual Technical Conference ’17 27

Program Dependence Graph

Captures the control and data dependencies in the program

USENIX Annual Technical Conference ’17 28

Program Dependence Graph

Captures the control and data dependencies in the program

Nodes = Statements cmd = read(..) @
Dispatch(cmd) @
If (cmd @
==“GET")
@ Get() Update()@

USENIX Annual Technical Conference ’17 29

Program Dependence Graph

Captures the control and data dependencies in the program

Data Dependence Edge omd = read(.. @
Data defined in a statement is ¢v
used in the another statement Dispatch(cmd) @

If (cmd @
=="GET")

@ Get() Update()@

USENIX Annual Technical Conference ’17 30

Program Dependence Graph

Captures the control and data dependencies in the program

cmd = read(..) @
v

Dispatch(cmd) @
Control Dependence Edge ¢

One Statement determines if _'L(g'g‘f,,) @
another gets executed - ¢

@ Get() Update()@

USENIX Annual Technical Conference ’17

31

Program Dependence Graph

v wlr

cmd = read(..)

e T 3 L

...... Dispatch(cmd)
FEETETReS , Format() / ¢ ¢
If (cmd
barralt, Write(res) ¢== GET ¢
Rest of the Get() Update()

program

USENIX Annual Technical Conference 17 32

Forwards Dataflow Analysis

Confidentiality Using Graph Reachability identify all nodes
with transitive control/data dependency on annotated node

v Jr

cmd = read(..)

e T 3 L

------ DISpatCh Cmd #prama glamdring sensitive data(cmd)

S B g

If (cmd
barralt, Write(res) __ GET

G N d ,L

Rest of the Get() Update()
program

USENIX Annual Technical Conference ’17 33

Forwards Dataflow Analysis

Confidentiality Using Graph Reachability identify all nodes
with transitive control/data dependency on annotated node

v +

cmd = read(..)

e T 3 L

------ DISpatCh Cmd #prama glamdring sensitive data(cmd)

S B g

If (cmd
barralt, Write(res) __ GET

G s ,L

Rest of the Get() Update()
program

USENIX Annual Technical Conference ’17 34

Forwards Dataflow Analysis

Integrity Using Graph Reachability identify all nodes that
are transitive control/data dependent on annotated node

v Jr

cmd = read(.

e T 4' ./

------ DISpatCh Cmd #prama glamdring sensitive data(cmd)

S B g

If (cmd
barralt, Write(res) __ GET

G 4 ,L

Rest of the Get() Update()
program

USENIX Annual Technical Conference ’17 35

Forwards Dataflow Analysis

Integrity Using Graph Reachability identify all nodes that
are transitive control/data dependent on annotated node

v +

cmd = read(.

e T 4' ./

------ DISpatCh Cmd #prama glamdring sensitive data(cmd)

S B I

If (cmd
barralt, Write(res) __ GET

G o d ,L

Rest of the Get() Update()
program

USENIX Annual Technical Conference ’17 36

Security Sensitive Code

Union of nodes found with forwards and backwards analyses

v vlr

cmd = read(.

e T 4' ./

...... Dispatch(cmd)

ol

If (cmd
pasioalt, Write(res) __ GET

SR s gl

Rest of the Get() Update()
program

USENIX Annual Technical Conference ’17 37

Produce Partition Specification

Format()

=

Partition Specification

*

Enclave Functions:
Dispatch

Get

Update

Enclave Allocations:
malloc@241

* Enclave Allocated Globals
hash items

_

J

USENIX Annual Technical Conference ’17

38

2. Producing a Partitioned Application

\;

=

Application Code

e I —

Source-Source

Partition Transformation
specification

~—

Automatically move code into enclave and outside
codebases; Generate interface specification for SDK

Enclave
Code

Outside
Code

Interface
Spec

USENIX Annual Technical Conference ’17 39

Source-Source Transformation

Partition Spec

* Enclave Functions:
Dispatch,
Get,
Update

* Enclave Allocations:
malloc@241

* Enclave Allocated Globals

hash items

void Read(..) {
Dispatch();
}

void Dispatch(..){
-

void Get(..) {

-

void Put(..) {

}

USENIX Annual Technical Conference ’17

40

Source-Source Transformation

Partition Spec

* Enclave Functions:
Dispatch,
Get,
Update

* Enclave Allocations:
malloc@241

* Enclave Allocated Globals

hash items

void Read(..) {
Dispatch();

}

S E B B B I I = = =
volid Dispatch(..){

;
void Get(..) {
;

void Put(..) {

}

USENIX Annual Technical Conference ’17

Source-Source Transformation

Partition Spec

* Enclave Functions:
Dispatch,
Get,
Update

* Enclave Allocations:
malloc@241

* Enclave Allocated Globals

hash items

Outside

void Read(..) {
ecall Dispatch();

}

Enclave

void ecall Dispatch(..){
;

void Get(..) {

;

void Put(..) {

}

USENIX Annual Technical Conference ’17

42

3. Upholding Static Analysis Invariants

>

=

Ensure that invariants on program state used by the
static analysis are enforced at runtime

Application Code

-~

% ™

Static Analysis

@,

Invariants

Source-Source
Transformation

Instrumentation of
O CAINVEERIS

S I

u.':“‘

amoprim

Enclave
Code

Outside
Code

Interface
Spec

USENIX Annual Technical Conference 17 43

Infeasible Program Paths

Problem
Static Analysis prunes infeasible paths by inferring invariants on
program state

int flag = 0;

int SomeFunc() {
if(flag == 1)
memcpy (data, sensitive data);
else

memcpy (data, declassify(sensitive_data));
Write(data);

USENIX Annual Technical Conference ’17

Infeasible Program Paths

Problem
Static Analysis prunes infeasible paths by inferring invariants on
program state

int flag = 0; /* flag == * /

int SomeFunc() {
if(flag == 1)
memepy{(data;—sensitivedata);
else

memcpy (data, declassify(sensitive_data));
Write(data);

USENIX Annual Technical Conference ’17 45

Violating Static Analysis Invariants

Problem
Attacker controlling untrusted code can violate the assumptions
made by static analysis after partitioning

int flag = o;%

int SomeFunc() {

if(flag == 1)
memcpy (data, sensitive data);
else

memcpy (data, declassify(sensitive data));

Write(data); Enclave

)

USENIX Annual Technical Conference ’17 46

Adding Runtime Invariant Checks

Solution

Add assertions to enforce statically inferred invariants on

program state

int flag = o;%

int SomeFunc() {

if(flag == 1)

else

Write(data);

)

memcpy (data, sensitive data);

memcpy (data, declassify(sensitive data));

Enclave

USENIX Annual Technical Conference ’17

4. Improving Performance After Partitioning

Use results of runtime profiling to remove expensive
functions from enclave interface

* Runtime Profiling

~ | D

Enclave
— - Boundary -
Relocation Source-Source
Partition .\ Transformation

specification -+

_ _/

USENIX Annual Technical Conference ’17 48

Performance of Partitioned Applications

Expensive Interface Functions
Some of the interface functions may be ‘hotspots’ called too frequently

v

SomeFunc()
- E {~ ~~
Dispatch(cmd) g
If (cmd
==“GET")¢
Get() Update()

USENIX Annual Technical Conference ’17 49

Performance of Partitioned Applications

Expensive Interface Functions
Some of the interface functions may be ‘hotspots’ called too frequently

- ¥

SomeFunc()
- == 2000 =
K
Dispatch(cmd) .

Runtime rofiling can

If (cmd 1000 help identify hotspots

==“G ET”)

v

so0 Get() Update() 500

USENIX Annual Technical Conference ’17 50

Enclave Boundary Relocation

Adding Functions to Enclave
Move additional functions into enclave to create a new interface that
avoid ‘hotspots’

o o

SomeFunc()
K/2000
Dispatch(cmd)
If (cmd
G ET”)¢ 1000
so0 Get() Update() 500

USENIX Annual Technical Conference ’17 51

Evaluation Goals

How does Glamdring compare to other design
choices

Security: Size of TCB

Performance: Throughput

USENIX Annual Technical Conference ’17 52

Applications and Implementation

Application “ Confidentiality

Memcached Key-Value pairs

LibreSSL i ol Yes Yes
certificate
Digital Bitbox Private Keys Yes Yes
Implementation
Static Analysis:

Existing tools
Code Generation:
LLVM/Clang 3.9 — around 5000 LoC

USENIX Annual Technical Conference ’17

53

Security Evaluation - TCB size

How big is the TCB of applications?

... Code Size :
SPPIestons | (oo

Memcached 31 12 (40%)
DigitalBitbox 23 8 (38%)
LibreSSL 176 38 (22%)

TCB is less than 40% of the application size

USENIX Annual Technical Conference ’17

34

Security Evaluation - TCB size

TCB size comparison with Graphene and SCONE

Applications |TCB size (kLoC)

Memcached
(Glamdring) 42 770 kB
Memcached

(SCONE) 149 3.3 MB
Memcached
(Graphene) 746 4.1 MB

USENIX Annual Technical Conference ’17

35

Security Evaluation - TCB size

TCB size comparison with Graphene and SCONE

Applications |TCB size (kLoC)

Memcached

(Glamdring) 42 770 kB
Memcached

(SCONE) 3.3 MB
Memcached
(Graphene) 746 4.1 MB

1/3 size of TCB when uig SCONE

USENIX Annual Technical Conference ’17

36

Security Evaluation - TCB size

TCB size comparison with Graphene and SCONE

Applications |TCB size (kLoC)

Memcached

(Glamdring) 42 770 kB
Memcached

(SCONE) 3.3 MB
Memcached
(Graphene) 746 4.1 MB

1/3 size of TCB when usmg SCONE
Order of magnitude Iess than with Graphene

USENIX Annual Technical Conference ’17 57

Comparing Performance of Designh Approaches

Throughput of Memcached ported using Glamdring
with native, SCONE and Graphene

USENIX Annual Technical Conference ’17 58

Comparing Performance of Designh Approaches

Throughput of Memcached ported using Glamdring
with native, SCONE and Graphene

O Native

3

2.25
>
=

o 1.5
©
-l

0.75

0

0 150 300 450 600
Throughput

USENIX Annual Technical Conference ’17

59

Throughput vs Latency

Avoids enclave transitions with user-level threading;
higher TCB than Glamdring

2.25

1.5

Latency

0.75

0 150 300 450 600
Throughput

USENIX Annual Technical Conference ’17 60

Throughput vs Latency

Entire Library OS inside enclave

. O Native SCONE © Graphene

0 150 300 450 600
Throughput

USENIX Annual Technical Conference ’17 61

Throughput vs Latency

O Native SCONE © Graphene <© Glamdring

0 150 300 450 600
Throughput

Glambdring USENIX Annual Technical Conference '17 62

Throughput vs Latency

Enclave transitions dominate the cost of request handling;
batching requests into multi-get gets 210k reqg/sec

0 150 300 450 600
Throughput

USENIX Annual Technical Conference ’17 63

Conclusions

Port applications into Intel SGX enclaves with minimal TCB

Glamdring — Automated program partitioning using static
analysis

ldentifies minimum TCB, produces partitioned code,
enforces program state invariants, uses

Evaluated three applications - smaller TCB than prior
approaches with acceptable performance

B0 06

dmuthuku@imperial.ac.uk

USENIX Annual Technical Conference ’17 64

mailto:dmuthuku@imperial.ac.uk
mailto:dmuthuku@imperial.ac.uk

Security Evaluation - Attacks and Defences

Enclave Call Ordering Attacks: By construction.
EBR does not affect this.

lago Attacks: By enforcing invariants
Replay Attacks: Freshness counter

Enclave Code Vulnerabilities: TCB is reduced —
enables code analysis

USENIX Annual Technical Conference ’17 65

Evaluation - Impact of EBR

How many functions were moved into the enclave,
and what was the impact on enclave crossings

Enclave Enclave
EBR Enclave : :
Application Functions Crossings Crossings
(No EBR) (With EBR)
54 6

Memcached
LibreSSL 2 24 780 6/27
Digital Bitbox 4 10,943 38

USENIX Annual Technical Conference ’17 66

Evaluation - Impact of EBR

Even few functions inside.... reduced enclave
crossings by orders
of magnitude

| Enclave Enclave
. .. EBR Enclave : :
Application Functions Crossings Crossings
‘ (No EBR) (With EBR)
Memcached 7 1
LibreSSL L2 24,780 sl 6727
Digital Bitbox 4 10,943 38

USENIX Annual Technical Conference ’17 67

