
Falcon: Scaling IO Performance in
Multi-SSD Volumes

Pradeep Kumar H Howie Huang

The George Washington University

SSDs in Big Data Applications
➢ Recent trends advocate using many SSDs for higher throughput in

▪Graph Analytics

▪Machine Learning

▪Key-Value stores, etc.

➢New techniques are taking advantage of high random IOPS of SSDs
▪ Fine grained IOs in graph processing [FAST’17]

▪Doing random IOs in graph processing [ATC’16]

▪Range scan in WiscKey is many parallel random IOs [FAST16]

➢ Increasing use of batched IO interfaces such as libaio in Linux

2

Existing IO Model

3

IO Performance HighLow

P
ro

gr
am

m
in

g
C

o
m

p
le

xi
ty

Low

High

Kernel-managed IO
(1 application IO thread)

Application-managed IO
(1 application IO thread per-SSD)

Falcon
(1 application IO thread)

Kernel-managed IO
(many application IO threads)

(a) Application-managed

…

SSD …

IO Stack

SSD

… …

1 application IO
thread per-SSD

User space
Kernel Space

SSD SSD
…

IO Stack

(b) Kernel-managed

Volume

…

1 or more application IO
thread per-volume

Application
IO Threads

Computing
Threads

Userspace
IO Buffer

Outline

4

01 – Overview and Problem Statement

02 – Background and Block Layer Insufficiency

03 – Falcon Architecture

04 – Evaluation

Linux: IO Flow and IO States

5

Process Next
Request

enqueue to
software-queue

Unplug
Phase

sort

no

enqueue to plug-list

n
o

yes

yes

yes

no

0

dispatch IO
to driver

Plug
Phase

Dispatch
Phase

tag
available?

merge ?

unplug?

no

IRQ event
completion

Complete IOFree
tag

bio

Completion
Phase

classify

complete8

merge3

ready4

wait5

insert6

dispatch7

SCSI Layer and Drivers

SSD1 SSDm
…

Block Layer
Instance (SSD1)

Block Layer
Instance (SSDm)

…

Applications

bio1 biom

Volume Manager Instance

bio

VFSDirect IO Page Cache

biostart1

split2

start1

split2

IO Phases: Plug, Unplug, Dispatch, Completion

IO States: start, split, merge, wait, ready, insert, dispatch, complete

Linux: Mixes IO Batching and IO Serving Tasks

➢ Examples:
▪Mixing batching with merge and tag allocation in

plug phase

▪Mixing classify with sort in unplug phase

➢ Root cause:
▪Many tasks are tied to plug-list

▪Not designed for multi-SSD volume

➢ Creates many Insufficiencies
▪ Lack of parallelism in IO processing

▪ Inefficient Merge and Sort

▪ Unpredictable blocking

6

Unplug Phase (sort, classify)

…

bio1 bio2 biom

Plug Phase
(batch, merge, tag allocation)

Dispatch Phase (dispatch)

To SCSI Layer and Drivers

…

Software queues

…

Software queues

Linux block layer control flow

Thread-specific
plug-list

…

Insufficiency #1: Lack of Parallelism

➢ Increasing stack latency of member SSDs
▪ E.g., Stack Latency of sda is less than sdb

➢ Effect of sequential IO serving and round-robin dispatch
▪ IOs of last drive will acquire insert after IOs of every other drive gets

dispatched

7

0
50

100
150
200
250
300

sda sdb sdc sdd sde sdf sdg sdh 8-SSD
(avg)

1-SSD

St
ac

k
La

te
n

cy

(i
n

 u
se

c)

|________8-SSD Volume Member Drives ___________|

Insufficiency #2: Inefficient Merge and Sort

➢ Stack Latency in 8-SSD volume is greater than 1-SSD system
➢ Stack latency is greater than device latency in 8-SSD volume

➢ Plug-list intermixes IOs destined to all member drives
▪ Search for a merge candidate even in unrelated IOs
▪ Larger sorting workload across SSDs

8

0%

20%

40%

60%

80%

100%

1-SSD 8-SSD Volume
0

100

200

300

400

500

1-SSD 8-SSD Volume

La
te

n
cy

 (
u

se
c)

Stack Latency Device Latency

(a) Absolute latency (b) Percentage

Insufficiency #3: Unpredictable Blocking

➢ If tag allocation fails, the IO thread blocks waiting for a free tag

➢Uncertainty about active IO count in the pipeline
▪ Storage controller dependent

▪ Compromises the IO scalability in SATA controller connected SSD volume

9

0

1

2

3

LSI 9300-8i HBA Intel C602 SATA

N
o

rm
al

iz
e

d

Th
ro

u
gh

p
u

t

1-SSD 2-SSD

0

20

40

60

80

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

Q
u

e
u

e
 D

e
p

th

Time (Sec)

sda sdb sda+sdb Available tag

(a) IO performance Scaling (b) Tag usage in 2-SSD SATA volume

Outline

10

01 – Overview and Problem Statement

02 – Background and Block Layer Insufficiency

03 – Falcon Architecture

04 – Evaluation

Falcon: Separates IO Batching from IO Serving Tasks

11

SCSI Layer and Drivers

SSD1
SSDm

…

FBL Instance
(SSD1)

FBL Instance
(SSDm)

…

bio1 biom

Volume Manager Instance

…

Falcon IO Management Layer (FML)

Applications

VFSDirect IO Page Cache

bio bio

Falcon Threads

start1 start1

split2 split2

Falcon IO Management
Layer (FML) Performs
IO batching tasks Only

Falcon Block Layer
(FBL) performs

IO Serving tasks only

Classification Phase (classify)

bio1 bio2 biom

Batching Phase (batch)

…

…

Thread-specific
plug-list

FML

Process Phase
merge, tag

allocation, dispatch

Sort Phase (sort)

FBL…

software queues

Process Phase
merge, tag

allocation, dispatch

Sort Phase (sort)

FBL…

Software queues

To SCSI Layer and Drivers

Falcon: Feature Comparison with Linux

12

Block Layer
Features

Linux
1-SSD

Linux
Multi-SSD

Falcon
Volume

Parallel Processing NA

Per-Drive Sort

Neighbor Merge

Dynamic Tag Management

➢Well-suited for multi-SSD volume

➢ Improvements are applicable to 1-SSD system also

Falcon IO Management Layer

➢ IO batching in plug-list
▪ No processing, just batching

➢ Classification
▪ Single pass operation
▪ No sorting

➢ Enabling parallel processing
▪ Creates Falcon threads per FBL

➢ Uniform unplug criteria
▪ 32 per-SSD, 256 for 8-SSD volume
▪ Lower criteria for low IO demand,

and latency sensitive applications
▪ See the paper for more details

13

Move per-drive queues to software queues

insert

Classification
Phase

Classify plug-list to temporary per-drive queues

no

enqueue to plug-list

Process Next
IO Request

yes

Batching
Phase

unplug?

bio
(from Volume manager Layer)

Spawn Falcon threads, if needed

Falcon Block Layer

➢ Sort Phase
▪ Per-Drive Sort

➢ Process Phase
▪ Neighbor Merge
▪ Dynamic tag allocation
▪ Dispatch

➢ Completion Phase

➢ Able to saturate a Samsung
950 Pro 512GB NVMe SSD
▪ 1375 MB/s (13% better than

Linux)

14

0

0
Dispatch IO to driver

dispatch

ready

Process
Phase

Sort software-queue

Allocate tag

Neighbor merge

Sort
Phase

merge

IRQ event
completion

Complete IO

complete

bio
(from FML layer)

To SCSI layer and Drivers

Completion
Phase

Dynamic Tag Management

➢Allocate a tag only if a dispatch is required

➢ Bio-queue keeps bio objects yet to be dispatched

➢ Pressure point controls the active IO count in the pipeline

15

(a) IO Throughput Scaling for SATA controller

0

10

20

30

40

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Q

u
e

u
e

 D
e

p
th

Time (sec)

sda-Linux sdb-Linux sda-Falcon sdb-Falcon

(b) Tag usage in 2-SSD SATA volume

0

1

2

3

Linux Falcon

N
o

rm
al

iz
e

d

Th
ro

u
gh

p
u

t

1-SSD 2-SSD

Outline

16

01 – Overview and Problem Statement

02 – Background and Block Layer Insufficiency

03 – Falcon Architecture

04 – Evaluation

Evaluation Setup

➢ Falcon: 600 lines of C kernel code add

➢ Ubuntu 16.04 version with Kernel version 4.4.0, Blk-mq block layer

➢ 2 Intel Xeon CPU E5-2620 2GHz with 6 cores each

➢ 32GB DRAM

➢ 8 Samsung EVO 850 500 GB SSDs, connected using LSI SAS9300-8i HBA

➢ 4KB Stripe size is used by default

➢ Raw volume, Ext4 and XFS file systems are evaluated

➢ Revised FIO is used as micro-benchmark

17

Ext4 File Random IO

➢ Ext4 has file inode lock issue

➢ 1.77x speedup for random read

➢ 1.59x speedup for random write

18

(a) Single file read throughput (b) Single file write throughput

0
500

1000
1500
2000

1 2 4 8

Th
ro

u
gh

p
u

t
(M

B
/s

e
c)

IO thread count

Linux Falcon

0

500

1000

1500

1 2 4 8

Th
ro

u
gh

p
u

t
(M

B
/s

e
c)

IO thread count

Linux Falcon

Buffered Random Write

➢ Buffer cache has just 1 thread per volume for flushing dirty pages

➢ 1.39x speedup for 4-SSD volume

➢ 1.59x speedup for 8-SSD volume

19

0
400
800

1200
1600

1 2 4 8
Th

ro
u

gh
p

u
t

(M
B

/s
e

c)
SSD count

Linux Falcon

Graph Processing
➢G-Store[SC’16] is used

▪ Semi-external graph analytics engine
▪ Configurable number of IO threads
▪ Linux setup, 1 and 8 IO threads
▪ Falcon : 1 IO thread

➢ 8-SSD volume, XFS filesystem

➢ Kronecker graph scale 28, edge
factor 16 is used

➢ BFS, kCore: High random IO

➢ Connected component (CC),
PageRank (PR): Sequential IO

20

0
1
2
3
4
5
6

BFS kCore CC PR

Sp
e

e
d

u
p

Linux 1 IO Thread Linux 8 IO Threads Falcon

Graph Processing

➢ 4.12x speedup over Linux 1 IO
thread setup

➢ 1.78x speedup over Linux 8 IO
thread

IO Trace Replay

21

Trace Name Read (%) IO size range Size (GB) Type

UM-Financial1 23.16 512B - 16715KB 17.22 Online transaction processing

UM-Financial2 82.34 512B - 256.5KB 8.44 Online transaction processing

UM-Websearch1 99.98 512B - 1111KB 15.24 Web Search

UM-Websearch2 99.98 8KB - 32KB 65.82 Web Search

FIU-Home 1 512B - 512KB 34.58 Research group activities

FIU-Mail 8.58 4KB - 4KB 86.64 Mail Server

FIU-Webuser 10.33 4KB - 128KB 30.94 Web User

FIU-Web-vm 21.8 4KB - 4KB 54.52 Webmail proxy/online course management

0
500

1000
1500
2000
2500
3000

UM-Financial1 UM-Financial2 UM-Websearch1 UM-Webserach2 FIU-Home FIU-Mail FIU-Webuser FIU-Web-vm

Th
ro

u
gh

p
u

t
(M

B
/s

e
c)

Linux Falcon

1.67x better IO throughput on average

Conclusion

➢ Separating batching from IO serving tasks is the key for IO scalability
in multi-SSD volume

➢ Falcon enforces per-drive processing
▪ Improves the IO stack performance

▪Parallelizes the IO serving tasks across member SSDs

➢ Falcon improves the performance by 1.69x for various applications on
8-SSD volume

➢ Falcon achieves 1.13x throughput for an NVMe SSD

22

Thank You

➢ Falcon is open source now
▪https://github.com/iHeartGraph/falcon

23

