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Introduction 

Fault tolerance for distributed storage is critical  

• Availability: data remains accessible under failures 

• Durability: no data loss even under failures 

 

Erasure coding is a promising redundancy technique  

• Minimum data redundancy via “data encoding”  

• Higher reliability with same storage redundancy than replication 

• Reportedly deployed in Google, Azure, Facebook  

• e.g., Azure reduces redundancy from 3x (replication) to 1.33x (erasure coding)  

 PBs saving 
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Erasure Coding 

Divide file data to k blocks 

Encode k (uncoded) blocks to n coded blocks 

Distribute the set of n coded blocks (stripe) to n nodes  

Fault-tolerance: any k out of n blocks can recover file data 
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Remark: for systematic codes, k of n coded blocks are the original k uncoded blocks 



Erasure Coding 

Practical erasure codes satisfy linearity and addition associativity 

• Each block can be expressed as a linear combination of any k blocks in the 

same stripe, based on Galois Field arithmetic  

• e.g., block B = a1B1 + a2B2 + a3B3 + a4B4 
  

 for k = 4, coefficients ai’s, and blocks Bi’s 

Also applicable to XOR-based erasure codes 

Examples: Reed-Solomon codes, regenerating codes, LRC  
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Erasure Coding 

Good: Low redundancy with high fault tolerance 

Bad: High repair penalty 

• In general, k blocks retrieved to repair a failed block 

 

Mitigating repair penalty of erasure coding is a hot topic 

• New erasure codes to reduce repair bandwidth or I/O 

• e.g., Regenerating codes, LRC, Hitchhiker  

• Efficient repair approaches for general erasure codes 

• e.g., lazy repair, PPR 
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Conventional Repair 

Single-block repair: 

• Retrieve k blocks from k working nodes (helpers) 

• Store the repaired block at requestor 
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Repair time = k timeslots  

• Bottlenecked by requestor’s downlink 

• Uneven bandwidth usage (e.g., links among helpers are idle) 

k = 4 helpers requestor 

Network 

R N1 N2 N3 N4 

Bottleneck 



Partial-Parallel-Repair (PPR) 

Exploit linearity and addition associativity to perform repair in a 

“divide-and-conquer” manner  
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[Mitra, EuroSys’16] 

k = 4 helpers requestor 

Network 

R N1 N2 N3 N4 

Repair time = ceil(log2(k+1)) timeslots  

Timeslot 1: 

N1 sends a1B1 to N2  a1B1+a2B2 

N3 sends a3B3 to N4  a3B3+a4B4 

Timeslot 2: 

N2 sends a1B1+a2B2 to N4  

a1B1+a2B2+a3B3+a4B4 

Timeslot 3: 

N4  R  repaired block 



Open Question 

Repair time of erasure coding remains larger than normal read time 

• Repair-optimal erasure codes still read more data than amount of failed data 

Erasure coding is mainly for warm/cold data 

• Repair penalty only applies to less frequently accessed data 

• Hot data remains replicated 

 

Can we reduce repair time of erasure coding to almost the 

same as the normal read time? 

• Create opportunity for storing hot data with erasure coding 
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Our Contributions 

Repair pipelining, a technique to speed up repair for general 

erasure coding 

• Applicable for degraded reads and full-node recovery 

• O(1) repair time in homogeneous settings 

Extensions to heterogeneous settings 

A prototype ECPipe integrated with HDFS and QFS 

Experiments on local cluster and Amazon EC2 

• Reduction of repair time by 90% and 80% over conventional repair and 

partial-parallel-repair (PPR), respectively 
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Repair Pipelining 

Goals: 

• Eliminate bottlenecked links 

• Effectively utilize available bandwidth resources in repair  

Key observation: coding unit (word) is much smaller than 

read/write unit (block) 

• e.g., word size ~ 1 byte; block size ~ 64 MiB 

• Words at the same offset are encoded together in erasure coding 
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Repair Pipelining 

 Idea: slicing a block 

• Each slice comprises multiple words (e.g., slice size ~ 32 KiB) 

• Pipeline the repair of each slice through a linear path 

Single-block repair: 
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Repair time = 1 + (k+1)/s   1 timeslot if s is large 

time 

k = 4 

s = 6 slices 
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Repair Pipelining 

Two types of single-failure repair (most common case): 

• Degraded read  

• Repairing an unavailable block at a client 

• Full-node recovery 

• Repairing all lost blocks of a failed node at one or multiple nodes 

• Greedy scheduling of multiple stripes across helpers 

Challenge: repair degraded by stragglers  

• Any repair of erasure coding faces similar problems due to data retrievals from 

multiple helpers 

Our approach: address heterogeneity and bypass stragglers 
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Extension to Heterogeneity 

Heterogeneity: link bandwidths are different 

 

Case 1: limited bandwidth when a client issues reads to a remote 

storage system 

• Cyclic version of repair pipelining: allow a client to issue parallel reads 

from multiple helpers 

Case 2: arbitrary link bandwidths 

• Weighted path selection: select the “best” path of helpers for repair     
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Repair Pipelining (Cyclic Version) 

Requestor receives repaired data from k-1 helpers 

Repair time in homogeneous environments  1 timeslot for large s 

14 

N1 N2 N3 N4 

N2 N3 N4 N1 

N3 N4 N1 N2 

R 

N4 N1 N2 

N1 N2 N3 N4 

N2 N3 N4 N1 

N3 N4 N1 N2 

Send to 

requestor 

R 

N4 N1 N2 

Send to 

requestor 

Group 1 

Group 2 



Weighted Path Selection 

Goal: Find a path of k + 1 nodes (i.e., k helpers and requestor) 

that minimizes the maximum link weight 

• e.g., set link weight as inverse of link bandwidth 

• Any straggler is associated with large weight 

Brute-force search is expensive 

• (n-1)!/(n-1-k)! permutations 

Our algorithm: 

• Apply brute-force search, but avoid search of non-optimal paths 

• If link L has weight larger than the max weight of the current optimal path, any path 

containing L must be non-optimal 

• Remain optimal, with much less search time 
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Implementation 

• Requestor implemented as a C++/Java class 

• Each helper daemon directly reads local blocks via native FS 

• Coordinator access block locations and block-to-stripe mappings 

ECPipe is integrated with HDFS and QFS, with around 110 and 

180 LOC of changes, respectively 
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ECPipe: a middleware atop distributed storage system 



Evaluation 

ECPipe performance on a 1Gb/s local cluster 
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Single-block repair time vs. slice size 

for (n,k) = (14,10) 

 Trade-off of slice size: 

• Too small: transmission overhead is 

significant 

• Too large: less parallelization 

• Best slice size = 32 KiB 

 Repair pipelining (basic and cyclic) 

outperforms conventional and PPR 

by 90.9% and 80.4%, resp. 

 Only 7% more than direct send time 

over a 1Gb/s link  O(1) repair time 

 



Evaluation 

ECPipe performance on a 1Gb/s local cluster 
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Full-node recovery rate vs. number of requestors 

for (n,k) = (14,10) 

 Recovery rate increases with 

number of requestors  

 Repair pipelining (RP and 

RP+scheduling) achieves high 

recovery rate  

 Greedy scheduling balances repair 

load across helpers when there 

are more requestors (i.e., more 

resource contention) 



Evaluation 

ECPipe performance on Amazon EC2 
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Weighted path selection reduces single-block repair time of basic 

repair pipelining by up to 45% 



Evaluation 

 Single-block repair performance on HDFS and QFS 
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 ECPipe significantly improves repair performance 

• Conventional repair under ECPipe outperforms original conventional repair inside 

distributed file systems (by ~20%) 

• Avoid fetching blocks via distributed storage system routine 

• Performance gain is mainly due to repair pipelining (by ~90%) 

QFS: slice size QFS: block size HDFS: (n,k) 



Conclusions 

Repair pipelining, a general technique that enables very fast 

repair for erasure-coded storage 

Contributions: 

• Designs for both degraded reads and full-node recovery 

• Extensions to heterogeneity 

• Prototype implementation ECPipe 

• Extensive experiments on local cluster and Amazon EC2 

Source code: 

• http://adslab.cse.cuhk.edu.hk/software/ecpipe  
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