# **Privacy-Preserving Stream Analytics** https://privapprox.github.io

Do Le Quoc, Martin Beck,

Pramod Bhatotia, Ruichuan Chen, Christof Fetzer, Thorsten Strufe







July 2017









How to preserve users' privacy while supporting high-utility data analytics for low-latency stream processing?

Clients





Personal data should be stored locally under the clients' control





Personal data should be stored locally under the clients' control

































Limitations:



#### Limitations:

• Deal with only "single-shot" batch queries 😕



#### Limitations:

- Deal with only "single-shot" batch queries 😕
- Require synchronization between system components 😕



### Limitations:

- Deal with only "single-shot" batch queries 😕
- Require synchronization between system components 😕
- Require a trusted aggregator 😕

### Clients



### Clients



**PrivApprox:** 

#### Clients



#### **PrivApprox:**

• Supports stream processing with low latency ③

### Clients



### **PrivApprox:**

- Supports stream processing with low latency ③
- Enables a truly synchronization-free distributed architecture 🙂

### Clients



### **PrivApprox:**

- Supports stream processing with low latency ③
- Enables a truly synchronization-free distributed architecture 🙂
- Requires lower trust in aggregator 🙂

## Outline

- Overview
- Design
- Evaluation



### PrivApprox

Analyst





### Execution budget:

- Latency/throughput guarantees
- Desired **computing resources** for query processing
- Desired accuracy



Execution budget:

- Latency/throughput guarantees
- Desired **computing resources** for query processing
- Desired accuracy



### PrivApprox

Analyst










#### System overview



#### System overview



#### System overview







Idea: To achieve low latency, compute over a sub-set of data items instead of the entire data-set



Idea: To achieve low latency, compute over a sub-set of data items instead of the entire data-set



Idea: To preserve privacy, clients may not need to provide truthful answers every time

Idea: To preserve privacy, clients may not need to provide truthful answers every time



Idea: To preserve privacy, clients may not need to provide truthful answers every time



Idea: To preserve privacy, clients may not need to provide truthful answers every time



Idea: To preserve privacy, clients may not need to provide truthful answers every time



Idea: To preserve privacy, clients may not need to provide truthful answers every time



Idea: To preserve privacy, clients may not need to provide truthful answers every time



Provides **plausible deniability** for clients responding to sensitive queries; achieves **differential privacy** (RAPPOR [CCS'14])

#### Outline

- Motivation
- Overview
- Design
- Evaluation

Divide answer's value range into **buckets**, enforce a **binary answer** in each bucket

Divide answer's value range into **buckets**, enforce a **binary answer** in each bucket

**Query:** SELECT age FROM clients WHERE city = 'Santa Clara'

Divide answer's value range into **buckets**, enforce a **binary answer** in each bucket

**Query:** SELECT age FROM clients WHERE city = 'Santa Clara'



Divide answer's value range into **buckets**, enforce a **binary answer** in each bucket

**Query:** SELECT age FROM clients WHERE city = 'Santa Clara'

Divide answer's value range into **buckets**, enforce a **binary answer** in each bucket

**Query:** SELECT age FROM clients WHERE city = 'Santa Clara'

Client cannot arbitrarily manipulate answers

### Workflow: Submit query



# Workflow: Submit query



# Workflow: Submit query





















#### #3: Anonymity and unlinkability
Idea: XOR-based Encryption

Idea: XOR-based Encryption

Client



Idea: XOR-based Encryption

Client



#### Encrypt answer M:

GenerateKey ->  $M_k$ M XOR  $M_k$  ->  $M_E$ 

Idea: XOR-based Encryption



#### Encrypt answer M:

GenerateKey ->  $M_k$  $M \times OR M_k$  ->  $M_E$ 

Idea: XOR-based Encryption



Encrypt answer M:

GenerateKey ->  $M_k$  $M \times OR M_k$  ->  $M_E$  **Decrypt answer**  $M_E$ :  $M_E \times M_k \rightarrow M$ 









## Outline

- Motivation
- Overview
- Design
- Evaluation

## **Experimental setup**

#### • Evaluation questions

- Utility vs privacy
- Throughput & latency
- Network overhead

## Experimental setup

#### • Evaluation questions

- Utility vs privacy
- Throughput & latency
- Network overhead

See the paper for more results!

## Experimental setup

#### • Evaluation questions

- Utility vs privacy
- Throughput & latency
- Network overhead
- Testbed
  - Cluster: 44 nodes
  - Dataset: NYC Taxi ride records, household electricity usage

See the paper for more results!



17











NYC Taxi Ride
Household Electricity









~8X speedup when going from one node to 20 nodes

NYC Taxi Ride









~1.66X lower than the native execution with sampling fraction of 60%

NYC Taxi Ride









~1.6X lower than the native execution with sampling fraction of 60%

| Privacy | Zero-knowledge privacy |
|---------|------------------------|
| Theacy  | Zero-knowledge privacy |

| Privacy   | Zero-knowledge privacy                    |
|-----------|-------------------------------------------|
|           | A dentive eventiens been done even budget |
| Practical | Adaptive execution based on query budget  |

| Privacy   | Zero-knowledge privacy                    |
|-----------|-------------------------------------------|
| Practical | Adaptive execution based on query budget  |
|           |                                           |
| Efficient | Randomized response & sampling techniques |

**PrivApprox:** a privacy-preserving stream analytics system over distributed datasets

| Privacy   | Zero-knowledge privacy                    |
|-----------|-------------------------------------------|
|           |                                           |
| Practical | Adaptive execution based on query budget  |
|           |                                           |
| Efficient | Randomized response & sampling techniques |

#### Thank you! https://privapprox.github.io