Lock-in-Pop: Securing Privileged
Operating System Kernels by Keeping
on the Beaten Path

Yiwen Li, Brendan Dolan-Gavitt, Sam Weber, Justin Cappos

New York University
Tandon School of Engineering

Motivation

1. Many vulnerabilities exist in the host OS kernel

2. These vulnerabilities can be reached and exploited, even with VMs in place

Number of Linux Kernel Vulnerabilities by Year ki

Kernel

23

e
[l

II[
ll
H
ﬂ

l sl

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017
* Data source: National Vulnerability Database(NVD), https://nvd.nist.gov, July 2017.

Applications

L

A

Virtual Machine
4

CPU

v
Memory

Devices

https://nvd.nist.gov

What do we want when building virtual machines?

1. Sufficient functionality

2. \Very few zero-day security bugs

Applications

Kernel

) —
N Apache

A

Tor ..

Virtual Machine
A
| S T
> 1§ i ¥ LS
P X
el \
CPU Memory Devices

9 <

N

The metrics we have don’t meet our needs -

1. Predivtive of where bugs will be found < - 4
2. Locate areas that have no/very few bugs

- 0.2 bugs/KLOC
code age
<=1 1-2 2-3 3-4 >= 4 (year)
drivers .
0 bugs/KLOC
drivers non-drivers
bug density
code age [1] [1] Ozment, et al. [Usenix Security '06]

code in device drivers [2] [2] Chou, et al. [SOSP '01]

Our metric: the popular paths

e Definition: lines of code in the kernel source files, which are
commonly executed in the system’s normal workload.
e Key insight: the popular paths contain many fewer bugs!

Popular Applications]

Applications

- - _]“‘ . . -
Kernel _]"‘ n nPopular Paths . .-][-][-.]‘
T X X ¥
4 \ N
CPU Memory Devices

Our experiments to obtain the popular paths

e Ran top 50 most popular packages according to the Debian popularity contest.
e Two students used their Ubuntu systems for five days.

e We used Gcov 4.8.4 in Ubuntu 14.04 to capture the kernel coverage data.

Bug density comparison among three security metrics

code age
<=1 1-2 2.3 3-4 >= 4 (year) 0.2 bugs/KLOC
code in device drivers
drivers non-drivers
0 bugs/KLOC
code in the popular paths bug density
popular unpopular unreachable
- 100% Linux kernel code -
code age [1] [1] Ozment, et al. [Usenix Security '06]

code in device drivers [2] [2] Chou, et al. [SOSP ’01]
code in the popular paths [3] [3] Li, et al. [USENIX ATC ’17]

popular paths vs. unpopular paths

popular paths unpopular paths
(1 bug) (19 bugs)

Our metric: the popular paths

e Definition v/
e How to measure it? v/
e Isita good security metric? v/

e |[s it practically useful? <

Traditional designs: check-and-pass-through

) ‘li Attacker

Untrusted User Code

User
Space

create, remove, move dir
symbolic link

System call filter

Security Monitor

TCB
Boundary

0s Risky Paths ‘H / l # Risky Paths i &

& «, | Kernel
Kernel | & % % i’f(Ppﬂ;t:::r % i % &ﬁ Space
T

Zero-day Bugs

10

Lock-in-Pop design }%Amﬂ

lock applications into using only popular paths

(@ Untrusted User Code

: . . TOCTTOU bugs
e safely re-create file directories # 9

with basic calls like open(),
read(), write(), close() to avoid
using unpopular paths
e the kernel is used infrequently
e only the popular paths in the
kernel is accessed

System Functionality
SafePOSIX
Re-creation

User
Space

Library OS
Sandbox

Kermo O

0S mﬂr@Patm s % j @ . Aenfua) *.‘Keme!'

Kernel | & % % ﬁ i % f-—-"‘* ﬁ* Space

Zero-day Bugs

11

Our prototype implementation: Lind

e Google’s Native Client (NaCl) [IEEE S&P '09]: software fault isolation

e Repy Sandbox [CCS ’10]

Small sandbox kernel (8K LOC)

33 basic API functions

Accessed only a subset of the “popular paths”

O
O
O
o Real-world deployment in the Seattle project, under security audit for 5+ years

Our prototype implementation: Lind

what we cannot
re-implement User Applications

NaCl

NaCl glibc

User
Space

Repy SafePOSIX)
re-implement

Re-implementation

TCB Boundary

Repy Kernel

Kernel

0S Kernel Space

file directories, etc.

13

Evaluation results: Linux kernel coverage by fuzzing

Virtualization # of bugs Kernel trace (LOC)
system
Total coverage | In popular paths | In risky paths
LXC 12 127.3K 70.9K 56.4K
Docker 8 119.0K 69.5K 49.5K
Graphene 8 95.5K 62.2K 33.3K
Lind 1 70.3K 70.3K 0
Repy 1 74.4K 74.4K 0

14

Evaluation results: Linux kernel bugs triggered

VM Bugs Triggered
Native Linux 35/35 (100%)
LXC 12/35 (34.3%)
Docker 8/35 (22.9%)
Graphene 8/35 (22.9%)
Lind 1/35 (2.9%)

Example: CVE-2015-5706, a bug triggered everywhere except Lind
e Ararely-used flag O _TMPFILE reached unpopular lines of code inside fs/namei.c
e Lind is not affacted, because it is avoiding unpopular paths by restricting flags

Evaluation

results: performance overhead in Lind

Applications

4.00x
GNU Grep
3.84x
NU Wget
6.25x
K&R Cat

2.70x 2.16x - 4.83x
Apache Tor
Benchmarks| |Benchmarks

<
“/"CPU bound

NaCl

T\/FIHD bound

Repy SafePOSIX
Python Code

Kernel

16

Limitations

e Some bugs are difficult to evaluate using our metric.
e Reaching lines of code may not be sufficient to trigger or exploit a bug.

e Lind’s performance could be improved.

Future work

e Removing risky lines from the kernel.

e Build a minimal OS kernel for Docker’s LinuxKit, etc.

17

Conclusion

e The popular paths, contain many fewer bugs.
e [ock-in-Pop design

e Our prototype system, Lind, exposes fewer zero-day kernel bugs.

18

