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SSDs in Big Data Applications
➢ Recent trends advocate using many SSDs for higher throughput in

▪Graph Analytics

▪Machine Learning 

▪Key-Value stores, etc.

➢New techniques are taking advantage of high random IOPS of SSDs
▪ Fine grained IOs in graph processing [FAST’17]

▪Doing random IOs in graph processing [ATC’16]

▪Range scan in WiscKey is many parallel random IOs [FAST16]

➢ Increasing use of batched IO interfaces such as libaio in Linux 
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Existing IO Model
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Outline 
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Linux: IO Flow and IO States
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Linux: Mixes IO Batching and IO Serving Tasks

➢ Examples:
▪Mixing batching with merge and tag allocation in 

plug phase

▪Mixing classify with sort in unplug phase

➢ Root cause:
▪Many tasks are tied to plug-list

▪Not designed for multi-SSD volume 

➢ Creates many Insufficiencies
▪ Lack of parallelism in IO processing

▪ Inefficient Merge and Sort

▪ Unpredictable blocking
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Insufficiency #1: Lack of Parallelism

➢ Increasing stack latency of member SSDs
▪ E.g.,   Stack Latency of sda is less than sdb

➢ Effect of sequential IO serving and round-robin dispatch
▪ IOs of last drive will acquire insert after IOs of every other drive gets 

dispatched
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Insufficiency #2: Inefficient Merge and Sort

➢ Stack Latency in 8-SSD volume is greater than 1-SSD system
➢ Stack latency is greater than device latency in 8-SSD volume

➢ Plug-list intermixes IOs destined to all member drives
▪ Search for a merge candidate even in unrelated IOs
▪ Larger sorting workload across SSDs
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Insufficiency #3: Unpredictable Blocking

➢ If tag allocation fails, the IO thread blocks waiting for a free tag

➢Uncertainty about active IO count in the pipeline
▪ Storage controller dependent

▪ Compromises the IO scalability in SATA controller connected SSD volume
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Falcon: Separates IO Batching from IO Serving Tasks
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Falcon: Feature Comparison with Linux
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Falcon IO Management Layer

➢ IO batching in plug-list
▪ No processing, just batching

➢ Classification 
▪ Single pass operation
▪ No sorting

➢ Enabling parallel processing
▪ Creates Falcon threads per FBL

➢ Uniform unplug criteria
▪ 32 per-SSD,  256 for 8-SSD volume
▪ Lower criteria for low IO demand, 

and latency sensitive applications
▪ See the paper for more details
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Falcon Block Layer

➢ Sort Phase
▪ Per-Drive Sort 

➢ Process Phase
▪ Neighbor Merge
▪ Dynamic tag allocation
▪ Dispatch

➢ Completion Phase

➢ Able to saturate a Samsung 
950 Pro 512GB NVMe SSD 
▪ 1375 MB/s (13% better than 

Linux)
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Dynamic Tag Management

➢Allocate a tag only if a dispatch is required

➢ Bio-queue keeps bio objects yet to be dispatched

➢ Pressure point controls the active IO count in the pipeline
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Evaluation Setup

➢ Falcon: 600 lines of C kernel code add

➢ Ubuntu 16.04 version with Kernel version 4.4.0, Blk-mq block layer

➢ 2 Intel Xeon CPU E5-2620 2GHz with 6 cores each

➢ 32GB DRAM

➢ 8 Samsung EVO 850 500 GB SSDs, connected using LSI SAS9300-8i HBA

➢ 4KB Stripe size is used by default

➢ Raw volume, Ext4 and XFS file systems are evaluated

➢ Revised FIO is used as micro-benchmark
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Ext4 File Random IO

➢ Ext4 has file inode lock issue 

➢ 1.77x speedup for random read 

➢ 1.59x speedup for random write
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Buffered Random Write

➢ Buffer cache has just 1 thread per volume for flushing dirty pages 

➢ 1.39x speedup for 4-SSD volume  

➢ 1.59x speedup for 8-SSD volume
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Graph Processing
➢G-Store[SC’16] is used

▪ Semi-external graph analytics engine
▪ Configurable number of IO threads
▪ Linux setup, 1 and 8 IO threads
▪ Falcon : 1 IO thread

➢ 8-SSD volume, XFS filesystem

➢ Kronecker graph scale 28, edge 
factor 16 is used

➢ BFS, kCore: High random IO 

➢ Connected component (CC), 
PageRank (PR): Sequential IO 
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IO Trace Replay
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Trace Name Read (%) IO size range Size (GB) Type

UM-Financial1 23.16 512B - 16715KB 17.22 Online transaction processing

UM-Financial2 82.34 512B - 256.5KB 8.44 Online transaction processing

UM-Websearch1 99.98 512B - 1111KB 15.24 Web Search

UM-Websearch2 99.98 8KB - 32KB 65.82 Web Search

FIU-Home 1 512B - 512KB 34.58 Research group activities

FIU-Mail 8.58 4KB - 4KB 86.64 Mail Server

FIU-Webuser 10.33 4KB - 128KB 30.94 Web User

FIU-Web-vm 21.8 4KB - 4KB 54.52 Webmail proxy/online course management

0
500

1000
1500
2000
2500
3000

UM-Financial1 UM-Financial2 UM-Websearch1 UM-Webserach2 FIU-Home FIU-Mail FIU-Webuser FIU-Web-vm

Th
ro

u
gh

p
u

t 
(M

B
/s

e
c)

Linux Falcon

1.67x better IO throughput on average 



Conclusion

➢ Separating  batching from IO serving tasks is the key for IO scalability 
in multi-SSD volume

➢ Falcon enforces per-drive processing
▪ Improves the IO stack performance

▪Parallelizes the IO serving tasks across member SSDs

➢ Falcon improves the performance by 1.69x for various applications on 
8-SSD volume

➢ Falcon achieves 1.13x throughput for an NVMe SSD
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Thank You

➢ Falcon is open source now
▪https://github.com/iHeartGraph/falcon
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