MEITUAN OPEN SERVICES

RARBKUBLFR RS E&ENE

PARIX: Speculative Partial Writes
in Erasure-Coded Systems

Huiba Li*, Yiming Zhang®, Zhiming Zhang*, Shengyun Liu®,
Dongsheng Li°, Xiaohui Liu®, Yuxing Peng®

*Meituan Open Service, SNUDT

m Do

IErasure Coding (EC)

. . . . = = data blocks
. parity blocks

4%3=12 4+2=6
(300% redundancy) (150% redundancy)

IUsage of EC L Bl

RARBKAR RS EEMNE

® \Widely used In distributed storage systems
“* Especially large-scale cloud storage services

® Fxcept in read-write hot storage

® Because of performance

® Overheads Include:
“* Coding calculation

“* I/O pattern deterioration, especially for partial writes

RARBKAR RS EEMNE

I Coding with Vectorial Instructions

B encode M decode 1 decode 2

—h
N

—h

—h

o N OB~ OO 00 O N

Single Core Performance (GB/s)

EC(4,2) EC(6,3) EC(8,4) EC(10,4)

Coding Schemes

I Coding with Vectorial Instructions

Single Core Performance (GB/s)

— b
N

—h

o N OB~ OO 00 O N

B encode M decode 1 decode 2

EC(4,2) EC(6,3) EC(8,4) EC(10,4)

Coding Schemes

cod‘(vxg 1S no

RARBKAR RS EEMNE

\ovxse\r the bottleneck

RARBKAR RS EEMNE

I Partial Write in EC @D=EC

data blocks éparity blocks

RARBKAR RS EEMNE

I Partial Write in EC @D=EC

data blocks éparity blocks

U\V\a\'\shed wvite

RARBKAR RS EEMNE

IA Simple Approach to Partial Write €9 =1

® By fully re-encoding

(1) Partial Write
@) Read 2 @ ©@ @) (4) Write

IA Simple Approach to Partial Write P =C:c

RARBKAR RS EEMNE

® By fully re-encoding

(1) Partial Write
@) Read 2 @ ©@ @) (4) Write

high 1/0 amplification
unfriendly to paralleliswm

MEITUAN OPEN SERVICES

IAn Incremental Approach to Partial Write

RARBKAR RS EEMNE

® By incremental encoding

@ PartialWrite | @ incremental | @ | ® incremental
data encoding parlty encoding

(2) Read (5) Read
B) Write

(7) Write Parity

MEITUAN OPEN SERVICES

IAn Incremental Approach to Partial Write

RARBKAR RS EEMNE

® By incremental encoding

@ PartialWrite | @ incremental | @ | ® incremental
data encoding parity encoding
(2) Read B Read ®)
I B) Write I I (7) Write Parity

wmodevate /0 awm?Plification
fviendly to nter-disk pavallelism

IAn Incremental Approach to Partial Write

RARBKAR RS EEMNE

® By incremental encoding

@ PartialWrite | @ incremental | @ | ® incremental
data encoding parity encoding
2 Read ® Read @
B) Write (7) Write Parity
wmodevate /0 awm?Plification

fviendly to nter-disk pavallelism

but n-place vead-and-write 1S expensivel!

ICost of in-place read-and-write =7z

RARBKAR RS EEMNE

® |ts [atency is equivalent to that of random seek

® performance hurts a lot
* random write: reduced by half

* sequential write: reduced to that of random write

® the major obstacle for EC
* to get used in read-write hot storage

7,200 RPM

ICost of in-place read-and-write =7z

RARBKAR RS EEMNE

® |ts [atency is equivalent to that of random seek

® performance hurts a lot
* random write: reduced by half

* sequential write: reduced to that of random write

® the major obstacle for EC
* to get used in read-write hot storage

7,200 RPM

RARBKAR RS EEMNE

I Parity Logging

® An approach to accelerate parity writing

@) Partial Write | @ incremental | @ (null
data encoding
B

(5 Append
2 Read @) Write Incremental

Change Log

RARBKAR RS EEMNE

I Parity Logging

® An approach to accelerate parity writing

@ Partial Write | @ incremental (nuII)
data encoding

(® Append)
2 Read @) Write ' Incremental |

. Change Log |

MEITUAN OPEN SERVICES

RARBKAR RS EEMNE

I Parity Logging

client data parity- parity- paritys

J—M

-, read

update

>

overwrite

append Ap;
to journal

success

guceess

RARBKAR RS EEMNE

I Parity Logging

client data parity- parity- paritys

J—M

—_— - et 2 &AM bk b e e e e e e - e e e e e e e e e e - - < — —

>

overwrite

append Ap;
to journal

_ suecess
/ :

guceess

Theve's still one n-place read-and-wvrite,
1+’s the souvce o overhead.

IPervasiveness of Partial Write

RARBKAR RS EEMNE

® partial write Is caused by unalignment

® unalignment is the norm
“* the upper layers of I/0 stack

just don t know the fact of An analysis of the MSR I/O traces

Ecanditsalignment T] jﬁﬁ‘
. - — [—src22
® |1 IS the major obstacle S ;jffj
“* for EC to get used in read- g | i yvtgzo
write hot storage systems % e E"‘J?O

i'zzt:F
® Must be addressed! 7B 2B KB KB 16KB KB KB 126KB 250KE

update size

B PAriX: Eliminating the Read e =o-

RARBKAR RS EEMNE

® Consider a series of »writes to a same data block d;:
A —daV d?, ... d"

® [ne parities are p; (j=1,2,...,k)

® By incremental parity update equation, we have: in Galois Field

Ap(l) — ai; X Ad(l) AP(Z) — ai; X Ad,EQ) GF(2"8)

(r) _ p]()) n Z Ap(a:) _ pjo) n aij(d,gl) _ dzgo) n dng) _ dgl) 4 d§3) _ dz(2) + ...)

=\ +ay x (d” - di”)

B PAriX: Eliminating the Read e =o-

RARBKAR RS EEMNE

® Consider a series of »writes to a same data block d;:
A —daV d?, ... d"
® [ne parities are p; (j=1,2,...,k)

® By incremental parity update equation, we have: in Galois Field

Ap(l) — ai; X Ad(l) Ap(Z) — ai; X Ad,EQ) GF(2"8)

(r) _ PJO) n Z Ap(a:) _ pjo) +a;; (d(l) dz@ n dz@ B dgl) 4 dgi%) _ dz@) +...)

intevmediate values ave ALL veduced
no need to vead it at all!

IPARIX: Logging Data on Parities &P ==

RARBKAR RS EEMNE

® Instead of parities deltas, as in parity logging

® Fach parity records m series of change logs

“* respectively for m data blocks

“* stored as a single journal file

“* interleaved with each other

+ every d9) always comes after corresponding d)

® Example:
dV.d\V. a\, alV,d?,d?, d?, . d 6 =1.m k= 0.1), ...

I The Speculation eD=C:

RARBKAR RS EEMNE

® \Whether the parities need dg()) or not?

® | |s too costly to maintain consensus among nodes about this

® |[nstead, we speculate about It:
* Assume d,go)is NOT needed (mostly right)

“* Send d,go) only when it is actually needed (sometimes only)

R PAriX: Eliminating the Read

client

data

parity

parity:

paritys

MEITUAN OPEN SERVICES

RARBKAR RS EEMNE

RARBKAR RS EEMNE

B PAriX: Eliminating the Read e =o-

client data parity- parity- paritys

J—M write d®

—_—

e o T

>
write d®

W to journal

RARBKAR RS EEMNE

B PAriX: Eliminating the Read e =o-

client data parity- parity- paritys

J—M write d®

—_—

e o T

< . >
write d®

W to journal W

,//

eed
d®?

RARBKAR RS EEMNE

R PAriX: Eliminating the Read

client data parity- parity- paritys

J—M write d®

—_—

e e T

< . >
write d®
W to journal W

’//

€€C

N

write d®

—

RARBKAR RS EEMNE

B PAriX: Eliminating the Read =z

client data parity- parity- paritys

J—M write d®

—_—

e o T

>
write d®

W to journal
,//

€€C

N Y

read d©®

write d® R

—

write d®

here’s d©®

—_—

write d©
W to journal i/

RARBKAR RS EEMNE

B PAriX: Eliminating the Read =z

client data parity- parity- paritys

J—M write d®

—_—

e o T

>
write d(r)

tOJournal

ced
N » 1Y
read d©
write d® R
here’s d(O)
/

write d(")
tOJournal

R PAriX: Eliminating the Read

client data parity-

MEITUAN OPEN SERVICES

RARBKAR RS EEMNE

J_M

N

write d®

write d®

e e T

>
write d®
W to journal W

’//

€€C

Y
read d©

here’s d©
A
write d©
W to journal

-
=
oC

T | N

Q| +

IS
S,
)

RARBKAR RS EEMNE

R PAriX: Eliminating the Read

client data parity-

e I e = — —

>
write d®

W to journal

,//
cc(
N
write d®
/ e o s T

, write d©
write d® to journal

failed
(2 I00OP + 2 RTT)

(1 loOP + | RTT) 1S the Sawme 3s that of veplication !
Penalty of failure 1S only 3 network RTT!

I Implementation

RARBKAR RS EEMNE

® Based on Ursa, a block store for our public & private cloud,
which hosts all our businesses:

“* food delivery: ~13M orders/day, ~67M monthly active users, ~200M total
users

“* crowd-sourced reviews (about businesses), coupons, hotel reservation,
tourism, plane & train tickets, movie tickets, payment, ...

® Architecture
* Master-Server-Client

“* No single-point-of-failure

RARBKAR RS EEMNE

I Evaluation "~ Eduilm

® |0 Servers, each with:
+ 12 HDD, 7200 RPM,

- attached to an LSI 3008 SAS HBA, w/o flash cache
“* 2-way Intel Xeon CPU
“ [28GB RAM

® |0Gb Ethernet

“* connected with a non-blocking switch

RARBKAR RS EEMNE

I Evaluation

B write (non-cached) B write (cached) B write (non-cached) B write (cached)
30 5K 3 3
. (the lower, the better) (the higher, the better)
g 4 K
2 50 n
2 O 3K
3 15 s ‘ | ‘
= 10 | e 2K ‘
g NN © | 1]
: 111 NERER R
oC

0
HDD R3 PBS-2PBS-1 PLog EC HDD EC PLog PBS-1PBS-2 RS3

success failure failure success

I Evaluation

RARBKAR RS EEMNE

o

Recovery Time (s)
N I

0 0.1 0.2 0.4 0.8 1.6 3.2

Journal Size (normalized to chunk size)

I Summary

RARBKAR RS EEMNE

e Performance is the major obstacle
“* for EC to get used in read-write hot storage
“* especially in the case of partial write

* PARIX: a novel approach to eliminate overhead in common cases
“ with a very small penalty in corner cases

e Evaluations show that its performance meets expectations
“* much better than existing approaches
“* close to that of 3-replica scheme

2017 USENIX Annual Technical Conference

https://www.mtyun.com

https://www.mtyun.com

T hanks!

2017 USENIX Annual Technical Conference

MEITUAN OPEN SERVICES

