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SSDs in Big Data Applications

» Recent trends advocate using many SSDs for higher throughput in
= Graph Analytics
®" Machine Learning
= Key-Value stores, etc.

» New techniques are taking advantage of high random I0PS of SSDs
" Fine grained 10s in graph processing [FAST'17]
" Doing random IOs in graph processing [ATC'16]
" Range scan in WiscKey is many parallel random 10s [FAST16]

» Increasing use of batched 10 interfaces such as libaio in Linux
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Existing IO Model
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Linux: 10 Flow and IO States
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Linux: Mixes 10 Batching and 10 Serving Tasks

» Examples:

= Mixing batching with merge and tag allocation in
plug phase

= Mixing classify with sort in unplug phase

» Root cause:
" Many tasks are tied to plug-list
= Not designed for multi-SSD volume

» Creates many Insufficiencies
= Lack of parallelism in IO processing
= |[nefficient Merge and Sort
= Unpredictable blocking
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Insufficiency #1: Lack of Parallelism
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» Increasing stack latency of member SSDs
= E.g., Stack Latency of sda is less than sdb

» Effect of sequential 10 serving and round-robin dispatch

= |Os of last drive will acquire insert after |0s of every other drive gets
dispatched
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Insufficiency #2: Inefficient Merge and Sort
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» Stack Latency in 8-SSD volume is greater than 1-SSD system
» Stack latency is greater than device latency in 8-SSD volume

» Plug-list intermixes 10s destined to all member drives
= Search for a merge candidate even in unrelated 10s
= Larger sorting workload across SSDs
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Insufficiency #3: Unpredictable Blocking
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> If tag allocation fails, the |10 thread blocks waiting for a free tag

» Uncertainty about active 10 count in the pipeline
= Storage controller dependent
= Compromises the 10 scalability in SATA controller connected SSD volume
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Falcon: Separates 10 Batching from IO Serving Tasks
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Falcon: Feature Comparison with Linux
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» Well-suited for multi-SSD volume
» Improvements are applicable to 1-SSD system also
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Falcon I0 Management Layer

» 10 batching in plug-list Process Next bio

|0 Request  (from Volume manager Layer)
V |

= No processing, just batching

» Classification
= Single pass operation
= No sorting

» Enabling parallel processing
= Creates Falcon threads per FBL

» Uniform unplug criteria
= 32 per-SSD, 256 for 8-SSD volume

= Lower criteria for low IO demand,
and latency sensitive applications

= See the paper for more details
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Falcon Block Layer

> Sort Phase
= Per-Drive Sort

» Process Phase
= Neighbor Merge
" Dynamic tag allocation
= Dispatch

» Completion Phase

» Able to saturate a Samsung
950 Pro 512GB NVMe SSD

= 1375 MB/s (13% better than
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Dynamic Tag Management

» Allocate a tag only if a dispatch is required
» Bio-queue keeps bio objects yet to be dispatched
» Pressure point controls the active 10 count in the pipeline
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Evaluation Setup

» Falcon: 600 lines of C kernel code add
» Ubuntu 16.04 version with Kernel version 4.4.0, Blk-mq block layer

> 2 Intel Xeon CPU E5-2620 2GHz with 6 cores each
> 32GB DRAM
» 8 Samsung EVO 850 500 GB SSDs, connected using LSI SAS9300-8i HBA

» 4KB Stripe size is used by default

» Raw volume, Ext4 and XFS file systems are evaluated

> Revised FIO is used as micro-benchmark
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Ext4 File Random IO
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» Ext4 has file inode lock issue

» 1.77x speedup for random read
» 1.59x speedup for random write

1 GW



Buffered Random Write
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» Buffer cache has just 1 thread per volume for flushing dirty pages

» 1.39x speedup for 4-SSD volume
» 1.59x speedup for 8-SSD volume
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Graph Processing

» G-Store[SC’16] is used

M Linux 110 Thread M Linux 8 I0 Threads Falcon

= Semi-external graph analytics engine a g
= Configurable number of 10 threads § a4
" Linux setup, 1 and 8 10 threads Q 3
= Falcon : 1 10 thread « i I I I I
. B B B
BFS kCore CC PR

» 8-SSD volume, XFS filesystem

» Kronecker graph scale 28, edge

factor 16 is used > 4.12x speedup over Linux 110
thread setup

Graph Processing

» BFS, kCore: High random 10

» Connected component (CC), » 1.78x speedup over Linux 8 10
PageRank (PR): Sequential IO thread
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Throughput

IO Trace Replay

UM-Financiall

UM-Financial2 UM-Websearchl UM-Webserach2

Trace Name Read (%) 10 size range Size (GB) | Type
UM-Financiall 23.16 512B - 16715KB 17.22 Online transaction processing
UM-Financial2 82.34 512B - 256.5KB 8.44 Online transaction processing
UM-Websearchl 99.98 512B-1111KB 15.24 Web Search
UM-Websearch2 99.98 8KB - 32KB 65.82 Web Search
FIU-Home 1 512B - 512KB 34.58 Research group activities
FIU-Mail 8.58 4KB - 4KB 86.64 Mail Server
FIU-Webuser 10.33 4KB - 128KB 30.94 Web User
FIU-Web-vm 21.8 4KB - 4KB 54.52 Webmail proxy/online course management
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1.67x better IO throughput on average
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Conclusion

» Separating batching from 10 serving tasks is the key for 10 scalability
in multi-SSD volume

» Falcon enforces per-drive processing
" Improves the 10 stack performance
" Parallelizes the 10 serving tasks across member SSDs

» Falcon improves the performance by 1.69x for various applications on
8-SSD volume

» Falcon achieves 1.13x throughput for an NVMe SSD
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Thank You

» Falcon is open source now
= https://github.com/iHeartGraph/falcon
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