
Repair Pipelining for Erasure-Coded Storage

Runhui Li, Xiaolu Li, Patrick P. C. Lee, Qun Huang

The Chinese University of Hong Kong

USENIX ATC 2017

1

Introduction

Fault tolerance for distributed storage is critical

• Availability: data remains accessible under failures

• Durability: no data loss even under failures

Erasure coding is a promising redundancy technique

• Minimum data redundancy via “data encoding”

• Higher reliability with same storage redundancy than replication

• Reportedly deployed in Google, Azure, Facebook

• e.g., Azure reduces redundancy from 3x (replication) to 1.33x (erasure coding)

 PBs saving

2

Erasure Coding

Divide file data to k blocks

Encode k (uncoded) blocks to n coded blocks

Distribute the set of n coded blocks (stripe) to n nodes

Fault-tolerance: any k out of n blocks can recover file data

3

Nodes

(n, k) = (4, 2)

File encode divide

A
B

C
D

A+C
B+D

A+D
B+C+D

A
B

C
D

A+C
B+D

A+D
B+C+D

A
B

C
D

Remark: for systematic codes, k of n coded blocks are the original k uncoded blocks

Erasure Coding

Practical erasure codes satisfy linearity and addition associativity

• Each block can be expressed as a linear combination of any k blocks in the

same stripe, based on Galois Field arithmetic

• e.g., block B = a1B1 + a2B2 + a3B3 + a4B4

 for k = 4, coefficients ai’s, and blocks Bi’s

Also applicable to XOR-based erasure codes

Examples: Reed-Solomon codes, regenerating codes, LRC

4

Erasure Coding

Good: Low redundancy with high fault tolerance

Bad: High repair penalty

• In general, k blocks retrieved to repair a failed block

Mitigating repair penalty of erasure coding is a hot topic

• New erasure codes to reduce repair bandwidth or I/O

• e.g., Regenerating codes, LRC, Hitchhiker

• Efficient repair approaches for general erasure codes

• e.g., lazy repair, PPR

5

Conventional Repair

Single-block repair:

• Retrieve k blocks from k working nodes (helpers)

• Store the repaired block at requestor

6

Repair time = k timeslots

• Bottlenecked by requestor’s downlink

• Uneven bandwidth usage (e.g., links among helpers are idle)

k = 4 helpers requestor

Network

R N1 N2 N3 N4

Bottleneck

Partial-Parallel-Repair (PPR)

Exploit linearity and addition associativity to perform repair in a

“divide-and-conquer” manner

7

[Mitra, EuroSys’16]

k = 4 helpers requestor

Network

R N1 N2 N3 N4

Repair time = ceil(log2(k+1)) timeslots

Timeslot 1:

N1 sends a1B1 to N2 a1B1+a2B2

N3 sends a3B3 to N4 a3B3+a4B4

Timeslot 2:

N2 sends a1B1+a2B2 to N4

a1B1+a2B2+a3B3+a4B4

Timeslot 3:

N4 R repaired block

Open Question

Repair time of erasure coding remains larger than normal read time

• Repair-optimal erasure codes still read more data than amount of failed data

Erasure coding is mainly for warm/cold data

• Repair penalty only applies to less frequently accessed data

• Hot data remains replicated

Can we reduce repair time of erasure coding to almost the

same as the normal read time?

• Create opportunity for storing hot data with erasure coding

8

Our Contributions

Repair pipelining, a technique to speed up repair for general

erasure coding

• Applicable for degraded reads and full-node recovery

• O(1) repair time in homogeneous settings

Extensions to heterogeneous settings

A prototype ECPipe integrated with HDFS and QFS

Experiments on local cluster and Amazon EC2

• Reduction of repair time by 90% and 80% over conventional repair and

partial-parallel-repair (PPR), respectively

9

Repair Pipelining

Goals:

• Eliminate bottlenecked links

• Effectively utilize available bandwidth resources in repair

Key observation: coding unit (word) is much smaller than

read/write unit (block)

• e.g., word size ~ 1 byte; block size ~ 64 MiB

• Words at the same offset are encoded together in erasure coding

10

…

n blocks of a stripe

words at the same offset

are encoded together

word

Repair Pipelining

 Idea: slicing a block

• Each slice comprises multiple words (e.g., slice size ~ 32 KiB)

• Pipeline the repair of each slice through a linear path

Single-block repair:

11
Repair time = 1 + (k+1)/s 1 timeslot if s is large

time

k = 4

s = 6 slices
N1 N2 N3 N4 R

N1 N2 N3 N4 R

N1 N2 N3 N4 R

N1 N2 N3 N4 R

N1 N2 N3 N4 R

N1 N2 N3 N4 R

a1b1 a1b1+a2b2

a1b1+a2b2

+a3b3

a1b1+a2b2

+a3b3+a4b4

Repair Pipelining

Two types of single-failure repair (most common case):

• Degraded read

• Repairing an unavailable block at a client

• Full-node recovery

• Repairing all lost blocks of a failed node at one or multiple nodes

• Greedy scheduling of multiple stripes across helpers

Challenge: repair degraded by stragglers

• Any repair of erasure coding faces similar problems due to data retrievals from

multiple helpers

Our approach: address heterogeneity and bypass stragglers

12

Extension to Heterogeneity

Heterogeneity: link bandwidths are different

Case 1: limited bandwidth when a client issues reads to a remote

storage system

• Cyclic version of repair pipelining: allow a client to issue parallel reads

from multiple helpers

Case 2: arbitrary link bandwidths

• Weighted path selection: select the “best” path of helpers for repair

13

Repair Pipelining (Cyclic Version)

Requestor receives repaired data from k-1 helpers

Repair time in homogeneous environments 1 timeslot for large s

14

N1 N2 N3 N4

N2 N3 N4 N1

N3 N4 N1 N2

R

N4 N1 N2

N1 N2 N3 N4

N2 N3 N4 N1

N3 N4 N1 N2

Send to

requestor

R

N4 N1 N2

Send to

requestor

Group 1

Group 2

Weighted Path Selection

Goal: Find a path of k + 1 nodes (i.e., k helpers and requestor)

that minimizes the maximum link weight

• e.g., set link weight as inverse of link bandwidth

• Any straggler is associated with large weight

Brute-force search is expensive

• (n-1)!/(n-1-k)! permutations

Our algorithm:

• Apply brute-force search, but avoid search of non-optimal paths

• If link L has weight larger than the max weight of the current optimal path, any path

containing L must be non-optimal

• Remain optimal, with much less search time

15

Implementation

• Requestor implemented as a C++/Java class

• Each helper daemon directly reads local blocks via native FS

• Coordinator access block locations and block-to-stripe mappings

ECPipe is integrated with HDFS and QFS, with around 110 and

180 LOC of changes, respectively

 16

Helper

Node

Helper

Node

Helper

Node

Coordinator Requestor

control flow

datal flow

ECPipe: a middleware atop distributed storage system

Evaluation

ECPipe performance on a 1Gb/s local cluster

17

Single-block repair time vs. slice size

for (n,k) = (14,10)

 Trade-off of slice size:

• Too small: transmission overhead is

significant

• Too large: less parallelization

• Best slice size = 32 KiB

 Repair pipelining (basic and cyclic)

outperforms conventional and PPR

by 90.9% and 80.4%, resp.

 Only 7% more than direct send time

over a 1Gb/s link O(1) repair time

Evaluation

ECPipe performance on a 1Gb/s local cluster

18

Full-node recovery rate vs. number of requestors

for (n,k) = (14,10)

 Recovery rate increases with

number of requestors

 Repair pipelining (RP and

RP+scheduling) achieves high

recovery rate

 Greedy scheduling balances repair

load across helpers when there

are more requestors (i.e., more

resource contention)

Evaluation

ECPipe performance on Amazon EC2

19

Weighted path selection reduces single-block repair time of basic

repair pipelining by up to 45%

Evaluation

 Single-block repair performance on HDFS and QFS

20

 ECPipe significantly improves repair performance

• Conventional repair under ECPipe outperforms original conventional repair inside

distributed file systems (by ~20%)

• Avoid fetching blocks via distributed storage system routine

• Performance gain is mainly due to repair pipelining (by ~90%)

QFS: slice size QFS: block size HDFS: (n,k)

Conclusions

Repair pipelining, a general technique that enables very fast

repair for erasure-coded storage

Contributions:

• Designs for both degraded reads and full-node recovery

• Extensions to heterogeneity

• Prototype implementation ECPipe

• Extensive experiments on local cluster and Amazon EC2

Source code:

• http://adslab.cse.cuhk.edu.hk/software/ecpipe

21

http://adslab.cse.cuhk.edu.hk/software/ecpipe
http://adslab.cse.cuhk.edu.hk/software/ecpipe

