Falcon: Scaling 10 Performance in
Multi-SSD Volumes

Pradeep Kumar H Howie Huang
The George Washington University

usenix THE GEORGE

THE ADVANCED WASHINGTON

’ COMPUTING SYSTEMS UNIVERSITY
ASSOCIATION

WASHINGTON, DC

SSDs in Big Data Applications

» Recent trends advocate using many SSDs for higher throughput in
= Graph Analytics
®" Machine Learning
= Key-Value stores, etc.

» New techniques are taking advantage of high random I0PS of SSDs
" Fine grained 10s in graph processing [FAST'17]
" Doing random IOs in graph processing [ATC'16]
" Range scan in WiscKey is many parallel random 10s [FAST16]

» Increasing use of batched 10 interfaces such as libaio in Linux

GW

Existing IO Model

Computing N
Threads 4 Application-managed IO
High (1 application IO thread per-SSD)
(o)
Userspace
|0 Buffer a0 Kernel-managed 10
Application I= Py (many application 10 threads)
IO Threads = =
User space Q
__ ()
Kernel Space & g'
© o
|0 Stack a O
-@ - -m o > Falcon
Volume Low | Kernel-managed |0 (1 application 10 thread)
(1 application IO thread)
(b) Kernel-managed (a) Application-managed >
Low High
1 or more application IO 1 application IO 10 Performance &
thread per-volume thread per-SSD

Outline

% 01 - Overview and Problem Statement ﬂ/

@ 02 — Background and Block Layer Insufficiency

@' 03 — Falcon Architecture

@ 04 — Evaluation

Linux: 10 Flow and IO States

App

lications

Direct IO = VFS

Page Cache

bio

bio

A 4

Volume Manager Instance

o,

Block Layer
Instance (SSD,)

o 1

bio,,

A Z

Block Layer
Instance (SSD,.)

VT

SCSI Layer and Drivers

A

I0 Phases: Plug, Unplug, Dispatch, Completion

10 States: start, split, merge, wait, ready, insert, dispatch, complete

5

\\
p)

Process Next

Req uAest |

Complete IO
[@complete]

A

i IRQ event
: completion
Plug ' :Completion
Phase; iPhase | |
T o | UnPIuE] ipicpaten
| T Phase | ' Phase |
! classify | i
: _ i 1| dispatch 10 |!
- | insert | L . !
i {4.6) i 1| todriver |
i | enqueue to B : :
| - dispatch ||
: software-queue | [0 e]:

GW

Linux: Mixes 10 Batching and 10 Serving Tasks

» Examples:

= Mixing batching with merge and tag allocation in
plug phase

= Mixing classify with sort in unplug phase

» Root cause:
" Many tasks are tied to plug-list
= Not designed for multi-SSD volume

» Creates many Insufficiencies
= Lack of parallelism in IO processing
= |[nefficient Merge and Sort
= Unpredictable blocking

bio, bio, -+ Dbio

m

A

\ 4

Plug Phase
(batch, merge, tag allocation)

v

‘——-

v

“ Thread-specific
plug-list

Unplug Phase (sort, classify)

_—

s

Software queues

A

Software queues

'

Dispatch Phase (dispatch)

T

To SCSI Layer and Drivers

Linux block layer control flow

GW

Insufficiency #1: Lack of Parallelism

300

-
200 -
150
100

50 .
sda sdb sdc

0
sdd sde sdf sdg sdh 8-SSD 1-SSD
| (ave)

Stack Latency
(in usec)

| 8-SSD Volume Member Drives

» Increasing stack latency of member SSDs
= E.g., Stack Latency of sda is less than sdb

» Effect of sequential 10 serving and round-robin dispatch

= |Os of last drive will acquire insert after |0s of every other drive gets
dispatched

GW

Insufficiency #2: Inefficient Merge and Sort

M Stack Latency M Device Latency

9 500 100%
5 400 80%
> 300 60%
S 200 40%
T 100 I . 20%
0] 0%
1-SSD 8-SSD Volume 1-SSD 8-5SD Volume
(a) Absolute latency (b) Percentage

» Stack Latency in 8-SSD volume is greater than 1-SSD system
» Stack latency is greater than device latency in 8-SSD volume

» Plug-list intermixes 10s destined to all member drives
= Search for a merge candidate even in unrelated 10s
= Larger sorting workload across SSDs

GW

Insufficiency #3: Unpredictable Blocking

3 W 1-SSD MW 2-SSD —e—sda —e-sdb -e-sda+sdb -e—Available tag
- = ..'E 80
S 2 Q. 60
=< 2 a
T bo 40
€ 3 o
E g, 2 2 w
o | BN | IEE
0 0 2 4 6 8 1012 14 16 18 20 22 24 26 28 30
LSI 9300-8i HBA Intel C602 SATA Time (Sec)
(a) 10 performance Scaling (b) Tag usage in 2-SSD SATA volume

> If tag allocation fails, the |10 thread blocks waiting for a free tag

» Uncertainty about active 10 count in the pipeline
= Storage controller dependent
= Compromises the 10 scalability in SATA controller connected SSD volume

GW

Outline

% 01 - Overview and Problem Statement ﬂ/

@ 02 - Background and Block Layer Insufficiency </

@' 03 — Falcon Architecture

@ 04 — Evaluation

1 GW

Falcon: Separates 10 Batching from IO Serving Tasks

Applications

Direct IO VFS

Page Cache

bio[

bio

v

Volume Manager Instance

b|01 XX biom l@Sp“t

bio,

bio,

1 v v
| hread-specific
«— .
plug-list

v

v

FML

Classification Phase (classify)

Falcon IO Management
Layer (FML) Performs
|0 batching tasks Only

Falcon 10 Management Layer (FML)

software queues

FBL

Software queues

FBL

Sort Phase (sort)

Sort Phase (sort)

£ Falcon Threads =
FBL Instance FBL Instance
(SSDl) (SSDm)
v ! 4 T

SCSI Layer and Drivers

A

A 4

y

Falcon Block Layer
(FBL) performs
|O Serving tasks only

11

To SCSI Layer and Drivers

v !
Process Phase Process Phase
merge, tag J merge, tag J
allocation, dispatch llocation, dispatch
v T v T

GW

Falcon: Feature Comparison with Linux

Block Layer Linux Linux Falcon

Features 1-SSD Multi-SSD Volume

Parallel Processing NA

Per-Drive Sort

Neighbor Merge

X|%| x| X
NSNS

X[%|<

Dynamic Tag Management

» Well-suited for multi-SSD volume
» Improvements are applicable to 1-SSD system also

12

GW

Falcon I0 Management Layer

» 10 batching in plug-list Process Next bio

|0 Request (from Volume manager Layer)
V |

= No processing, just batching

» Classification
= Single pass operation
= No sorting

» Enabling parallel processing
= Creates Falcon threads per FBL

» Uniform unplug criteria
= 32 per-SSD, 256 for 8-SSD volume

= Lower criteria for low IO demand,
and latency sensitive applications

= See the paper for more details

enqueue to plug-list

no

unplug? Batching

ves Phase

Classify plug-list to temporary per-drive queues

,,

Move per-drive queues to software queues

A 4

Spawn Falcon threads, if needed

13

Falcon Block Layer

> Sort Phase
= Per-Drive Sort

» Process Phase
= Neighbor Merge
" Dynamic tag allocation
= Dispatch

» Completion Phase

» Able to saturate a Samsung
950 Pro 512GB NVMe SSD

= 1375 MB/s (13% better than

bio

(from FML layer) t

- . Sort |
Sort software-queue | phase

e Process| |Completion |

Neighbor merge Phase | |Phase

-

Allocate tag Complete 10
[complete]

:
Dispatch 10 to driver IRQ event
[dispatch] | completion :
_______________________________________ ! L_____________f_____________l

Linux)

v

To SCSI layer and Drivers

14

GW

Dynamic Tag Management

» Allocate a tag only if a dispatch is required
» Bio-queue keeps bio objects yet to be dispatched
» Pressure point controls the active 10 count in the pipeline

-<+-sda-Linux --+-sdb-Linux —+—sda-Falcon sdb-Falcon

M 1-SSD m 2-SSD
< w3 £ 40
Q g_ Q 30 i e Bl e s 2 g
E i o 2 8 |
c X P R GRS = = S = ol i iSSP SR
g o1 > 10 l‘}* ° TesTTem0se—e
o & v 9
= . l = '
0 g o ¢
Linux Falcon 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
Time (sec)
(a) 10 Throughput Scaling for SATA controller (b) Tag usage in 2-SSD SATA volume

1 GW

Outline

% 01 - Overview and Problem Statement ﬂ/

@ 02 - Background and Block Layer Insufficiency </

@' 03 — Falcon Architecture q/

@ 04 — Evaluation

i GW

Evaluation Setup

» Falcon: 600 lines of C kernel code add
» Ubuntu 16.04 version with Kernel version 4.4.0, Blk-mq block layer

> 2 Intel Xeon CPU E5-2620 2GHz with 6 cores each
> 32GB DRAM
» 8 Samsung EVO 850 500 GB SSDs, connected using LSI SAS9300-8i HBA

» 4KB Stripe size is used by default

» Raw volume, Ext4 and XFS file systems are evaluated

> Revised FIO is used as micro-benchmark

17

GW

Ext4 File Random IO

M Linux H® Falcon 1500 B Linux M Falcon

£ 2000 =
(& —
% g 1500 £ 91000
S = 1000 o
= 3 e 500
Ez= i | | i I
0 = o
-
1 2 4 8 1 2 4 8
|0 thread count 10 thread count
(a) Single file read throughput (b) Single file write throughput

» Ext4 has file inode lock issue

» 1.77x speedup for random read
» 1.59x speedup for random write

1 GW

Buffered Random Write

M Linux ™ Falcon
600

200

800 I I
w __ mam I B
2 4 8

1

Throughput
(MB/sec)
= =

SSD count

» Buffer cache has just 1 thread per volume for flushing dirty pages

» 1.39x speedup for 4-SSD volume
» 1.59x speedup for 8-SSD volume

i GW

Graph Processing

» G-Store[SC’16] is used

M Linux 110 Thread M Linux 8 I0 Threads Falcon

= Semi-external graph analytics engine a g
= Configurable number of 10 threads § a4
" Linux setup, 1 and 8 10 threads Q 3
= Falcon : 1 10 thread « i I I I I
. B B B
BFS kCore CC PR

» 8-SSD volume, XFS filesystem

» Kronecker graph scale 28, edge

factor 16 is used > 4.12x speedup over Linux 110
thread setup

Graph Processing

» BFS, kCore: High random 10

» Connected component (CC), » 1.78x speedup over Linux 8 10
PageRank (PR): Sequential IO thread

. GW

Throughput

IO Trace Replay

UM-Financiall

UM-Financial2 UM-Websearchl UM-Webserach2

Trace Name Read (%) 10 size range Size (GB) | Type
UM-Financiall 23.16 512B - 16715KB 17.22 Online transaction processing
UM-Financial2 82.34 512B - 256.5KB 8.44 Online transaction processing
UM-Websearchl 99.98 512B-1111KB 15.24 Web Search
UM-Websearch2 99.98 8KB - 32KB 65.82 Web Search
FIU-Home 1 512B - 512KB 34.58 Research group activities
FIU-Mail 8.58 4KB - 4KB 86.64 Mail Server
FIU-Webuser 10.33 4KB - 128KB 30.94 Web User
FIU-Web-vm 21.8 4KB - 4KB 54.52 Webmail proxy/online course management
3000 M Linux M Falcon
9" 2500
g o I I II
< 1000 I I I I
« ol -0 HH HE N

FIU-Home FIU-Mail FIU-Webuser FIU-Web-vm

1.67x better IO throughput on average

GW

Conclusion

» Separating batching from 10 serving tasks is the key for 10 scalability
in multi-SSD volume

» Falcon enforces per-drive processing
" Improves the 10 stack performance
" Parallelizes the 10 serving tasks across member SSDs

» Falcon improves the performance by 1.69x for various applications on
8-SSD volume

» Falcon achieves 1.13x throughput for an NVMe SSD

GW

Thank You

» Falcon is open source now
= https://github.com/iHeartGraph/falcon

23

GW

