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Motivation

1. Many vulnerabilities exist in the host OS kernel

2. These vulnerabilities can be reached and exploited, even with VMs in place
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* Data source: National Vulnerability Database(NVD), https://nvd.nist.gov, July 2017.
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What do we want when building virtual machines?

1. Sufficient functionality

2. \Very few zero-day security bugs
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The metrics we have don’t meet our needs -

1. Predivtive of where bugs will be found < - 4
2. Locate areas that have no/very few bugs
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Our metric: the popular paths

e Definition: lines of code in the kernel source files, which are
commonly executed in the system’s normal workload.
e Key insight: the popular paths contain many fewer bugs!
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Our experiments to obtain the popular paths

e Ran top 50 most popular packages according to the Debian popularity contest.
e Two students used their Ubuntu systems for five days.

e We used Gcov 4.8.4 in Ubuntu 14.04 to capture the kernel coverage data.



Bug density comparison among three security metrics
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popular paths vs. unpopular paths
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Our metric: the popular paths

e Definition v/
e How to measure it? v/
e Isita good security metric? v/

e |[s it practically useful? <



Traditional designs: check-and-pass-through
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Lock-in-Pop design }%Amﬂ

lock applications into using only popular paths

(@ Untrusted User Code

: . . TOCTTOU bugs
e safely re-create file directories # 9

with basic calls like open(),
read(), write(), close() to avoid
using unpopular paths
e the kernel is used infrequently
e only the popular paths in the
kernel is accessed
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Our prototype implementation: Lind

e Google’s Native Client (NaCl) [IEEE S&P '09]: software fault isolation

e Repy Sandbox [CCS ’10]

Small sandbox kernel (8K LOC)

33 basic API functions

Accessed only a subset of the “popular paths”

O
O
O
o Real-world deployment in the Seattle project, under security audit for 5+ years



Our prototype implementation: Lind
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Evaluation results: Linux kernel coverage by fuzzing

Virtualization # of bugs Kernel trace (LOC)
system
Total coverage | In popular paths | In risky paths
LXC 12 127.3K 70.9K 56.4K
Docker 8 119.0K 69.5K 49.5K
Graphene 8 95.5K 62.2K 33.3K
Lind 1 70.3K 70.3K 0
Repy 1 74.4K 74.4K 0
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Evaluation results: Linux kernel bugs triggered

VM Bugs Triggered
Native Linux 35/35 (100%)
LXC 12/35 (34.3%)
Docker 8/35 (22.9%)
Graphene 8/35 (22.9%)
Lind 1/35 (2.9%)

Example: CVE-2015-5706, a bug triggered everywhere except Lind
e Ararely-used flag O _TMPFILE reached unpopular lines of code inside fs/namei.c
e Lind is not affacted, because it is avoiding unpopular paths by restricting flags



Evaluation

results: performance overhead in Lind
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Limitations

e Some bugs are difficult to evaluate using our metric.
e Reaching lines of code may not be sufficient to trigger or exploit a bug.

e Lind’s performance could be improved.

Future work

e Removing risky lines from the kernel.

e Build a minimal OS kernel for Docker’s LinuxKit, etc.
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Conclusion

e The popular paths, contain many fewer bugs.
e [ock-in-Pop design

e Our prototype system, Lind, exposes fewer zero-day kernel bugs.
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