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How to preserve users’ privacy while supporting high-utility data
analytics for low-latency stream processing?
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Limitations:
 Deal with only “single-shot” batch queries ®
* Require synchronization between system components @
* Require a trusted aggregator ®
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PrivApprox:
* Supports stream processing with low latency ©
* Enables a truly synchronization-free distributed architecture ©
* Requires lower trust in aggregator ©
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Idea: To preserve privacy, clients may not need to provide
truthful answers every time
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Provides plausible deniability for clients responding to sensitive
queries; achieves differential privacy (RAPPOR [CCS’14])
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Query model

Divide answer’s value range into buckets,
enforce a binary answer in each bucket

Query: SELECT age FROM clients WHERE city = ‘Santa Clara’
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Client cannot arbitrarily manipulate answers
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Experimental setup

* Evaluation questions
* Utility vs privacy See the paper
* Throughput & latency for more
* Network overhead results!

e Testbed

e Cluster: 44 nodes
* Dataset: NYC Taxi ride records, household electricity usage
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PrivApprox: a privacy-preserving stream analytics system over

Privacy

Practical

Efficient

distributed datasets

Zero-knowledge privacy

Adaptive execution based on query budget

Randomized response & sampling techniques

Thank you!

https://privapprox.github.io
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