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Trust in Cloud Services

Application

Threats

* Insider Attacks
- Human error despite best practices
- Vulnerabilities in large code bases

2
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Trust in Cloud Services

Application

Traditional Security Models
* Protect privileged code from untrusted user-level code

-
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Trusted Execution Environments

Application

Flips Security Model

- Secure area of a processor
* Provides protection from higher privileged code

* Trusted environment on top of untrusted cloud
2

«
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Intel Software Guard Extensions (SGX)

On commodity processors starting with Skylake

TEE’s are called enclaves

18 CPU instructions to manage enclave lifecycle

Code & data reside in Enclave Page Cache (EPC)
Cache lines encrypted when written to memory
Restricted to 128MB

Intel provides an SDK for Windows and Linux
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Enclave Application Lifecycle

Untrusted Code Enclave

{1 Start Enclave 3 Trusted function

Ocall
2 ' Ecall
5 ' Return
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Enclave Application Lifecycle

Untrusted Code Enclave

{1 Start Enclave 3 Trusted function

4 ' Ocall
2 ' Ecall
5 ' Return
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Enclave Application Lifecycle

Untrusted Code Enclave

{1 Start Enclave 3 Trusted function

4 ' Ocall
2 ' Ecall
5 ' Return

Enclave crossings through ecalls and ocalls
, iIncur a performance penalty
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Porting applications to Enclaves

Get/Update M
m<—
Response

Client

How do you port a key-value store to run in an enclave?
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Library OS Inside Enclaves

Pros
- Run unmodified applications
* Fixed shielded interface

M

mEm[Z.P.IEHED Cons

* TCB is millions LoC!
- Performance overhead

Standard Haven [OSDI’14]

Libraries

Library OS

Minimal system calls

Host OS

«
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Standard Library Inside Enclaves

Pros
« Smaller TCB than Haven
* Fixed shielded interface

Cons

« TCB = 0.6x—2x of
application size

- Recompilation needed

Enhanced C
Library
System calls ¢

Host OS

SCONE [0SDI'16]
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Minimum TCB Inside Enclaves

Principle of Least Privilege
Only move the code needed to enforce security policy

M

mEmE.H.[HED
Application
(Sensitive)

Policy: Confidentiality and
Integrity of key-value pairs

<
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Minimum TCB Inside Enclaves

Principle of Least Privilege
Only move the code needed to enforce security policy

Application
(Sensitive)

Application
(Sensitive)

Policy: Confidentiality and
Integrity of key-value pairs

2
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Application Partitioning to Minimise TCB

Prior work has manually partitioned applications

SecureKeeper: Confidential ZooKeeper using Intel SGX

Stefan Brenner Colin Wulf David Goltzsche
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Peter Pietzuch Rldiger Kapitza
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ABSTRACT 1. IN
Cloud computing, while ubiquitous, still suffers from trust Cloug . : . :
issues, especially for applications managing sensitive data. fitsto b VC3' TmStworthy Data AnalythS 1n the CIOUd usmg SGX

Felix Schuster*, Manuel Costa, Cédric Fournet, Christos Gkantsidis
Marcus Peinado, Gloria Mainar-Ruiz, Mark Russinovich
Microsoft Research

Abstract—We present VC3, the first system that allows users data [22]. However, FHE is not efficient for most com-
to run distributed MapReduce computations in the cloud while putations [23], [65]. The computation can also be shared
keeping their code and data secret, and ensuring the correctness  p.i00n independent parties while guaranteeing confidential-

and completeness of their results. VC3 runs on unmodified . g e . . .
Hadoop, but crucially keeps Hadoop, the operating system and 1% for u.1d'1v1dual inputs (us!ng e.g., garbled circuits [29])
the hvpervisor out of the TCB; thus, confidentiality and integrity and providing protection against corrupted parties (see e.g.,
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Application Partitioning to Minimise TCB

“Automatically determine the minimum
functionality to be run inside an enclave
in order to enforce a security policy”
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Challenges in Automated Partitioning

» ldentifying security-sensitive code relevant to a security policy
 Preventing interfaces from violating security policy
» Avoiding performance degradation

M Application
(Sensitive)

mEmE.F.IEHED
Application
(Sensitive)

Policy: Confidentiality and
Integrity of key-value pairs

«
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Challenges in Automated Partitioning

ldentifying security-sensitive code relevant to a security policy

Application Application
(Sensitive) (Untrusted)

Policy: Confidentiality and
Integrity of key-value pairs
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Challenges in Automated Partitioning

» ldentifying security-sensitive code relevant to a security policy
* Preventing interfaces from violating security policy

» Avoiding performance degradation

M

MEMCHCHED
Application
(Sensitive)

Policy: Confidentiality and
Integrity of key-value pairs

2

Application
(Sensitive)

Application
(Untrusted)

Standard Libraries

Host OS
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Challenges in Automated Partitioning

» ldentifying security-sensitive code relevant to a security policy
 Preventing interfaces from violating security policy
- Avoiding performance degradation

M Application
..l (Sensitive)
MEMCHCHED

Interface
Application
(Sensitive) *
Application
(Untrusted)
Policy: Confidentiality and Standard Libraries
Integrity of key-value pairs Host OS

<

C
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Glamdring Partitioning Framework

Annotation Application Code

=

Static Analysis

Backward
Analysis

Forward
Analysis

u.‘“‘

WEAaMmoring

Partition
specificatio

- Boundary

Relocation

18

—_—|=

\
l Enclave l e

Source-Source

Transformation

Instrumentation of

Runtime Invariants

| o Invariants 3 )

Enclave
Code

Interface
Spec
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1. Identify Security-Sensitive Code

Static Analysis conservatively identifies subset of code
dependent on programmer annotated security-sensitive
data

Annotation Application Code

-8
Static Analysis

Partition
Forward Rl  specification
Analysis Analysis
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Annotation of Security-Sensitive Data

" read()

Client

What to Annotate
* Indicate where security-sensitive
data enters or leaves the program

3

Dispatch(cmd)

v

If (cmd

Get() Update()

M
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Annotation of Security-Sensitive Data

e — 0T [

M ' emd
Client
What to Annotate

* Indicate where security-sensitive
data enters or leaves the program

gcmd

Dispatch(cmd)

M

Get()

v

If (cmd

SN

Update()
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Annotation of Security-Sensitive Data

" cmd B4,

m - read()

Client

What to Annotate

* Indicate where security-sensitive
data enters or leaves the program

- Sensitive data can be encrypted
and signed until first use

gcmd v //"

Dispatch(cmd)

v

If (cmd

SR

Get() Update()

M
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Annotation of Security-Sensitive Data

M " cmd B4

e E— T |

Client

#pragma glamdring sensitive source(cmd)

void Dispatch(char *cmd) {

¥

giCﬂﬂ1C|:ﬁg&

Dispatch(cmd)

M

Get()

v

If (cmd

SN

Update()
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Static Analysis Goals

e Enforcing Confidentiality: Identify all functions that
depend on sensitive data.

e Enforcing Integrity: Identify all functions on which
the value of sensitive data depends

e \Why Static Analysis?

e Static Analysis is conservative, independent of
the input to the program
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Program Dependence Graph

Captures the control and data dependencies in the program
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Program Dependence Graph

Captures the control and data dependencies in the program

Nodes = Statements cmd = read(..) @
Dispatch(cmd) @
If (cmd @
==“GET")
@ Get() Update()@
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Program Dependence Graph

Captures the control and data dependencies in the program

Data Dependence Edge omd = read(.. @
Data defined in a statement is ¢v
used in the another statement Dispatch(cmd) @

If (cmd @
=="GET")

@ Get() Update()@
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Program Dependence Graph

Captures the control and data dependencies in the program

cmd = read(..) @
v

Dispatch(cmd) @
Control Dependence Edge ¢

One Statement determines if _'L(g'g‘f,,) @
another gets executed - ¢

@ Get() Update()@
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Program Dependence Graph

v wlr

cmd = read(..)

e T 3 L

...... Dispatch(cmd)
FEETETReS , Format() / ¢ ¢
If (cmd
barralt, Write(res) ¢== GET ¢
Rest of the Get() Update()

program
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Forwards Dataflow Analysis

Confidentiality Using Graph Reachability identify all nodes
with transitive control/data dependency on annotated node

v Jr

cmd = read(..)

e T 3 L

------ DISpatCh Cmd #prama glamdring sensitive data(cmd)

S B g

If (cmd
barralt, Write(res) __ GET

G N d ,L

Rest of the Get() Update()
program
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Forwards Dataflow Analysis

Confidentiality Using Graph Reachability identify all nodes
with transitive control/data dependency on annotated node

v +

cmd = read(..)

e T 3 L

------ DISpatCh Cmd #prama glamdring sensitive data(cmd)

S B g

If (cmd
barralt, Write(res) __ GET

G s ,L

Rest of the Get() Update()
program
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Forwards Dataflow Analysis

Integrity Using Graph Reachability identify all nodes that
are transitive control/data dependent on annotated node

v Jr

cmd = read(.

e T 4' ./

------ DISpatCh Cmd #prama glamdring sensitive data(cmd)

S B g

If (cmd
barralt, Write(res) __ GET

G 4 ,L

Rest of the Get() Update()
program
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Forwards Dataflow Analysis

Integrity Using Graph Reachability identify all nodes that
are transitive control/data dependent on annotated node

v +

cmd = read(.

e T 4' ./

------ DISpatCh Cmd #prama glamdring sensitive data(cmd)

S B I

If (cmd
barralt, Write(res) __ GET

G o d ,L

Rest of the Get() Update()
program
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Security Sensitive Code

Union of nodes found with forwards and backwards analyses

v vlr

cmd = read(.

e T 4' ./

...... Dispatch(cmd)

ol

If (cmd
pasioalt, Write(res) __ GET

SR s gl

Rest of the Get() Update()
program
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Produce Partition Specification

Format()

=

Partition Specification

*

Enclave Functions:
Dispatch

Get

Update

Enclave Allocations:
malloc@241

* Enclave Allocated Globals
hash items

\_

J

USENIX Annual Technical Conference ’17

38



2. Producing a Partitioned Application

\;

=

Application Code

e I —

Source-Source

Partition Transformation
specification

~—

Automatically move code into enclave and outside
codebases; Generate interface specification for SDK

Enclave
Code

Outside
Code

Interface
Spec
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Source-Source Transformation

Partition Spec

* Enclave Functions:
Dispatch,
Get,
Update

* Enclave Allocations:
malloc@241

* Enclave Allocated Globals

hash items

void Read(..) {
Dispatch();
}

void Dispatch(..){
-

void Get(..) {

-

void Put(..) {

}
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Source-Source Transformation

Partition Spec

* Enclave Functions:
Dispatch,
Get,
Update

* Enclave Allocations:
malloc@241

* Enclave Allocated Globals

hash items

void Read(..) {
Dispatch();

}

S E B B B I I = = =
volid Dispatch(..){

;
void Get(..) {
;

void Put(..) {

}
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Source-Source Transformation

Partition Spec

* Enclave Functions:
Dispatch,
Get,
Update

* Enclave Allocations:
malloc@241

* Enclave Allocated Globals

hash items

Outside

void Read(..) {
ecall Dispatch();

}

Enclave

void ecall Dispatch(..){
;

void Get(..) {

;

void Put(..) {

}
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3. Upholding Static Analysis Invariants

>

=

Ensure that invariants on program state used by the
static analysis are enforced at runtime

Application Code

-~

% ™

Static Analysis

_@_,

Invariants

Source-Source
Transformation

Instrumentation of
O CAINVEERIS

S I

u.':“‘

amoprim

Enclave
Code

Outside
Code

Interface
Spec
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Infeasible Program Paths

Problem
Static Analysis prunes infeasible paths by inferring invariants on
program state

int flag = 0;

int SomeFunc() {
if(flag == 1)
memcpy (data, sensitive data);
else

memcpy (data, declassify(sensitive_data));
Write(data);
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Infeasible Program Paths

Problem
Static Analysis prunes infeasible paths by inferring invariants on
program state

int flag = 0; /* flag == * /

int SomeFunc() {
if(flag == 1)
memepy{(data;—sensitivedata);
else

memcpy (data, declassify(sensitive_data));
Write(data);
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Violating Static Analysis Invariants

Problem
Attacker controlling untrusted code can violate the assumptions
made by static analysis after partitioning

int flag = o;%

int SomeFunc() {

if(flag == 1)
memcpy (data, sensitive data);
else

memcpy (data, declassify(sensitive data));

Write(data); Enclave

)
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Adding Runtime Invariant Checks

Solution

Add assertions to enforce statically inferred invariants on

program state

int flag = o;%

int SomeFunc() {

if(flag == 1)

else

Write(data);

)

memcpy (data, sensitive data);

memcpy (data, declassify(sensitive data));

Enclave
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4. Improving Performance After Partitioning

Use results of runtime profiling to remove expensive
functions from enclave interface

* Runtime Profiling

~ | D

Enclave
— - Boundary -
Relocation Source-Source
Partition .\ Transformation

specification -+

\_ _/
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Performance of Partitioned Applications

Expensive Interface Functions
Some of the interface functions may be ‘hotspots’ called too frequently

v

SomeFunc()
- E {~ ~~
Dispatch(cmd) g
If (cmd
==“GET")¢
Get() Update()
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Performance of Partitioned Applications

Expensive Interface Functions
Some of the interface functions may be ‘hotspots’ called too frequently

- ¥

SomeFunc()
- == 2000 =
K
Dispatch(cmd) .

Runtime rofiling can

If (cmd 1000 help identify hotspots

==“G ET”)

v

so0  Get() Update() 500

USENIX Annual Technical Conference ’17 50



Enclave Boundary Relocation

Adding Functions to Enclave
Move additional functions into enclave to create a new interface that
avoid ‘hotspots’

o o

SomeFunc()
K/2000
Dispatch(cmd)
If (cmd
G ET”)¢ 1000
so0  Get() Update() 500
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Evaluation Goals

How does Glamdring compare to other design
choices

Security: Size of TCB

Performance: Throughput
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Applications and Implementation

Application “ Confidentiality

Memcached Key-Value pairs

LibreSSL i ol Yes Yes
certificate
Digital Bitbox  Private Keys Yes Yes
Implementation
Static Analysis:

Existing tools
Code Generation:
LLVM/Clang 3.9 — around 5000 LoC

USENIX Annual Technical Conference ’17
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Security Evaluation - TCB size

How big is the TCB of applications?

... Code Size :
SPPIestons | (oo

Memcached 31 12 (40%)
DigitalBitbox 23 8 (38%)
LibreSSL 176 38 (22%)

TCB is less than 40% of the application size
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Security Evaluation - TCB size

TCB size comparison with Graphene and SCONE

Applications |TCB size (kLoC)

Memcached
(Glamdring) 42 770 kB
Memcached

(SCONE) 149 3.3 MB
Memcached
(Graphene) 746 4.1 MB
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Security Evaluation - TCB size

TCB size comparison with Graphene and SCONE

Applications |TCB size (kLoC)

Memcached

(Glamdring) 42 770 kB
Memcached

(SCONE) 3.3 MB
Memcached
(Graphene) 746 4.1 MB

1/3 size of TCB when uig SCONE
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Security Evaluation - TCB size

TCB size comparison with Graphene and SCONE

Applications |TCB size (kLoC)

Memcached

(Glamdring) 42 770 kB
Memcached

(SCONE) 3.3 MB
Memcached
(Graphene) 746 4.1 MB

1/3 size of TCB when usmg SCONE
Order of magnitude Iess than with Graphene
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Comparing Performance of Designh Approaches

Throughput of Memcached ported using Glamdring
with native, SCONE and Graphene
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Comparing Performance of Designh Approaches

Throughput of Memcached ported using Glamdring
with native, SCONE and Graphene

O Native

3

2.25
>
=

o 1.5
©
-l

0.75

0

0 150 300 450 600
Throughput
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Throughput vs Latency

Avoids enclave transitions with user-level threading;
higher TCB than Glamdring

2.25

1.5

Latency

0.75

0 150 300 450 600
Throughput
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Throughput vs Latency

Entire Library OS inside enclave

. O Native SCONE © Graphene

0 150 300 450 600
Throughput
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Throughput vs Latency

O Native SCONE © Graphene <© Glamdring

0 150 300 450 600
Throughput
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Throughput vs Latency

Enclave transitions dominate the cost of request handling;
batching requests into multi-get gets 210k reqg/sec

0 150 300 450 600
Throughput

USENIX Annual Technical Conference ’17 63



Conclusions

Port applications into Intel SGX enclaves with minimal TCB

Glamdring — Automated program partitioning using static
analysis

ldentifies minimum TCB, produces partitioned code,
enforces program state invariants, uses

Evaluated three applications - smaller TCB than prior
approaches with acceptable performance

B0 06

dmuthuku@imperial.ac.uk
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Security Evaluation - Attacks and Defences

Enclave Call Ordering Attacks: By construction.
EBR does not affect this.

lago Attacks: By enforcing invariants
Replay Attacks: Freshness counter

Enclave Code Vulnerabilities: TCB is reduced —
enables code analysis
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Evaluation - Impact of EBR

How many functions were moved into the enclave,
and what was the impact on enclave crossings

Enclave Enclave
EBR Enclave : :
Application Functions Crossings Crossings
(No EBR) (With EBR)
54 6

Memcached
LibreSSL 2 24 780 6/27
Digital Bitbox 4 10,943 38
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Evaluation - Impact of EBR

Even few functions inside.... reduced enclave
crossings by orders
of magnitude

| Enclave Enclave
. .. EBR Enclave : :
Application Functions Crossings Crossings
‘ (No EBR) (With EBR)
Memcached 7 1
LibreSSL L2 24,780 sl 6727
Digital Bitbox 4 10,943 38
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