
Repair Pipelining for Erasure-Coded Storage

Runhui Li, Xiaolu Li, Patrick P. C. Lee, Qun Huang

The Chinese University of Hong Kong

USENIX ATC 2017

1

Introduction

Fault tolerance for distributed storage is critical

• Availability: data remains accessible under failures

• Durability: no data loss even under failures

Erasure coding is a promising redundancy technique

• Minimum data redundancy via “data encoding”

• Higher reliability with same storage redundancy than replication

• Reportedly deployed in Google, Azure, Facebook

• e.g., Azure reduces redundancy from 3x (replication) to 1.33x (erasure coding)

 PBs saving

2

Erasure Coding

Divide file data to k blocks

Encode k (uncoded) blocks to n coded blocks

Distribute the set of n coded blocks (stripe) to n nodes

Fault-tolerance: any k out of n blocks can recover file data

3

Nodes

(n, k) = (4, 2)

File encode divide

A
B

C
D

A+C
B+D

A+D
B+C+D

A
B

C
D

A+C
B+D

A+D
B+C+D

A
B

C
D

Remark: for systematic codes, k of n coded blocks are the original k uncoded blocks

Erasure Coding

Practical erasure codes satisfy linearity and addition associativity

• Each block can be expressed as a linear combination of any k blocks in the

same stripe, based on Galois Field arithmetic

• e.g., block B = a1B1 + a2B2 + a3B3 + a4B4

 for k = 4, coefficients ai’s, and blocks Bi’s

Also applicable to XOR-based erasure codes

Examples: Reed-Solomon codes, regenerating codes, LRC

4

Erasure Coding

Good: Low redundancy with high fault tolerance

Bad: High repair penalty

• In general, k blocks retrieved to repair a failed block

Mitigating repair penalty of erasure coding is a hot topic

• New erasure codes to reduce repair bandwidth or I/O

• e.g., Regenerating codes, LRC, Hitchhiker

• Efficient repair approaches for general erasure codes

• e.g., lazy repair, PPR

5

Conventional Repair

Single-block repair:

• Retrieve k blocks from k working nodes (helpers)

• Store the repaired block at requestor

6

Repair time = k timeslots

• Bottlenecked by requestor’s downlink

• Uneven bandwidth usage (e.g., links among helpers are idle)

k = 4 helpers requestor

Network

R N1 N2 N3 N4

Bottleneck

Partial-Parallel-Repair (PPR)

Exploit linearity and addition associativity to perform repair in a

“divide-and-conquer” manner

7

[Mitra, EuroSys’16]

k = 4 helpers requestor

Network

R N1 N2 N3 N4

Repair time = ceil(log2(k+1)) timeslots

Timeslot 1:

N1 sends a1B1 to N2  a1B1+a2B2

N3 sends a3B3 to N4  a3B3+a4B4

Timeslot 2:

N2 sends a1B1+a2B2 to N4 

a1B1+a2B2+a3B3+a4B4

Timeslot 3:

N4  R  repaired block

Open Question

Repair time of erasure coding remains larger than normal read time

• Repair-optimal erasure codes still read more data than amount of failed data

Erasure coding is mainly for warm/cold data

• Repair penalty only applies to less frequently accessed data

• Hot data remains replicated

Can we reduce repair time of erasure coding to almost the

same as the normal read time?

• Create opportunity for storing hot data with erasure coding

8

Our Contributions

Repair pipelining, a technique to speed up repair for general

erasure coding

• Applicable for degraded reads and full-node recovery

• O(1) repair time in homogeneous settings

Extensions to heterogeneous settings

A prototype ECPipe integrated with HDFS and QFS

Experiments on local cluster and Amazon EC2

• Reduction of repair time by 90% and 80% over conventional repair and

partial-parallel-repair (PPR), respectively

9

Repair Pipelining

Goals:

• Eliminate bottlenecked links

• Effectively utilize available bandwidth resources in repair

Key observation: coding unit (word) is much smaller than

read/write unit (block)

• e.g., word size ~ 1 byte; block size ~ 64 MiB

• Words at the same offset are encoded together in erasure coding

10

…

n blocks of a stripe

words at the same offset

are encoded together

word

Repair Pipelining

 Idea: slicing a block

• Each slice comprises multiple words (e.g., slice size ~ 32 KiB)

• Pipeline the repair of each slice through a linear path

Single-block repair:

11
Repair time = 1 + (k+1)/s  1 timeslot if s is large

time

k = 4

s = 6 slices
N1 N2 N3 N4 R

N1 N2 N3 N4 R

N1 N2 N3 N4 R

N1 N2 N3 N4 R

N1 N2 N3 N4 R

N1 N2 N3 N4 R

a1b1 a1b1+a2b2

a1b1+a2b2

+a3b3

a1b1+a2b2

+a3b3+a4b4

Repair Pipelining

Two types of single-failure repair (most common case):

• Degraded read

• Repairing an unavailable block at a client

• Full-node recovery

• Repairing all lost blocks of a failed node at one or multiple nodes

• Greedy scheduling of multiple stripes across helpers

Challenge: repair degraded by stragglers

• Any repair of erasure coding faces similar problems due to data retrievals from

multiple helpers

Our approach: address heterogeneity and bypass stragglers

12

Extension to Heterogeneity

Heterogeneity: link bandwidths are different

Case 1: limited bandwidth when a client issues reads to a remote

storage system

• Cyclic version of repair pipelining: allow a client to issue parallel reads

from multiple helpers

Case 2: arbitrary link bandwidths

• Weighted path selection: select the “best” path of helpers for repair

13

Repair Pipelining (Cyclic Version)

Requestor receives repaired data from k-1 helpers

Repair time in homogeneous environments  1 timeslot for large s

14

N1 N2 N3 N4

N2 N3 N4 N1

N3 N4 N1 N2

R

N4 N1 N2

N1 N2 N3 N4

N2 N3 N4 N1

N3 N4 N1 N2

Send to

requestor

R

N4 N1 N2

Send to

requestor

Group 1

Group 2

Weighted Path Selection

Goal: Find a path of k + 1 nodes (i.e., k helpers and requestor)

that minimizes the maximum link weight

• e.g., set link weight as inverse of link bandwidth

• Any straggler is associated with large weight

Brute-force search is expensive

• (n-1)!/(n-1-k)! permutations

Our algorithm:

• Apply brute-force search, but avoid search of non-optimal paths

• If link L has weight larger than the max weight of the current optimal path, any path

containing L must be non-optimal

• Remain optimal, with much less search time

15

Implementation

• Requestor implemented as a C++/Java class

• Each helper daemon directly reads local blocks via native FS

• Coordinator access block locations and block-to-stripe mappings

ECPipe is integrated with HDFS and QFS, with around 110 and

180 LOC of changes, respectively

 16

Helper

Node

Helper

Node

Helper

Node

Coordinator Requestor

control flow

datal flow

ECPipe: a middleware atop distributed storage system

Evaluation

ECPipe performance on a 1Gb/s local cluster

17

Single-block repair time vs. slice size

for (n,k) = (14,10)

 Trade-off of slice size:

• Too small: transmission overhead is

significant

• Too large: less parallelization

• Best slice size = 32 KiB

 Repair pipelining (basic and cyclic)

outperforms conventional and PPR

by 90.9% and 80.4%, resp.

 Only 7% more than direct send time

over a 1Gb/s link  O(1) repair time

Evaluation

ECPipe performance on a 1Gb/s local cluster

18

Full-node recovery rate vs. number of requestors

for (n,k) = (14,10)

 Recovery rate increases with

number of requestors

 Repair pipelining (RP and

RP+scheduling) achieves high

recovery rate

 Greedy scheduling balances repair

load across helpers when there

are more requestors (i.e., more

resource contention)

Evaluation

ECPipe performance on Amazon EC2

19

Weighted path selection reduces single-block repair time of basic

repair pipelining by up to 45%

Evaluation

 Single-block repair performance on HDFS and QFS

20

 ECPipe significantly improves repair performance

• Conventional repair under ECPipe outperforms original conventional repair inside

distributed file systems (by ~20%)

• Avoid fetching blocks via distributed storage system routine

• Performance gain is mainly due to repair pipelining (by ~90%)

QFS: slice size QFS: block size HDFS: (n,k)

Conclusions

Repair pipelining, a general technique that enables very fast

repair for erasure-coded storage

Contributions:

• Designs for both degraded reads and full-node recovery

• Extensions to heterogeneity

• Prototype implementation ECPipe

• Extensive experiments on local cluster and Amazon EC2

Source code:

• http://adslab.cse.cuhk.edu.hk/software/ecpipe

21

http://adslab.cse.cuhk.edu.hk/software/ecpipe
http://adslab.cse.cuhk.edu.hk/software/ecpipe

