
Lock-in-Pop: Securing Privileged 
Operating System Kernels by Keeping 

on the Beaten Path

Yiwen Li, Brendan Dolan-Gavitt, Sam Weber, Justin Cappos 

New York University
Tandon School of Engineering



2

Motivation
1. Many vulnerabilities exist in the host OS kernel
2. These vulnerabilities can be reached and exploited, even with VMs in place

* Data source: National Vulnerability Database(NVD), https://nvd.nist.gov, July 2017.

Number of Linux Kernel Vulnerabilities by Year

https://nvd.nist.gov


3

What do we want when building virtual machines?
1. Sufficient functionality 
2. Very few zero-day security bugs

...



4

The metrics we have don’t meet our needs
1. Predivtive of where bugs will be found
2. Locate areas that have no/very few bugs

code age [1]

code in device drivers [2]

[1] Ozment, et al. [Usenix Security ’06] 

[2] Chou, et al. [SOSP ’01] 

code age

drivers



Our metric: the popular paths

5

● Definition: lines of code in the kernel source files, which are 
commonly executed in the system’s normal workload.

● Key insight: the popular paths contain many fewer bugs!



Our experiments to obtain the popular paths

6

● Ran top 50 most popular packages according to the Debian popularity contest.

● Two students used their Ubuntu systems for five days.  

● We used Gcov 4.8.4 in Ubuntu 14.04 to capture the kernel coverage data.



Bug density comparison among three security metrics

7

code age [1]

code in device drivers [2]

code in the popular paths [3]

[1] Ozment, et al. [Usenix Security ’06] 

[2] Chou, et al. [SOSP ’01] 

code age 

code in device drivers

code in the popular paths

[3] Li, et al. [USENIX ATC ’17] 



8

popular paths vs. unpopular paths

popular paths
    (1 bug)

unpopular paths
     (19 bugs)



9

Our metric: the popular paths

● Definition

● How to measure it? 

● Is it a good security metric? 

● Is it practically useful? 



Traditional designs: check-and-pass-through

10



Lock-in-Pop design

11

TOCTTOU bugs
● safely re-create file directories 

with basic calls like open(), 
read(), write(), close() to avoid 
using unpopular paths

● the kernel is used infrequently 
● only the popular paths in the 

kernel is accessed

lock applications into using only popular paths



Our prototype implementation: Lind
● Google’s Native Client (NaCl) [IEEE S&P ’09]: software fault isolation 

● Repy Sandbox [CCS ’10]
○ Small sandbox kernel (8K LOC)
○ 33 basic API functions 
○ Accessed only a subset of the “popular paths”
○ Real-world deployment in the Seattle project, under security audit for 5+ years

12



13

Our prototype implementation: Lind



Evaluation results: Linux kernel coverage by fuzzing

14

Virtualization 
system

# of bugs Kernel trace (LOC)

Total coverage In popular paths In risky paths

LXC 12 127.3K 70.9K 56.4K

Docker 8 119.0K 69.5K 49.5K

Graphene 8 95.5K 62.2K 33.3K

Lind 1 70.3K 70.3K 0

Repy 1 74.4K 74.4K 0



15

Evaluation results: Linux kernel bugs triggered
VM Bugs Triggered

Native Linux 35/35 (100%)

LXC 12/35 (34.3%)

Docker 8/35 (22.9%)

Graphene 8/35 (22.9%)

Lind 1/35 (2.9%)

Example: CVE-2015-5706, a bug triggered everywhere except Lind
● A rarely-used flag O_TMPFILE reached unpopular lines of code inside fs/namei.c
● Lind is not affacted, because it is avoiding unpopular paths by restricting flags



16

Evaluation results: performance overhead in Lind



17

Limitations
● Some bugs are difficult to evaluate using our metric.

● Reaching lines of code may not be sufficient to trigger or exploit a bug. 

● Lind’s performance could be improved. 

Future work
● Removing risky lines from the kernel.

● Build a minimal OS kernel for Docker’s LinuxKit, etc.



18

Conclusion

● The popular paths, contain many fewer bugs. 

● Lock-in-Pop design

● Our prototype system, Lind, exposes fewer zero-day kernel bugs.  



19


