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IUsage of EC L Bl
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® \Widely used In distributed storage systems
“* Especially large-scale cloud storage services

® Fxcept in read-write hot storage

® Because of performance

® Overheads Include:
“* Coding calculation

“* I/O pattern deterioration, especially for partial writes
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\ovxse\r the bottleneck
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I Partial Write in EC @D=EC
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IA Simple Approach to Partial Write €9 =1

® By fully re-encoding
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IA Simple Approach to Partial Write P =C:c
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® By fully re-encoding

(1) Partial Write
@) Read 2 @ ©@ @) (4) Write

high 1/0 amplification
unfriendly to paralleliswm
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IAn Incremental Approach to Partial Write
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® By incremental encoding
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IAn Incremental Approach to Partial Write
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® By incremental encoding
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IAn Incremental Approach to Partial Write
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® By incremental encoding

@ PartialWrite | @ incremental | @ | ® incremental
data encoding parity encoding
2 Read ® Read @
B) Write (7) Write Parity
wmodevate /0 awm?Plification

fviendly to nter-disk pavallelism

but n-place vead-and-write 1S expensivel!




ICost of in-place read-and-write =7z
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® |ts [atency is equivalent to that of random seek

® performance hurts a lot
* random write: reduced by half

* sequential write: reduced to that of random write

® the major obstacle for EC
* to get used in read-write hot storage

7,200 RPM
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I Parity Logging

® An approach to accelerate parity writing
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I Parity Logging

® An approach to accelerate parity writing
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I Parity Logging
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I Parity Logging

client data parity- parity- paritys

J—M

—_— - et 2 &AM bk b e e e e e e - e e e e e e e e e e - - < — —

>

overwrite

append Ap;
to journal

_ suecess
/ :

guceess

Theve's still one n-place read-and-wvrite,
1+’s the souvce o overhead.



IPervasiveness of Partial Write
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® partial write Is caused by unalignment

® unalignment is the norm
“* the upper layers of I/0 stack

just don t know the fact of An analysis of the MSR I/O traces

Ecanditsalignment T ] jﬁﬁ‘
. - — [ —src22
® |1 IS the major obstacle S ;jffj
“* for EC to get used in read- g | i yvtgzo
write hot storage systems % e E"‘J?O

i'zzt:F
® Must be addressed! 7B 2B KB KB 16KB KB KB 126KB 250KE

update size
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® Consider a series of »writes to a same data block d;:
A —daV d?, ... d"

® [ne parities are p; (j=1,2,...,k)

® By incremental parity update equation, we have: in Galois Field

Ap(l) — ai; X Ad(l) AP(Z) — ai; X Ad,EQ) GF(2"8)

(r) _ p]()) n Z Ap(a:) _ pjo) n aij(d,gl) _ dzgo) n dng) _ dgl) 4 d§3) _ dz(2) + ...)

=\ +ay x (d” - di”)
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® Consider a series of »writes to a same data block d;:
A —daV d?, ... d"
® [ne parities are p; (j=1,2,...,k)

® By incremental parity update equation, we have: in Galois Field

Ap(l) — ai; X Ad(l) Ap(Z) — ai; X Ad,EQ) GF(2"8)

(r) _ PJO) n Z Ap(a:) _ pjo) +a;; (d(l) dz@ n dz@ B dgl) 4 dgi%) _ dz@) +...)

intevmediate values ave ALL veduced
no need to vead it at all!
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® Instead of parities deltas, as in parity logging

® Fach parity records m series of change logs

“* respectively for m data blocks

“* stored as a single journal file

“* interleaved with each other

+ every d9) always comes after corresponding d)

® Example:
dV.d\V. a\, alV,d?,d?, d?, . d 6 =1.m k= 0.1), ...



I The Speculation eD=C:
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® \Whether the parities need dg()) or not?

® | |s too costly to maintain consensus among nodes about this

® |[nstead, we speculate about It:
* Assume d,go)is NOT needed (mostly right)

“* Send d,go) only when it is actually needed (sometimes only)
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B PAriX: Eliminating the Read e =o-
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R PAriX: Eliminating the Read
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B PAriX: Eliminating the Read =z

client data parity- parity- paritys
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B PAriX: Eliminating the Read =z

client data parity- parity- paritys
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R PAriX: Eliminating the Read

client data parity-
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failed
(2 I00OP + 2 RTT)

(1 loOP + | RTT) 1S the Sawme 3s that of veplication !
Penalty of failure 1S only 3 network RTT!



I Implementation
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® Based on Ursa, a block store for our public & private cloud,
which hosts all our businesses:

“* food delivery: ~13M orders/day, ~67M monthly active users, ~200M total
users

“* crowd-sourced reviews (about businesses), coupons, hotel reservation,
tourism, plane & train tickets, movie tickets, payment, ...

® Architecture
* Master-Server-Client

“* No single-point-of-failure
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I Evaluation "~ Eduilm

® |0 Servers, each with:
+ 12 HDD, 7200 RPM,

- attached to an LSI 3008 SAS HBA, w/o flash cache
“* 2-way Intel Xeon CPU
“ [28GB RAM

® |0Gb Ethernet

“* connected with a non-blocking switch
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I Evaluation
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I Evaluation
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I Summary
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e Performance is the major obstacle
“* for EC to get used in read-write hot storage
“* especially in the case of partial write

* PARIX: a novel approach to eliminate overhead in common cases
“ with a very small penalty in corner cases

e Evaluations show that its performance meets expectations
“* much better than existing approaches
“* close to that of 3-replica scheme
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