
Mercury
Bandwidth-effective Prevention of Rollback
Attacks Against Community Repositories

Trishank Karthik Kuppusamy,
Vladimir Diaz, Justin Cappos

NYU Tandon School of Engineering

Software repositories

2

Software updates

● Experts agree: software
updates the most important
thing (USENIX SOUPS 2015)

● Updates fix security
vulnerabilities

● However, important problem
in software updates often
neglected...

3

Repository compromise: impact

● Nation state actors:
○ Microsoft Windows Update (2012):

Flame malware targeted Iran
nuclear efforts

○ South Korea cyberattack (2013):
>$750M USD in economic damage

○ NotPetya (2017): infected
multinational corporations

● Compromise millions of devices
● Worst case: human lives

4

SSL / TLS

● Use online key to sign all updates (e.g., SSL / TLS, CUP)
● Protects users from man-in-the-middle attacks

5

Repository User

The problem with SSL / TLS

● Doesn’t say anything about the security of the server: just the connection
● Single point of failure: easy to compromise
● If repository is compromised, attacker can install malware and control devices

6

Repository User

Attacker

GPG / RSA

● Why not sign updates using
GPG / RSA keys kept off
repository?

7

GPG / RSA

● Why not sign updates using
GPG / RSA keys kept off
repository?

● Assumes key distribution
problem solved, but OK...

● Mission accomplished, right?

8

What do these organizations have in common?

9

Vulnerabilities in software updates

10

Goal: compromise-resilience

● Only a question of when,
not if

● Cannot prevent a
compromise

● But must severely limit its
impact

11

Internet

Update X

Update Y

Update Z

OEM repository

Phone

Tablet

Laptop

Users

Attacker

One way GPG / RSA is insecure

12

Project metadata & packages

● A repository has many
projects

● A project has many
packages

● A project signs a metadata
file listing packages

13

Django
Django-1.8.tar.gz

Bcrypt

Django-1.7.tar.gz

Bcrypt-1.0.tar.gz

Bcrypt-0.1.tar.gz

v4

v7

Metadata Packages

hash

hash

hash

hash

Rollback attacks

● Choose obsolete updates
with known security
vulnerabilities

14

Django-1.11.3.tar.gz (2017)

Rollback attacks

● No need to tamper with
signed updates

● Just replace new signed
updates with old signed
updates!

15

Django-1.0.4.tar.gz (2009)

Why rollback attacks are bad

● Compromise users w/o
tampering with updates!
[CCS 2008]

● Obsolete = vulnerable =
just as bad as malware

16

Prevents rollback attacks on installed projects

● Verify project metadata to
verify packages

● Download project metadata
for only package to be
installed

● Compare previous & current
version numbers of project
metadata

17

Django

Bcrypt

Django-1.7.tar.gz

Bcrypt-1.0.tar.gz

Bcrypt-0.1.tar.gz

v3

v7

Metadata Packages

hash

hash

hash

prev > curr !

What about projects yet to be installed?

● BAD! Does not
prevent rollback
attacks on projects
yet to be installed

● What is the previous
version number?

18

Django

Bcrypt

Django-1.7.tar.gz

Bcrypt-0.1.tar.gz

Metadata Packages

v3

v6

prev ≤ curr ?

hash

hash

hash

prev > curr !

Compromise-resilience
with Diplomat

19

The Update Framework (TUF)

20

● Design principles
○ Separation of duties
○ Threshold signatures
○ Explicit & implicit revocation

of keys
○ Minimizing risk using offline

keys
○ Selective delegation of trust

● CCS 2010

Diplomat

● Provides
compromise-resilience &
immediate project
registration

● USENIX NSDI 2016

21

Snapshot metadata

● Repositories
distribute snapshot
metadata, or
manifest of all
projects

22

Download snapshot metadata

● To prevent rollback
attacks, first
download snapshot
metadata

23

Download project metadata

● Then, compare
previous & current
version number of
project metadata

24

prev <= curr?

Download all project metadata

● Do this for every
single project
metadata file listed
in snapshot
metadata

25

prev <= curr?

prev <= curr?

Integrations & deployments

26

Problem

● Diplomat too expensive on
some repositories like PyPI

● A large number of frequently
updated projects

27

Bandwidth cost for new users

● Requires new users to
download all project
metadata

● 20MB (31x!)

28

Bandwidth cost for returning users

● Requires returning
users to download all
new or updated project
metadata

● 2.1MB (3.2x!)

29

Mercury: a new security system

30

Diplomat: repository cannot be trusted

31

● No trusted party
(e.g., humans) to
always correctly
indicate new
project metadata

● Projects are
updated too rapidly

? v4

v7

Diplomat: repository cannot be trusted

32

● Repositories use
automation to
indicate only which
projects have been
updated

v4

v7

Diplomat: repository cannot be trusted

33

● But attackers who
compromise
repository can
launch rollback
attacks

● Just point to
obsolete project
metadata!

v3

v6

Diplomat: only developers can be trusted

34

● Only developers
trusted to provide
version numbers

● Price: prohibitive
b/w costs

4 > 3 !

7 > 6 !

Mercury: shift trust from developers to repository

35

● Safely shift source of
trust from
developers to
repository

● Snapshot metadata
indicates version
numbers of project
metadata

Mercury: low bandwidth cost

36

● Uses low bandwidth
costs

● To prevent rollback
attacks, first
download snapshot
metadata

Mercury: low bandwidth cost

37

● Download project
metadata for only
package to be
installed

● Use delta
compression for
more savings

Security analysis

38

● But is it secure?

Security analysis: rollback attacks

● Mercury always
prevents rollback
attacks

39

Security analysis: rollback attacks

● Always compare
previous &
current version
numbers in
snapshot
metadata

40

Security analysis: rollback attacks

● Do not delete
projects from
snapshot
metadata

● Otherwise,
attackers can
rollback these
projects

41

??

Security analysis: fast-forward attacks

● Unlike Diplomat,
susceptible to
fast-forward
attacks

42

Security analysis: fast-forward attacks

● Arbitrarily
increase version
numbers in
snapshot
metadata

● Can deny
packages to users

43

Security analysis: fast-forward attacks

● Waste b/w by
setting arbitrarily
large version
numbers

44

9999999…
…9999999

Security analysis: fast-forward attacks

● Increase version
numbers to
MAXINT

● Makes recovery
impossible

45

Recovering from fast-forward attacks

● Revoke and replace
keys used to sign
snapshot metadata

● Discard and replace
snapshot metadata

46

Recovering from fast-forward attacks

47

System /
Cost

Common
case

Rare
case

Diplomat More
expensive

Less
complicated

Mercury Less
expensive

More
complicated

Persistent Mirror +
Developer Compromise

48

Protection against malicious mirrors

● Malicious mirrors in
powerful nation-states

● Cannot sign new snapshot
metadata, but can sign
some new project
metadata

● Can switch project
metadata w/o getting
caught

49

Protection against malicious mirrors

● Mercury-hash: hash +
version number in
snapshot metadata

● Malicious mirrors cannot
switch project metadata
w/o getting caught

● Higher b/w cost

50

Evaluation of
bandwidth costs

51

Experimental setup

● Security systems
○ GPG / RSA — insecure!
○ Mercury
○ Mercury-hash
○ Diplomat-version: projects sign detached version numbers
○ Diplomat

● An anonymized log of a month of package downloads from PyPI

52

Bandwidth overhead by security system

53

Bandwidth overhead by security system

54

Bandwidth overhead by security system

55

Bandwidth overhead by security system

56

Bandwidth vs. number of projects

57

Bandwidth vs. rate of project updates

58

Conclusions

59

Takeaways

● Safely shift trust from
developers to
repository

● Common case less
expensive, but rare
case slightly more
complicated

● Practical use uncovers
problems

60

Integrations & deployments

61

Q & A

Thanks! Questions?

https://theupdateframework.github.io/

https://uptane.github.io/

trishank@nyu.edu

62

https://theupdateframework.github.io/
https://theupdateframework.github.io/
https://uptane.github.io/
https://uptane.github.io/
mailto:trishank@nyu.edu
mailto:trishank@nyu.edu

