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Software repositories
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Software updates

● Experts agree: software 
updates the most important 
thing (USENIX SOUPS 2015)

● Updates fix security 
vulnerabilities

● However, important problem 
in software updates often 
neglected...
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Repository compromise: impact

● Nation state actors:
○ Microsoft Windows Update (2012): 

Flame malware targeted Iran 
nuclear efforts

○ South Korea cyberattack (2013): 
>$750M USD in economic damage

○ NotPetya (2017): infected 
multinational corporations

● Compromise millions of devices
● Worst case: human lives
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SSL / TLS

● Use online key to sign all updates (e.g., SSL / TLS, CUP)
● Protects users from man-in-the-middle attacks
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The problem with SSL / TLS

● Doesn’t say anything about the security of the server: just the connection
● Single point of failure: easy to compromise
● If repository is compromised, attacker can install malware and control devices
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Repository User
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GPG / RSA

● Why not sign updates using 
GPG / RSA keys kept off 
repository?
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GPG / RSA

● Why not sign updates using 
GPG / RSA keys kept off 
repository?

● Assumes key distribution 
problem solved, but OK...

● Mission accomplished, right?
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What do these organizations have in common?

9



Vulnerabilities in software updates
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Goal: compromise-resilience

● Only a question of when, 
not if

● Cannot prevent a 
compromise

● But must severely limit its 
impact
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One way GPG / RSA is insecure
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Project metadata & packages

● A repository has many 
projects

● A project has many 
packages

● A project signs a metadata 
file listing packages
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Rollback attacks

● Choose obsolete updates 
with known security 
vulnerabilities
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Django-1.11.3.tar.gz (2017)



Rollback attacks

● No need to tamper with 
signed updates

● Just replace new signed 
updates with old signed 
updates!
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Django-1.0.4.tar.gz (2009)



Why rollback attacks are bad

● Compromise users w/o 
tampering with updates! 
[CCS 2008]

● Obsolete = vulnerable = 
just as bad as malware
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Prevents rollback attacks on installed projects

● Verify project metadata to 
verify packages

● Download project metadata 
for only package to be 
installed

● Compare previous & current 
version numbers of project 
metadata
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What about projects yet to be installed?

● BAD! Does not 
prevent rollback 
attacks on projects 
yet to be installed

● What is the previous 
version number?
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Compromise-resilience
with Diplomat
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The Update Framework (TUF)
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● Design principles
○ Separation of duties
○ Threshold signatures
○ Explicit & implicit revocation 

of keys
○ Minimizing risk using offline 

keys
○ Selective delegation of trust

● CCS 2010



Diplomat

● Provides 
compromise-resilience & 
immediate project 
registration

● USENIX NSDI 2016
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Snapshot metadata

● Repositories 
distribute snapshot 
metadata, or 
manifest of all 
projects
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Download snapshot metadata

● To prevent rollback 
attacks, first 
download snapshot 
metadata
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Download project metadata

● Then, compare 
previous & current 
version number of 
project metadata
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prev <= curr?



Download all project metadata

● Do this for every 
single project 
metadata file listed 
in snapshot 
metadata
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prev <= curr?

prev <= curr?



Integrations & deployments
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Problem

● Diplomat too expensive on 
some repositories like PyPI

● A large number of frequently 
updated projects
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Bandwidth cost for new users

● Requires new users to 
download all project 
metadata

● 20MB (31x!)
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Bandwidth cost for returning users

● Requires returning 
users to download all 
new or updated project 
metadata

● 2.1MB (3.2x!)
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Mercury: a new security system
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Diplomat: repository cannot be trusted
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● No trusted party 
(e.g., humans) to 
always correctly 
indicate new 
project metadata

● Projects are 
updated too rapidly

? v4

v7



Diplomat: repository cannot be trusted
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● Repositories use 
automation to 
indicate only which 
projects have been 
updated

v4

v7



Diplomat: repository cannot be trusted
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● But attackers who 
compromise 
repository can 
launch rollback 
attacks

● Just point to 
obsolete project 
metadata!

v3

v6



Diplomat: only developers can be trusted
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● Only developers 
trusted to provide 
version numbers

● Price: prohibitive 
b/w costs

4 > 3 !

7 > 6 !



Mercury: shift trust from developers to repository
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● Safely shift source of  
trust from 
developers to 
repository

● Snapshot metadata 
indicates version 
numbers of project 
metadata



Mercury: low bandwidth cost
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● Uses low bandwidth 
costs

● To prevent rollback 
attacks, first 
download snapshot 
metadata



Mercury: low bandwidth cost
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● Download project 
metadata for only 
package to be 
installed

● Use delta 
compression for 
more savings



Security analysis
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● But is it secure?



Security analysis: rollback attacks

● Mercury always 
prevents rollback 
attacks
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Security analysis: rollback attacks

● Always compare 
previous & 
current version 
numbers in 
snapshot 
metadata
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Security analysis: rollback attacks

● Do not delete 
projects from 
snapshot 
metadata

● Otherwise, 
attackers can 
rollback these 
projects
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Security analysis: fast-forward attacks

● Unlike Diplomat, 
susceptible to 
fast-forward 
attacks
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Security analysis: fast-forward attacks

● Arbitrarily 
increase version 
numbers in 
snapshot 
metadata

● Can deny 
packages to users
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Security analysis: fast-forward attacks

● Waste b/w by 
setting arbitrarily 
large version 
numbers
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Security analysis: fast-forward attacks

● Increase version 
numbers to 
MAXINT

● Makes recovery 
impossible
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Recovering from fast-forward attacks

● Revoke and replace 
keys used to sign 
snapshot metadata

● Discard and replace 
snapshot metadata

46



Recovering from fast-forward attacks
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System /
Cost

Common 
case 

Rare
case

Diplomat More
expensive

Less
complicated

Mercury Less
expensive

More
complicated



Persistent Mirror +
Developer Compromise
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Protection against malicious mirrors

● Malicious mirrors in 
powerful nation-states

● Cannot sign new snapshot 
metadata, but can sign 
some new project 
metadata

● Can switch project 
metadata w/o getting 
caught
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Protection against malicious mirrors

● Mercury-hash: hash + 
version number in 
snapshot metadata

● Malicious mirrors cannot 
switch project metadata 
w/o getting caught

● Higher b/w cost
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Evaluation of
bandwidth costs
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Experimental setup

● Security systems
○ GPG / RSA — insecure!
○ Mercury
○ Mercury-hash
○ Diplomat-version: projects sign detached version numbers
○ Diplomat

● An anonymized log of a month of package downloads from PyPI
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Bandwidth overhead by security system
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Bandwidth overhead by security system
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Bandwidth overhead by security system
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Bandwidth overhead by security system
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Bandwidth vs. number of projects
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Bandwidth vs. rate of project updates
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Conclusions
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Takeaways

● Safely shift trust from 
developers to 
repository

● Common case less 
expensive, but rare 
case slightly more 
complicated

● Practical use uncovers 
problems
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Integrations & deployments
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Q & A

Thanks! Questions?

https://theupdateframework.github.io/

https://uptane.github.io/

trishank@nyu.edu
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